
J. B. Rainsberger
with contributions by Scott Stirling

M A N N I N G

JUnit
Recipes
Practical Methods
for Programmer Testing

JUnit Recipes

JUnit Recipes
Practical Methods for Programmer Testing

J.B. RAINSBERGER
with contributions by SCOTT STIRLING

M A N N I N G
Greenwich

(74° w. long.)

 To my mother, Joan.

 I wish I had finished this in time.

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: manning@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Mark Goodin
209 Bruce Park Avenue Typesetter: Martine Maguire-Weltecke
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1932394230

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 07 06 05 04

 brief contents
PART 1 THE BUILDING BLOCKS1

1 ■ Fundamentals 3

2 ■ Elementary tests 22

3 ■ Organizing and building JUnit tests 71

4 ■ Managing test suites 102

5 ■ Working with test data 136

6 ■ Running JUnit tests 173

7 ■ Reporting JUnit results 188

8 ■ Troubleshooting JUnit 233

PART 2 TESTING J2EE ... 257

9 ■ Testing and XML 265

10 ■ Testing and JDBC 308

11 ■ Testing Enterprise JavaBeans 370

12 ■ Testing web components 443

13 ■ Testing J2EE applications 508
v

vi BRIEF CONTENTS
PART 3 MORE JUNIT TECHNIQUES 541

14 ■ Testing design patterns 543

15 ■ GSBase 572

16 ■ JUnit-addons 585

17 ■ Odds and ends 603

APPENDICES .. 629

A ■ Complete solutions 629

B ■ Essays on testing 673

C ■ Reading List 696

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxii
about the cover illustration xxx

PART 1 THE BUILDING BLOCKS1

1 Fundamentals 3
1.1 What is Programmer Testing? 4

1.2 Getting started with JUnit 10

1.3 A few good practices 17

1.4 Summary 20

2 Elementary tests 22
2.1 Test your equals method 26

2.2 Test a method that returns nothing 33

2.3 Test a constructor 37

2.4 Test a getter 41

2.5 Test a setter 44

2.6 Test an interface 48
vii

viii CONTENTS
2.7 Test a JavaBean 54
2.8 Test throwing the right exception 56
2.9 Let collections compare themselves 61

2.10 Test a big object for equality 63
2.11 Test an object that instantiates other objects 66

3 Organizing and building JUnit tests 71
3.1 Place test classes in the same

package as production code 74
3.2 Create a separate source tree for test code 77
3.3 Separate test packages

from production code packages 79
3.4 Factor out a test fixture 83
3.5 Factor out a test fixture hierarchy 87
3.6 Introduce a Base Test Case 90
3.7 Move special case tests to a separate test fixture 92
3.8 Build tests from the command line 94
3.9 Build tests using Ant 96

3.10 Build tests using Eclipse 99

4 Managing test suites 102
4.1 Let JUnit build your test suite 103
4.2 Collect a specific set of tests 107
4.3 Collect all the tests in a package 111
4.4 Collect all the tests for your entire system 114
4.5 Scan the file system for tests 116
4.6 Separate the different kinds of test suites 120
4.7 Control the order of some of your tests 123
4.8 Build a data-driven test suite 127
4.9 Define a test suite in XML 133

CONTENTS ix
5 Working with test data 136
5.1 Use Java system properties 138
5.2 Use environment variables 142
5.3 Use an inline data file 145
5.4 Use a properties file 147
5.5 Use ResourceBundles 152
5.6 Use a file-based test data repository 154
5.7 Use XML to describe test data 156
5.8 Use Ant’s <sql> task to work with a database 157
5.9 Use JUnitPP 159

5.10 Set up your fixture once for the entire suite 161
5.11 Perform environment setup once

for multiple test runs 164
5.12 Use DbUnit 170

6 Running JUnit tests 173
6.1 See the name of each test as it executes 177
6.2 See the name of each test as it executes

with a text-based test runner 178
6.3 Execute a single test 180
6.4 Execute each test in its own JVM 181
6.5 Reload classes before each test 182
6.6 Ignore a test 185

7 Reporting JUnit results 188
7.1 Using a Base Test Case with a logger 190
7.2 Using Log4Unit 194
7.3 Getting plain text results with Ant 198
7.4 Reporting results in HTML

with Ant’s <junitreport> task 202
7.5 Customizing <junit> XML reports with XSLT 205

x CONTENTS
7.6 Extending Ant’s JUnit results format 208
7.7 Implementing TestListener

and extending TestRunner 215
7.8 Reporting a count of assertions 224

8 Troubleshooting JUnit 233
8.1 JUnit cannot find your tests 235
8.2 JUnit does not execute your custom test suite 237
8.3 JUnit does not set up your test fixture 239
8.4 Test setup fails after overriding runTest() 241
8.5 Your test stops after the first assertion fails 244
8.6 The graphical test runner does not load

your classes properly 250
8.7 JUnit fails when your test case uses JAXP 252
8.8 JUnit fails when narrowing an EJB reference 253

PART 2 TESTING J2EE ... 257

Introduction
Designing J2EE applications for testability 259
The Coffee Shop application 263

9 Testing and XML 265
9.1 Verify the order of elements in a document 273
9.2 Ignore the order of elements in an XML document 277
9.3 Ignore certain differences in XML documents 281
9.4 Get a more detailed failure message from XMLUnit 288
9.5 Test the content of a static web page 290
9.6 Test an XSL stylesheet in isolation 297
9.7 Validate XML documents in your tests 302

CONTENTS xi
10 Testing and JDBC 308
10.1 Test making domain objects from a ResultSet 317
10.2 Verify your SQL commands 322
10.3 Test your database schema 327
10.4 Verify your tests clean up JDBC resources 335
10.5 Verify your production code

cleans up JDBC resources 343
10.6 Manage external data in your test fixture 346
10.7 Manage test data in a shared database 349
10.8 Test permissions when deploying schema objects 352
10.9 Test legacy JDBC code without the database 357

10.10 Test legacy JDBC code with the database 360
10.11 Use schema-qualified tables with DbUnit 363
10.12 Test stored procedures 366

11 Testing Enterprise JavaBeans 370
11.1 Test a session bean method outside the container 378
11.2 Test a legacy session bean 387
11.3 Test a session bean method in a real container 394
11.4 Test a CMP entity bean 397
11.5 Test CMP meta data outside the container 400
11.6 Test a BMP entity bean 408
11.7 Test a message-driven bean inside the container 414
11.8 Test a message-driven bean outside the container 420
11.9 Test a legacy message-driven bean 422

11.10 Test a JMS message consumer
without the messaging server 426

11.11 Test JMS message-processing logic 430
11.12 Test a JMS message producer 433
11.13 Test the content of your JNDI directory 439

xii CONTENTS
12 Testing web components 443
12.1 Test updating session data without a container 446
12.2 Test updating the HTTP session object 452
12.3 Test rendering a JavaServer Page 456
12.4 Test rendering a Velocity template 465
12.5 Test a JSP tag handler 468
12.6 Test your JSP tag library deployment 474
12.7 Test servlet initialization 477
12.8 Test the ServletContext 480
12.9 Test processing a request 483

12.10 Verify web page content without a web server 491
12.11 Verify web form attributes 494
12.12 Verify the data passed to a page template 495
12.13 Test a web resource filter 500

13 Testing J2EE applications 508
13.1 Test page flow 510
13.2 Test navigation rules in a Struts application 519
13.3 Test your site for broken links 522
13.4 Test web resource security 525
13.5 Test EJB resource security 530
13.6 Test container-managed transactions 536

PART 3 MORE JUNIT TECHNIQUES 541

14 Testing design patterns 543
14.1 Test an Observer (Event Listener) 545
14.2 Test an Observable (Event Source) 550
14.3 Test a Singleton 556
14.4 Test a Singleton’s client 559

CONTENTS xiii
14.5 Test an object factory 562
14.6 Test a template method’s implementation 566

15 GSBase 572
15.1 Verify events with EventCatcher 574
15.2 Test serialization 577
15.3 Test object cloning 579
15.4 Compare JavaBeans using “appears equal” 581

16 JUnit-addons 585
16.1 Test your class for compareTo() 587
16.2 Collect tests automatically from an archive 590
16.3 Organize test data using PropertyManager 591
16.4 Manage shared test resources 593
16.5 Ensure your shared test fixture tears itself down 597
16.6 Report the name of each test as it executes 599

17 Odds and ends 603
17.1 Clean up the file system between tests 605
17.2 Test your file-based application

without the file system 608
17.3 Verify your test case class syntax 614
17.4 Extract a custom assertion 617
17.5 Test a legacy method with no return value 620
17.6 Test a private method if you must 625

A Complete solutions 629
A.1 Define a test suite in XML 630
A.2 Parameterized Test Case overriding runTest() 634
A.3 Ignore the order of elements in an XML document 637
A.4 Test an XSL stylesheet in isolation 639

xiv CONTENTS
A.5 Validate XML documents in your tests 645
A.6 Aspect-based universal Spy 649
A.7 Test a BMP entity bean 653

B Essays on testing 673
B.1 Too simple to break 674
B.2 Strangeness and transitivity 677
B.3 Isolate expensive tests 681
B.4 The mock objects landscape 689

C Reading List 696

references 700
index 705

foreword
Bones: I doubt that this combination of things was ever used to make a tranquilizer before.

Kirk: How soon will it be ready?

Bones: Right now.

Kirk: Good. How long will it take for the tranquilizer to have an effect?

Bones: Three or four seconds.

Kirk: How did you manage to test it?

Bones: It has not been tested.

Spock: It’s not necessary, Captain.

Bones: It’s simple. Nothing can go wrong.

Kirk: Up to now, everything’s gone wrong. I want it tested ... and now.

Scotty: Would a volunteer solve the problem?

Bones: It would.

Scotty: Then I volunteer. (He takes a long pull on a bottle of whiskey.) It’s to kill the pain.

Spock: But this is painless.

Scotty: (Smirking.) Well, you should’ve warned me sooner, Mr. Spock. Fire away.
(Scotty breathes deeply of the tranquilizing fumes, but there is no effect.)

Kirk: It doesn’t work.

Spock: Indeed. Fascinating.

Kirk: It was our last chance.

Spock: Captain, you don’t seem to understand. It did not function, but it must function.
Nothing could go wrong, Captain. It should work.

Kirk: A scientific fact ...

Spock: But if the tranquilizer does not function, which is clearly impossible,
then a radical alteration of our thought patterns must be in order.

Adapted from “Spectre of the Gun”, Star Trek original series
Episode No: 056, Air Date: 10.25.1968, Stardate: 4385.3
xv

xvi FOREWORD
The book you are currently holding is a remarkable compendium of recipes writ-
ten for those of us who use JUnit in our daily work. This is not another book on
TDD, nor is it a basic tutorial on JUnit. Instead, this book is a suite of techniques—
both simple and advanced—for using JUnit in a real, professional, environment.

 Have you ever wondered how to test a servlet, or an XSLT script, or an entity
bean? Are you concerned about how to name and organize your test case classes?
Have you ever had trouble testing databases, or organizing large amounts of test
data? This book has recipes for these, and many other, testing conundrums. The
recipes are well written, easy to understand, and very pragmatic. Each is written in
pattern form, spelling out the problem to be solved, the context of that problem,
and the various recipes that solve that problem.

 I first met J.B. in New Orleans at XP Agile Universe, 2003. He was an enthusiastic
participant in the FitFest exercise. He was in the FitFest lab, writing tests and code, at
every opportunity. He was also an outspoken participant in many of the impromptu
discussions and conversations that dominate those conferences. I was very im-
pressed by his knowledge and skill, and made a note to investigate more of his
writings. I was not disappointed. It became clear to me that J.B. knows his stuff. Or,
as one of my close associates said to me: “J.B. sure knows a lot of tricks.”

 When I first learned that J.B. was writing this book, my expectations for it were
high; yet he managed to exceed them. No other book manages to cram as much
wisdom, knowledge, and practical advice about JUnit and unit testing into a single
volume. Reading it convinces me that J.B. knows JUnit, and all the surrounding add-
ons and environments, cold. I am quite certain that it will be one of those books
that rests on my bookshelf in easy reach so I can look something up in a hurry.

 ROBERT C. MARTIN
Founder, Object Mentor Inc.

preface
If you have ever met me, either online or in person, then perhaps you have heard
me tell this story.

 I was working on a large project at the IBM labs in Toronto. It was in the middle
of the year 2000, long after the Y2K craze had ended, and I had spent nearly three
months working on a component scheduled for delivery in about one month. The
defects were coming in steadily from our testing department, and each fix was just
another patch on top of an increasingly disgusting Big Ball of Mud. It was around
that time that I read a draft of Extreme Programming Installed, by Ron Jeffries, Ann
Anderson, and Chet Hendrickson. With the help of the Internet, this draft led me
to www.junit.org, where I learned about this great new tool for testing Java code,
called JUnit. Within minutes I knew this would help my cause.

 Soon after this, I marched into my manager’s office and announced that there
was no way I would be able to patch the existing code to fix the remaining defects
in time to deliver. The code had become too complicated to understand. I could
not predict how many new defects I would inject while fixing the ones we knew
about. We simply were not getting feedback quickly enough. “Send me home,” I
told him, “and let me write it all again from scratch. I’ll use JUnit to test it as I go.
It will work.” He did. When it came down to it, what choice did he have?

 Even before I knew how to use JUnit effectively, I rewrote three months’ worth of
code in nine long days, with JUnit by my side. What had originally taken well over
500 hours of effort and didn’t work had been rebuilt in about 100 hours, including
a suite of over 125 tests. That was enough for me—I was hooked on JUnit.

 Since that time I have involved myself in the JUnit community, not only as a
practitioner of Test-Driven Development, but also by answering questions at the
JUnit Yahoo! group. Over the years I have refined my JUnit technique to the point
where I am certain I could write that same component in closer to 25 hours of
work. The ability to eliminate 95% of the time needed for any task is significant;
and while there’s no way to prove it, I attribute the majority of that savings to JUnit.
xvii

xviii PREFACE
 In 2001 I read a number of complaints about the JUnit documentation. Appar-
ently there were no suitable tutorials. I decided to write “JUnit: A Starter Guide,” a
tutorial which still draws over 1000 readers monthly. That tutorial was the genesis
of this book, even though I didn’t know it at the time. Much of this book’s content
has been refined from the answers I have provided to questions on the JUnit mail-
ing lists. Still more came from hard-won personal experience using JUnit on vari-
ous projects. I wanted this book to describe how I use JUnit; I did not want it to
present some idealized view of how one ought to use it. There’s already too much
opinion and waving of hands out there—but not in here. This book contains
JUnit techniques that work, because they have made my projects successful. For
that reason it is worth noting two things: much of what I present here is my opin-
ion, backed up by my experience; and this is not the only way to do it. This book
contains recommendations—not rules.

 By the time this book is printed and in your hands, things will have changed.
Some of these recipes might be obsolete. There is not much I can do about that—
people are discovering great new ways to use JUnit every day. Even if a few of these
recipes become dated, the concepts—the motivations behind the recipes—never
change. Test isolation is important. Smaller tests are more powerful. Separating
the implementation from the interface makes testing easier. Decoupling your
code from the framework makes testing possible. Watch for these recurring themes
throughout. They are the most valuable part of the book, because they will help
you long after all of us stop writing software in Java, whenever that happens. If you
find them useful, then I have done my job as an author and as a member of the
JUnit community.

acknowledgments
Sometime in late 2002 I identified two main goals for 2003: become more
involved in the XP/Agile Universe conference and write a book. Although this
book is about six months late in arriving on the shelf, I am happy to report that I
achieved both goals. One typically does not achieve one’s goals without help, so I
would like to take this opportunity to thank those who helped me write this book.

 First, I would like to thank the people at Manning Publications, who contacted
me in March 2003 and asked me to write a book about one of my favorite topics,
JUnit. Vincent Massol, author of JUnit in Action, was kind enough to recommend
me, and everyone I dealt with at Manning was very supportive of the work. Jackie
Carter did an excellent job not only as reviewer and editor, but she also held my
hand throughout the entire process. A first-time author would do well to have some-
one like Jackie as part of the team! I would also like to thank publisher Marjan Bace,
not only for helping make this a quality book, but for his patience with my impa-
tience in arriving at the book’s title. Marjan is relentless in achieving his desired
result, and while working with him can be tiring, it is a satisfying kind of fatigue that
comes from doing good, hard work. In addition to Jackie and Marjan, I would like
to thank Susan Capparelle, Clay Andres, Lianna Wlasiuk, Leslie Haimes, and Mary
Piergies for providing extra source material, reviewing the manuscript, designing
the cover, and producing the final copy. Alistair Cockburn measures a successful
project, in part, by whether the team would be happy to run another project the
same way; in that sense, this project has been a resounding success!

 An entire community of people helped make this book what it is—membership
in the book’s Yahoo! group reached 100 just before going to press. I am constantly
amazed at the Internet’s ability to bring people together and encourage them to
collaborate with one another. It is impossible to make this an exhaustive list, but
here are my hearty thanks to the following contributors: Vladimir Bossicard, Simon
Chappell, Roger Cornejo, Ward Cunningham, Mark Eames, Sven Gorts, Paul
Holser, Dave Hoover, Ramnivas Laddad, Jason Menard, Rick Mugridge, Jonathan
Oddy, Kay Pentecost, Paolo Perrotta, Bret Pettichord, Ilja Preuß, Michael Rabbior,
xix

xx ACKNOWLEDGMENTS
Neil Swingler, Edmund Schweppe, and Chad Woolley. They helped me work
through examples, reviewed the manuscript, suggested recipes, argued the ideas,
and hunted down references. What more could one ask?

 A few contributors stand out from the group, so I wanted to thank them espe-
cially. The first of these is Scott Stirling, who contributed the chapters “Working
with Test Data” and “Reporting JUnit Results.” In addition to providing recipes,
Scott was heavily involved in the early draft of the book’s table of contents, ensur-
ing that we covered a wide selection of fundamental concepts. I only wish that
Scott had had more time to contribute!

 Eric Armstrong contributed more to the improvement of early copies of this
manuscript than any other reviewer. If you decide to write a book, figure out a way
to make Eric excited about it and it will be much better than it might have been
without him. When Eric ran out of time, Robert Wenner stepped in and filled his
shoes. Without their in-depth and detailed comments, this book would not be
nearly as polished as it is. After Eric and Robert had finished, George Latkiewicz
gave the entire book another once-over, shining a bright light on the kinds of
minor inconsistencies and out-of-date statements that make readers angry and
authors looks bad. George has done an excellent job of making us look good.

 Mike Bowler not only answered all my questions about HtmlUnit and GSBase,
but also provided me with a much-needed sounding board. He helped me iden-
tify common problem areas in J2EE testing and advised me on which recipes were
particularly important to include. I have never had a bad experience working with
Mike and recommend it to everyone who gets the opportunity.

 The Extreme Programming and Agile Software Development communities
have been instrumental in providing me with the opportunity to write this book.
Not only is Kent Beck responsible for the xUnit framework itself, but those com-
munities have welcomed me into their discussions and given me the chance to
learn and grow as a programmer. I am grateful for both their patience with me
and their advice for me. With this book I hope to give something back in
exchange for all the help and support they have provided.

 In particular, I would like to thank Uncle Bob—-or Robert C. Martin, if you
prefer—-for agreeing to write the foreword to this book. I don’t like to throw
around terms like “role model,” but Bob is certainly one for me. I can only dream
of having the credibility necessary to get away with the brutally honest criticism
he gives. Like many people in the Agile community, Bob’s focus is on solving the

ACKNOWLEDGMENTS xxi
problem rather than assessing blame; but when you’re wrong, you’re wrong, and
he has no problem pointing out when it’s his mistake. Bob makes it easy to respect
him, and when he talks, I listen-—hard. Thank you, Bob!

 As a young student I despised writing of any kind until I met teachers like
Bruce Adlam and Caroline Schaillee. For the parts of this book that are well writ-
ten, they deserve much of the credit; and for the rest, I take all the blame. Nick
Nolfi also deserves credit for giving me interesting programming problems to
solve and cultivating in me the joy of writing code. I should apologize to the poor
ICON computers in the school’s computing lab that had to put up with my contin-
ual physical abuse. It was nothing personal.

 My wife, Sarah, made this book possible by not blinking an eye when I
announced that I was going to leave the relative security of full-time employment
to write it. Without her continuing support and encouragement, I never would
have gotten through it. I promise to do my part when it comes time for her to
write her first book.

 Finally I would like to thank my mother, Joan Skillen, not just for doing the tre-
mendous amount of work it took to raise me, but specifically for giving up so
much so that I could pursue my passion.

about this book
Beyond unit tests
As Test-Driven Development practitioners, we have a tendency to write about
JUnit exclusively as a tool for writing Object Tests. Because much of the JUnit
community intersects with the TDD community, this seems like a reasonable thing
to do; however, you may not be a TDD practitioner. Your current project may use
JUnit, but only to write tests for existing code or to write tests at a higher-level view
of the system than its objects. We would hate to leave you out of the conversation,
as JUnit is certainly suitable for writing other kinds of tests.

 There are Integration Tests, which are still Programmer Tests, that focus more
on the collaboration of a number of objects, rather than the behavior of a single
object at a time. These tests are important to provide confidence that your classes
“talk to each other” the way they should. Integration Tests come with a different
set of problems than Object Tests. Integration Tests are often more brittle than
Object Tests because they have more complex fixtures: you need to set up a num-
ber of objects in just the right state before invoking the behavior you want to test.
You may even want to test the integration between your system and external
resources, such as a database, a network-based service, or the file system. We
explore how to write effective tests at all levels (Object, Integration, End-to-End)
when slower or less-available external resources such as these are involved.
Because this tends to come up in the context of J2EE applications, part 2 of this
book, “Testing J2EE,” provides numerous recipes for writing tests around these
kinds of resources and you can adapt them to virtually any situation.

 There are Customer Tests, whose purpose is to provide the customer or end
user some evidence that the features they need are present in the system. These
tests tend to execute slowly and involve almost the entire system. The greatest
challenge to Customer Tests, besides getting customers to write them, is writing
them in such a way that trivial changes in the system’s user interface do not break
them. Solving these problems is beyond the scope of this book, but we’ve tried to
provide some recommendations.
xxii

ABOUT THIS BOOK xxiii
 There are End-to-End Tests which thoroughly test the entire system from end
to end, and therefore these tests are the most difficult to manage. These are usu-
ally the most difficult to automate effectively, and for that reason many projects
prefer to focus their energy on automating Object Tests and leave End-to-End
Tests for a manual testing process. JUnit can help you here, especially when com-
bined with proven techniques and feature-rich extensions. In these cases we are
predominantly talking about user interface-level testing. If you are writing web
applications, then HtmlUnit (http://htmlunit.sourceforge.net) may be the most
important tool in your toolkit. It provides both an HTTP client to simulate a web
browser, and a layer of customized assertions that allow you to analyze the web
pages with which your application responds. We provide recipes for putting Html-
Unit to good use in chapter 13, “Testing J2EE Applications,” along with other spe-
cialized JUnit testing packages in part 3, “More Testing Techniques.”

 Finally, no single volume can cover every conceivable way to use JUnit, so there
is more you can do with JUnit than what is included here. Kent Beck once said of
JUnit that his goal was to create a framework that did what everyone would need it
to do without piling on features that only some people would need. He wanted us to
think, “JUnit is good, but once I added this little feature right here, it became per-
fect.” Open source projects have sprung up everywhere with custom extensions to
JUnit, and we provide some recipes that may help you start on your way to your
own custom JUnit project. The more, the merrier.

How this book is organized
The first part of this book contains recipes devoted to the building blocks of writing
tests with JUnit. If we have done our job well as authors, then every test you write
with JUnit will be reducible to some collection of these building block recipes.
Chapter 1 presents a general introduction to JUnit, including why to use it, what
to use it for, how to install it, and how to write the code for your test. This is also
where we introduce the concept of Object Testing. Writing effective object tests is
the main theme of this book, and we believe this consists mainly of figuring out
how to write any test in terms of the recipes in chapter 2, “Elementary Tests.” Now
if this were easy, then there would be no need for the other 15 chapters in this
book; but real life intercedes pretty quickly into all but the simplest projects, so in
the remaining chapters of part 1 we have provided recipes for dealing with the
complexities of writing tests for your project.

xxiv ABOUT THIS BOOK
 Chapter 3, “Organizing and Building JUnit Tests,” describes how to organize
your test source code and how to build your tests. Not only do we provide recipes
for where your test source code should sit on the file system, but we also provide
recipes that guide the correspondence between test classes and production
classes. In addition, we provide some examples of building your tests, either from
within your IDE, or as part of an automated build process.

 Chapter 4, “Managing Test Suites,” provides advice on collecting your tests into
“test suites.” A test suite is a collection of tests that execute as a group. Our typical
goal is to execute all the tests all the time, but you may not be able to do this on
your project just yet. We have provided some recipes describing a number of dif-
ferent ways to collect tests into custom suites.

 Chapter 5, “Working with Test Data,” contains recipes for managing data
within your tests. All things being equal, we prefer to keep test data hard coded
and within the test. We prefer this approach because it supports the notion of
tests as documentation—when the logic and the data for a test are separated from
one another, the test is more difficult to read. On the other hand, if you need 100
pieces of information for a test, then hard coding it all directly into the test ren-
ders it difficult to read. We need a variety of strategies for expressing the data we
need in our tests, and we have shared many of these strategies with you as recipes
in this chapter.

 Chapter 6, “Running JUnit Tests,” discusses a number of strategies for execut-
ing your tests. Usually we like to execute all the tests all the time; but if you need
to execute just one test, or ignore some tests, or even execute each test in a sepa-
rate virtual machine, then our recipes will help.

 Chapter 7, “Reporting JUnit Results,” contains techniques for customizing the
way JUnit reports test results. If you need more information than “370 run, 2
failed, 1 error,” then this chapter will help you get the extra information you
need, and in the format you need it. The chapter provides techniques for report-
ing test results from Ant, as well as hooking into the JUnit framework itself.

 We conclude part 1 with chapter 8, “Troubleshooting JUnit.” This chapter con-
tains recipes for solving problems you may have using JUnit itself. Many of these
problems are common to first-time JUnit users, including configuration errors
and typos. Some are problems you encounter for the first time as you begin to use
JUnit to test more complex systems, such as those based on J2EE.

ABOUT THIS BOOK xxv
 Part 2 begins with chapter 9, “Testing and XML.” You cannot swing a dead cat
in a J2EE application without hitting XML documents, so we thought it logical to
start with XML testing techniques, centered around XMLUnit and XPath.

 Next is chapter 10, “Testing and JDBC,” with recipes for testing the database,
the first expensive, external resource that most JUnit novices encounter when
they start writing tests. This chapter motivates the mock objects discussion that
runs intermittently throughout the rest of the book. In this chapter we discuss
separating persistence services from JDBC and testing each separately. We also
explore ways to minimize the amount of JDBC client code you need to write, so
that you can write and execute a small number of tests against a live database. We
also highlight DbUnit, a tool that helps maintain test data for those times when
you do need to test against the database.

 Chapter 11, “Testing Enterprise JavaBeans,” is by far the most complex chapter
of this book. The complexity of EJBs is matched by the complexity of how to test
them effectively. Once again, we treat both refactoring towards a testable design,
and testing legacy EJBs inside the container. We look at MockEJB, a package that
provides some mock objects support, especially for EJB, but mostly for its Mock-
Context, a mock implementation of a JNDI directory. Given the pervasiveness of
JNDI in J2EE applications, MockContext proves extremely handy when testing
your integration with the J2EE framework. Finally, we include some JMS recipes in
this chapter, as the most common use of JMS is in message-driven beans.

 With the back end complete, we turn our attention to the front end. Chapter 12,
“Testing Web Components,” describes how to test servlets, JSPs, Velocity templates,
and web resource filters. As with our EJB chapter, we discuss ways to separate
application logic from the servlet framework, as well as how ServletUnit provides a
mock container environment for testing legacy web front ends. Our recipes
include how to use HtmlUnit to verify the content of dynamic web pages in isola-
tion from the rest of the application, which we believe is a woefully underestimated
testing practice. This is the reason we prefer the Velocity web page template pack-
age over JSP: it is easy to use the Velocity engine in standalone mode, whereas as
we write these words, no standalone JSP engine is available for use in testing.

 Chapter 13, “Testing J2EE Applications,” discusses more end-to-end concerns.
We describe using HtmlUnit to test your web application from end to end. The
bulk of the recipes in this chapter focus on treating what seem to be end-to-end
concerns as component concerns so that we can test them in isolation. The more

xxvi ABOUT THIS BOOK
you can test in isolation, the easier the tests are and the more benefit you gain
from writing and executing them.

 Part 3 begins with chapter 14, a brief look at testing and Design Patterns. We
could easily fill an entire book with a discussion of how to test all the class Design
Patterns, but because this is not that book, we have chosen a sample of patterns
that we encounter on almost every project: Singleton, Observer/Observable, Fac-
tory and Template method. We think you will find that once you have employed
the techniques in this book several times and understood the general principles,
then you will have little trouble deciding how to test a flyweight design, or an
adapter, or a composite.

 We spend the next two chapters discussing two popular extensions to JUnit.
Chapter 15 provides recipes related to the open source project GSBase (http://gsbase.
sourceforge.net). This product includes some utilities to make it easier to write
JUnit tests, as well as some test fixtures you can use directly in your projects. Chap-
ter 16 discusses another open source project, JUnit-addons (http://junit-addons.
sourceforge.net), which includes not only testing utilities, but an alternative to
the standard JUnit test runners that features a more open extension architecture.
This architecture makes it easy to monitor and analyze your test runs, something
that the JUnit test runners themselves do not directly support. We highlighted
both of these projects, not only because we have used them extensively in our
work, but also because there are rumors of a merger between the two. The result-
ing project would certainly become a de facto standard JUnit extension.

 There are some recipes that simply did not seem to fit into other chapters, so
we collected them into chapter 17, “Odds and Ends.” Here we have a handful of
recipes covering a number of testing techniques, including file-based applica-
tions, test case syntax, and testing private methods. Had we thought longer and
harder about it, we could have placed those recipes elsewhere in this book, but we
had to stop sometime.

 We collected some complete solutions to earlier recipes and placed them in
appendix A, “Complete Solutions.” In cases where a full solution requires hun-
dreds of lines of code, and we did not want to distract you from reading the rest of
the recipe, we moved those solutions nearer the back of the book. This way you
could read the complete solutions—even use them in your projects—when you
are ready for all the details.

ABOUT THIS BOOK xxvii
 In appendix B we present a small collection of essays on Programmer Testing
that go a few steps beyond JUnit, but help to set the context for our advice
throughout the rest of the book. This appendix, too, could easily have expanded
into an entire book, but we have chosen only a few key topics on which to expand
beyond the recipes.

 Finally we provide a Reading List—a collection of books, articles, and web sites
that we have considered important in our own work. We highly recommend them
to you for further study on Java testing, Java programming, and more.

Coding conventions
Because this is a book about programming, we ought to spend some time describ-
ing our coding conventions. What follows is a quick list of decisions we have made
about our code examples.

 We generally do not use abbreviations. Among the rare exceptions to this rule
are e for an exception object in a catch block and the class name suffix Impl for
“implementation.” In general, abbreviations serve only to make the typist’s job
easier and everyone else’s job more difficult. We decided to spend more time typ-
ing so that you would more easily understand our code. As far as we are con-
cerned, that is just doing our job, as authors and as programmers.

 We do not mark identifiers as global, class-level, or instance-level with any spe-
cial prefix or suffix. Some projects want to use a leading underscore character;
others use a trailing underscore character; yet others prefer the pseudo-Hungar-
ian notation of prefixing instance-scoped identifiers with “m_” meaning “mem-
ber.” We feel that such markings interfere with refactoring and therefore do not
use them. We want to be able to refactor this code as much as we need.

 We use deprecated code as little as possible. The point of deprecating methods
is to discourage their use. Accordingly, because this book will be read—one
hopes—by many people, we do not wish to encourage others to use methods that
are no longer meant to be used. If we use a deprecated method in an example, it
is because by press time we were unable to find a suitable alternative. We want this
code to last as long as it can.

 We sometimes use “on demand” import statements. These are import state-
ments such as import java.sql.*. Some people believe that the on-demand
import is evil and should be abolished, but we believe that a sign of good design is
dependency on few packages, meaning little coupling and few import statements.

xxviii ABOUT THIS BOOK
If you need to import many classes from a given package—motivating you to
import on demand—that is a sign of a cohesive package.

 We sometimes use public fields. Please do not faint. Long considered the
worst coding offence known to Java programmers—and for a time before Java—
Ward Cunningham has challenged this notion and suggested that public fields
are not only sufficient, but preferred. There is less code to maintain, which
reduces the potential for defects. We restrict our use of public fields to Value
Objects, including the Presentation Objects we plan to place on web page tem-
plates such as JSPs or Velocity macros.

NOTE Ward on public fields—When we asked Ward about using public fields, he
said, “One reason we tell our compilers so much about our programs is
so that they can reason about what we've written on our behalf. But we
always have to ask, is the reasoning helping us get our work done? If no,
then it is time to do something different. We've learned enough about
automatic testing in the last decade to change the return on investment
in declarations forever.”

We prefer to use and extend existing software. That means that if we need to add
a feature and we know that someone has already built it, we incorporate it, rather
than reinvent the wheel, as it were. Notable among the projects our sample code
depends on is the Jakarta Commons Collections project. We started writing our
own utilities, but decided instead to use existing material and augment it when
necessary. We want to discourage others from giving in to the not invented here syn-
drome that is an epidemic among programmers.

 In certain instances, a line of code or a command must be typed as one line,
with no returns, or it will not work. Sometimes those lines are too long to fit
within the width of a page; in those instances we use an arrow (➾) to indicate that
you are to keep typing on the same line.

Common references
We refer to two key works through this book, both by Martin Fowler—Refactoring:
Improving the Design of Existing Code and Patterns of Enterprise Application Architecture.
Most of our citations are given as footnotes or with an inline description of the
work we are citing, but because we refer to these two books so frequently, we have
adopted a shorthand notation. When you see references such as [Refactoring,
230], you know we mean p. 230 of Refactoring; and when you see such references as

ABOUT THIS BOOK xxix
[PEAA, 412], you know we mean p. 412 of Patterns. See our Reading List in the back
of the text for a list of books and articles we recommend as additional reading.

The example code comes to life!
In the course of writing this book—in particular in the course of refactoring the
example code—we extracted a number of small engines and utilities that we
intend to use in future projects. We have released the project under the name
“Diasparsoft Toolkit,” freely available online at www.diasparsoftware.com/toolkit.
The code for the examples used in this book is available for download from the
publisher’s website, www.manning.com/rainsberger.

Author Online
Purchase of JUnit Recipes includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/rainsberger.
This page provides information on how to get on the forum once you are regis-
tered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialog between individual readers and between readers and the author
can take place. It is not a commitment to any specific amount of participation on
the part of the author, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the author some challenging questions lest
his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

about the cover illustration
The figure on the cover of JUnit Recipes is a “Kabobiques,” an inhabitant of the
Kabobi area of Niger in Central Africa. The illustration is taken from a Spanish
compendium of regional dress customs first published in Madrid in 1799. The
book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this
drawing. The “Kabobiques” is just one of many figures in this colorful collection.
Their diversity speaks vividly of the uniqueness and individuality of the world’s
towns and regions just 200 years ago. This was a time when the dress codes of two
regions separated by a few dozen miles identified people uniquely as belonging to
one or the other. The collection brings to life a sense of isolation and distance of
that period and of every other historic period except our own hyperkinetic
present. Dress codes have changed since then and the diversity by region, so rich
at the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life. We at Manning celebrate the inventiveness, the
initiative, and, yes, the fun of the computer business with book covers based on
the rich diversity of regional life of two centuries ago brought back to life by the
pictures from this collection.
xxx

Part 1

The building blocks

So you want to write tests with JUnit. Where do you begin?
This part of the book lays the groundwork for effectively using JUnit to design

and test Java code. Once you understand and can apply these recipes to your
work, you will have the foundation you need to write JUnit tests for any behavior
you will ever need to implement—all such tests reduce to one or more of the recipes
in the next several chapters. The challenge is to recognize these smaller, simpler
patterns within the larger code and class structures you find in a typical, indus-
trial-grade Java application. Before we tackle those larger problems, we first han-
dle some smaller ones.

By the end of part 1 you will have seen over 60 essential JUnit techniques cover-
ing every aspect of testing: writing, organizing, building, and executing tests, plus
managing their data and reporting their results. The recipes in parts 2 and 3 refer
often to the recipes in part 1, so be prepared to return to this material often.
Before long, the techniques they teach you will become very familiar to you.

Fundamentals
This chapter covers
■ An introduction to Programmer Testing
■ Getting started with JUnit
■ A few good practices for JUnit
■ Why testing replaces debugging
3

4 CHAPTER 1

Fundamentals
We hate debugging.
You look up at the clock to see how late it is because you still have a handful of

defects that need to be fixed tonight. Welcome to the “fix” phase of “code and fix,”
which is now entering its third month. In that time, you have begun to forget what
your home looks like. The four walls of your office—assuming you even have four
walls to look at—are more familiar than you ever wanted them to be. You look at
the “hot defects” list and see one problem that keeps coming back. You thought
you fixed that last week! These testers...when will they leave you alone?!

Fire up the debugger, start the application server—grab a coffee because you
have five minutes to kill—set a breakpoint or two, enter data in 10 text fields and
then press the Go button. As the debugger halts at your first breakpoint, your goal
is to figure out which object insists on sending you bad data. As you step through
the code, an involuntary muscle spasm—no doubt from lack of sleep—causes you
to accidentally step over the line of code that you think causes the problem. Now
you have to stop the application server, fire up the debugger again, start the appli-
cation server again, then grab a stale doughnut to go with your bitter coffee. (It was
fresh six hours ago.) Is this really as good as it gets?

Well, no. As a bumper sticker might read, “We’d rather be Programmer Testing.”

1.1 What is Programmer Testing?

Programmer Testing is not about testing programmers, but rather about pro-
grammers performing tests. In recent years some programmers have rediscovered
the benefits of writing their own tests, something we as a community lost when we
decided some time ago that “the testing department will take care of it.” Fixing
defects is expensive, mostly because of the time it takes: it takes time for testers to
uncover the defect and describe it in enough detail for the programmers to be
able to re-create it. It takes time for programmers to determine the causes of the
defects, looking through code they have not seen for months. It takes time for
everyone to argue whether something is really a defect, to wonder how the pro-
grammers could be so stupid, and to demand that the testers leave the program-
mers alone to do their job. We could avoid much of this wasted time if the
programmers simply tested their own code.

The testing that programmers do is generally called unit testing, but we prefer
not to use this term. It is overloaded and overused, and it causes more confusion
than it provides clarity. As a community, we cannot agree on what a unit is—is it a
method, a class, or a code path? If we cannot agree on what unit means, then there

5What is Programmer Testing?
is little chance that we will agree on what unit testing means. This is why we use the
term Programmer Testing to describe testing done by programmers. It is also why we
use the term Object Tests to mean tests on individual objects. Testing individual
objects in isolation is the kind of testing that concerns us for the majority of this
book. It is possible that this is different from what you might think of as testing.

Some programmers test their code by setting breakpoints at specific lines, run-
ning the application in debug mode, stepping through code line by line, and
examining the values of certain variables. Strictly speaking, this is Programmer
Testing, because a programmer is testing her own code. There are several draw-
backs to this kind of testing, including:

■ It requires a debugging tool, which not everyone has installed (or wants to install).

■ It requires someone to set a breakpoint before executing a test and then
remove the breakpoint after the test has been completed, adding to the
effort needed to execute the test multiple times.

■ It requires knowing and remembering the expected values of the variables,
making it difficult for others to execute the same tests unless they know and
remember those same values.

■ It requires executing the entire application in something resembling a real
environment, which takes time and knowledge to set up or configure.

■ To test any particular code path requires knowing how the entire applica-
tion works and involves a long, tedious sequence of inputs and mouse clicks,
which makes executing a particular test prone to error.

This kind of manual Programmer Testing, while common, is costly. There is a better way.

1.1.1 The goal of Object Testing

We defined the term Object Testing as testing objects in isolation. It is the “in isola-
tion” part that makes it different from the manual testing with which you are
already familiar. The idea of Object Testing is to take a single object and test it by
itself, without worrying about the role it plays in the surrounding system. If you
build each object to behave correctly according to a defined specification (or con-
tract), then when you piece those objects together into a larger system, there is a
much greater chance that the system will behave the way you want. Writing Object
Tests involves writing code to exercise individual objects by invoking their meth-
ods directly, rather than testing the entire application “from the outside.” So what
does an Object Test look like?

6 CHAPTER 1

Fundamentals
1.1.2 The rhythm of an Object Test

When writing an Object Test, a programmer is usually thinking, “If I invoke this
method on that object, it should respond so.” This gives rise to a certain rhythm—
a common, recurring structure, consisting of the following sequence:

1 Create an object.

2 Invoke a method.

3 Check the result.

Bill Wake, author of Refactoring Workbook, coined the term the three “A”s to describe
this rhythm: “arrange, act, assert.” Remembering the three “A”s keeps you focused
on writing an effective Object Test with JUnit. This pattern is effective because the
resulting tests are repeatable to the extent that they verify predictable behavior: if the
object is in this state and I do that, then this will happen. Part of the challenge of
Object Testing is to reduce all system behavior down to these focused, predictable
cases. You could say that this entire book is about finding ways to extract simple,
predictable tests from complex software, then writing those tests with JUnit.

So how do you write Object Tests?

1.1.3 A framework for unit testing

In a paper called “Simple Smalltalk Testing: With Patterns,”1 Kent Beck described
how to write Object Tests using Smalltalk. This paper presented the evolution of a
simple testing framework that became known as SUnit. Kent teamed up with Erich
Gamma to port the framework to Java and called the result JUnit. Since 1999, JUnit
has evolved into an industry standard testing and design tool for Java, gaining wide
acceptance not only on open source (www.opensource.org) projects, but also in
commercial software companies.

Kent Beck’s testing framework has been ported to over 30 different program-
ming languages and environments. The concepts behind the framework, known
in the abstract as xUnit,2 grew out of a few simple rules for writing tests.

1 www.xprogramming.com/testfram.htm.
2 Framework implementations replace x with a letter or two denoting the implementation language or

platform, so there is SUnit for Smalltalk, JUnit for Java, PyUnit for Python, and others. You can find a
more or less complete list of implementations at www.xprogramming.com/software.htm.

7What is Programmer Testing?
Tests must be automated
It is commonplace in the programming community to think of testing as entering
text, pushing a button, and watching what happens. Although this is testing, it is
merely one approach and is best suited for End-to-End Testing through an end-
user interface. It is not the most effective way to test down at the object level. Man-
ual code-level testing generally consists of setting a breakpoint, running code in a
debugger, and then analyzing the value of variables. This process is time consum-
ing, and it interrupts the programmer’s flow, taking time away from writing work-
ing production code. If you could get the computer to run those tests, it would
boost your effectiveness considerably. You can get the computer to run those tests
if you write them as Java code. Because you’re already a Java programmer and the
code you want to test is written in Java, it makes sense to write Java code to invoke
methods on your objects rather than invoking them by hand.

NOTE Exploratory testing—There is a common perception that automated testing
and exploratory testing are opposing techniques, but if we examine the
definition that James Bach gives in his article “What is Exploratory Test-
ing?”3 we can see that this is not necessarily the case. Exploratory testing
is centered on deciding which test to write, writing it, then using that
feedback to decide what to do next. This is similar to Test-Driven Devel-
opment, a programming technique centered on writing tests to help
drive the design of a class. An exploratory tester might perform some
manual tests, learn something about the system being tested, keep the
knowledge, and discard the tests. He values the knowledge gained more
than the tests performed. In Test-Driven Development, a test driver4 uses
his tests as a safety net for further changes to the code, so it is important
to develop and retain a rich suite of tests. In spite of these differences,
the two approaches share a key trait: testing is focused on learning about
the software. Exploratory testers learn how the software works, and test
drivers learn how the software ought to be designed. We recommend
using the exploratory testing approach in general, then automating the
results when possible to provide continuous protection against regres-
sion. If you are trying to add tests to code that has no tests, you will find
the exploratory testing techniques useful to reverse engineer the auto-
mated tests you need.

In addition to being automated, tests also need to be repeatable. Executing the
same test several times under the same conditions must yield the same results. If a

3 www.satisfice.com/articles/what_is_et.htm.
4 This is a bit of slang from the Test-Driven Development community: when you are writing code using

the techniques of Test-Driven Development, you are said to be test driving the code.

8 CHAPTER 1

Fundamentals
test is not repeatable, then you will find yourself spending a considerable amount
of time trying to explain why today’s test results are different from yesterday’s test
results, even if there is no defect to fix. You want tests to help you uncover and
prevent defects. If running a test costs you time and effort and does a poor job of
uncovering or preventing defects, then why use the test?

Tests must verify themselves
Many programmers have already embraced automating their tests. They recognize
the value in pressing a button to execute a stable, repeatable test. Because the pro-
grammer needs to analyze the value of variables, he often writes code to print the
value of key variables to the screen, then looks at those values and judges whether
they are correct. This process, while simple and direct, interrupts the program-
mer’s flow; and worse, it relies on the programmer knowing (and remembering)
which values to expect. When he is first working on a part of a system, this poses no
problem, but four months from now he might not remember whether the value
should be 37 or 39—he won’t know whether the test passes or fails. To solve this
problem, the test itself must know the expected result and tell us whether it passes
or fails. This is easy to do: add a line of code to the end of the test that says, “This
variable’s value should be 39: print OK if it is and Oops if it is not.”

Tests must be easy to run simultaneously
As soon as you have automated, self-verifying tests in place, you’ll find yourself
wanting to run those tests often. You will come to rely on them to give you imme-
diate feedback as to whether the production code you are writing behaves accord-
ing to your expectations. You will build up sizable collections of tests that verify
the simple cases, the boundary conditions, and the exceptional cases that concern
you. You will want to run all these tests in a row and let them tell you whether any
of them failed. You could run each test one by one—you could even write little
scripts to run many of them in succession, but eventually you want to concentrate
on writing the tests without worrying about how to execute them. You can do this
by grouping tests together into a common place, such as the same Java class, then
providing some automatic mechanism for extracting the tests from the class and
executing them as a group. You can write this “test extraction” engine once and
then use it over and over again.

1.1.4 Enter JUnit

JUnit was created as a framework for writing automated, self-verifying tests in Java,
which in JUnit are called test cases. JUnit provides a natural grouping mechanism
for related tests, which it calls a test suite. JUnit also provides test runners that you

9What is Programmer Testing?
can use to execute a test suite. The test runner reports on the tests that fail, and if
none fail, it simply says “OK.” When you write JUnit tests, you put all your knowl-
edge into the tests themselves so that they become entirely programmer indepen-
dent. This means that anyone can run your tests without knowing what they do,
and if they are curious, they only need to read the test code. JUnit tests are written
in a familiar language—Java—and in a style that is easy to read, even for someone
new to this style of testing.

1.1.5 Understanding Test-Driven Development

Many of the recommendations we make in this book come from our experience
with Test-Driven Development. This is a style of programming based on the fun-
damental idea that if you write a test before you write the production code to pass
that test, you derive several benefits free of charge:

■ Your system is entirely covered by tests.

■ You build your system from loosely coupled, highly cohesive objects.

■ You make steady progress, improving the system incrementally by making
one test pass, then another, then another, and so on.

■ A passing test is never more than a few minutes away, giving you confidence
and continual positive feedback.

In addition to writing the test first, you refactor code as you write; that is, you iden-
tify ways to improve the design of your system as you build it with the goal of
reducing the cost of building new features. A well-factored design is one that is free
of duplication, has only the classes it needs, and is self-documenting in the sense
that classes and methods have names that make it clear what they are or do. Such
a system is easy to change, easy to extend, and easy to understand, all of which
make for happy programmers, happy project managers, happy end users, and ulti-
mately, happy CEOs.5

There is a large and growing community of Test-Driven Development (TDD)
practitioners (or test drivers), including the authors of this book. In spite of our
enthusiasm for this style of programming, this is not a book on TDD, but a book on
using JUnit effectively. We highly recommend Kent Beck’s Test-Driven Development:
By Example6 for a more thorough treatment of TDD. We hope that this book will
serve as a companion to Beck’s work, at least for Java programmers.

5 We would also hope it makes for happy stockholders, but that is generally beyond our control.
6 Kent Beck, Test-Driven Development: By Example. Addison-Wesley, 2002.

10 CHAPTER 1

Fundamentals
1.2 Getting started with JUnit

To this point we have decided that there is more to testing than setting break-
points and looking at the values of variables. We have introduced JUnit, a frame-
work for repeatable, self-verifying Object Tests. The next step is to start writing
some JUnit tests, so let us look at downloading and installing JUnit as well as writ-
ing and executing tests.

1.2.1 Downloading and installing JUnit

JUnit is easy to install and use. To get JUnit up and running, you must:

1 Download the JUnit package.

2 Unpack JUnit to your file system.

3 Include the JUnit *.jar file on the class path when you want to build or
run tests.

Downloading JUnit
At press time, the best place to find JUnit is at www.junit.org. You will find a down-
load link to the latest version of the product. Click the Download link to down-
load the software to your file system.

Unpacking JUnit
You can unpack JUnit to any directory on your file system using your favorite *.zip
file utility. Table 1.1 describes the key files and folders in the JUnit distribution.

To verify your installation, execute the JUnit test suite. That’s right: JUnit is distrib-
uted with its own tests written using JUnit! To execute these tests, follow these steps:

Table 1.1 What’s inside the JUnit distribution

File/Folder Description

junit.jar A binary distribution of the JUnit framework, extensions, and test runners

src.jar The JUnit source, including an Ant buildfile

junit Samples and JUnit’s own tests, written in JUnit

javadoc Complete API documentation for JUnit

doc Documentation and articles, including “Test Infected: Programmers Love Writing
Tests” and some material to help you get started

11Getting started with JUnit
1 Open a command prompt.

2 Change to the directory that contains JUnit (D:\junit3.8.1 or /opt/junit3.8.1
or whatever you called it).

3 Issue the following command:

> java -classpath junit.jar;. junit.textui.TestRunner

➾ junit.tests.AllTests

You should see a result similar to the following:

...

...

.........
Time: 2.003

OK (91 tests)

For each test, the test runner prints a dot to let you know that it is making
progress. After it finishes executing the tests, the test runner says “OK” and tells
you how many tests it executed and how long it took.

Including the *.jar file on your class path
Look at the command you used to run the tests:

> java -classpath junit.jar;. junit.textui.TestRunner junit.tests.AllTests

The class path includes junit.jar and the current directory. This file must be in the
class path both when you compile your tests and when you run your tests. This is
also the only file you need to add to your class path. This is a simple procedure
because the current directory—the one where you unpacked JUnit—happens to
be the location of the *.class files for the JUnit tests.

The next parameter, junit.textui.TestRunner, is the class name of a text-
based JUnit test runner. This class executes JUnit tests and reports the results to
the console. If you want to save the test results for later review, redirect its output
to a file. If the tests do not run properly, see chapter 8, “Troubleshooting JUnit,”
for details. If you have trouble executing your tests, or you need to execute them a
special way, see chapter 6, “Running JUnit Tests,” for some solutions.

The last parameter, junit.tests.AllTests, is the name of the test suite to run.
The JUnit tests include a class AllTests that builds a complete test suite contain-
ing about 100 tests. Read more about organizing tests in chapter 3, “Organizing
and Building JUnit Tests.”

12 CHAPTER 1

Fundamentals
1.2.2 Writing a simple test

Now that you can execute tests, you’ll want to write one of your own. Let us start
with the example in listing 1.1.

package junit.cookbook.gettingstarted.test;

import junit.cookbook.util.Money;
import junit.framework.TestCase;

public class MoneyTest extends TestCase {
 public void testAdd() {
 Money addend = new Money(30, 0);
 Money augend = new Money(20, 0);

 Money sum = addend.add(augend);
 assertEquals(5000, sum.inCents());
 }
}

This test follows the basic Object Test rhythm:

■ It creates an object, called addend.

■ It invokes a method, called add().7

■ It checks the result by comparing the return value of inCents() against the
expected value of 5,000.

Without all the jargon, this test says, “If I add $30.00 to $20.00, I should get $50.00,
which happens to be 5,000 cents.”

This example demonstrates several aspects of JUnit, including:

■ To create a test, you write a method that expresses the test. We have named
this method testAdd(), using a JUnit naming convention that allows JUnit to
find and execute your test automatically. This convention states that the
name of a method implementing a test must start with “test.”

■ The test needs a home. You place the method in a class that extends the
JUnit framework class TestCase. We will describe TestCase in detail in a
moment.

Listing 1.1 Your first test

7 If you are confused as to what an augend is, blame Kent Beck (who, we’re sure, will just blame Chet Hen-
drickson, but that’s not our fault). We are simply repeating his discovery that this is the proper term for
the second argument in addition: you add the augend to the addend. We can be an obscure bunch, we
programmers.

Each test is a method

30 dollars, 0 cents

Create a subclass of TestCase

The parameters should be equal

13Getting started with JUnit
■ To express how you expect the object to behave, you make assertions. An
assertion is simply a statement of your expectation. JUnit provides a number
of methods for making assertions. Here, you use assertEquals(), which
tells JUnit, “If these two values are not the same, the test should fail.”

■ When JUnit executes a test, if the assertion fails—in our case, if inCents()
does not return 5,000—then the test fails; but if no assertion fails, then the
test passes.8

These are the highlights, but as always, the devil is in the details.

1.2.3 Understanding the TestCase class

The TestCase class is the center of the JUnit framework. You will find TestCase in
the package junit.framework. There is some confusion among JUnit practition-
ers—even among experienced ones—about the term test case and its relation to
the TestCase class. This is an unfortunate name collision. The term test case gener-
ally refers to a single test, verifying a specific path through code. It can sound
strange, then, to collect multiple test cases into a single class, itself a subclass of
TestCase, with each test case implemented as a method on TestCase. If the class
contains multiple test cases, then why call it TestCase and not something more
indicative of a collection of tests?

Here is the best answer we can give you: to write a test case, you create a subclass
of TestCase and implement the test case as a method on the new class; but at run-
time, each test case executes as an instance of your subclass of TestCase. As a
result, each test case is an instance of TestCase. Using common object-oriented
programming terminology, each test case is a TestCase object, so the name fits.
Still, a TestCase class contains many tests, which causes the confusion of terms.
This is why we take great care to differentiate between a test case and a test case
class: the former is a single test, whereas the latter is the class that contains multiple
tests, each implemented as a different method. To make the distinction clearer, we
will never (or at least almost never) use the term test case, but rather either test or
test case class. As you will see later in this book, we also refer to the test case class as a
fixture. Rather than cram more information into this short description, we will talk
about fixtures later. For now, think of a fixture as a natural way to group tests
together so that JUnit can execute them at once. The TestCase class provides a
default mechanism for identifying which methods are tests, but you can collect the

8 Exceptions might get in the way, but we’ll discuss this in due time.

14 CHAPTER 1

Fundamentals
tests yourself in customized suites. Chapter 4, “Managing Test Suites,” describes
the various ways to build test suites from your tests.

The class TestCase extends a utility class named Assert in the JUnit framework.
The Assert class provides the methods you will use to make assertions about the
state of your objects. TestCase extends Assert so that you can write your assertions
without having to refer to an outside class. The basic assertion methods in JUnit
are described in table 1.2.

JUnit provides additional assertion methods for the logical opposites of the ones
listed in the table: assertFalse(), assertNotSame(), and assertNotNull(); but for
assertNotEquals() you need to explore the various customizations of JUnit,
which we describe in part 3, “More Testing Techniques.”

NOTE Two of the overloaded versions of assertEquals() are slightly different.
The versions that compare double and float values require a third param-
eter: a tolerance level. This tolerance level specifies how close floating-point
values need to be before you consider them equal. Because floating-point
arithmetic is imprecise at best,9 you might specify “these two values can
be within 0.0001 and that’s close enough” by coding assertEquals
(expectedDouble, actualDouble, 0.0001d).

Table 1.2 The JUnit class Assert provides several methods for making assertions.

Method What it does

assertTrue(boolean condition) Fails if condition is false; passes otherwise.

assertEquals(Object expected,
Object actual)

Fails if expected and actual are not equal, according
to the equals() method; passes otherwise.

assertEquals(int expected,
int actual)

Fails if expected and actual are not equal according
to the == operator; passes otherwise. There is an over-
loaded version of this method for each primitive type:
int, float, double, char, byte, long, short,
and boolean. (See Note about assertEquals().)

assertSame(Object expected,
Object actual)

Fails if expected and actual refer to different objects
in memory; passes if they refer to the same object in
memory. Objects that are not the same might still be
equal according to the equals() method.

assertNull(Object object) Passes if object is null; fails otherwise.

9 See “What Every Computer Scientist Should Know About Floating-Point Arithmetic”
(http://docs.sun.com/source/806-3568/ncg_goldberg.html).

15Getting started with JUnit
1.2.4 Failure messages

When an assertion fails, it is worth including a short message that indicates the
nature of the failure, even a reason for it. Each of the assertion methods accepts as
an optional first parameter a String containing a message to display when the
assertion fails. It is a matter of some debate whether the programmer should
include a failure message as a general rule when writing an assertion. Those in favor
claim that it only adds to the self-documenting nature of the code, while others
feel that in many situations the context makes clear the nature of the failure. We
leave it to you to try both and compare the results.10

We will add that assertEquals() has its own customized failure message, so
that if an equality assertion fails you see this message:

junit.framework.AssertionFailedError: expected:<4999> but was:<5000>

Here, a custom failure message might not make the cause of the problem any clearer.

1.2.5 How JUnit signals a failed assertion

The key to understanding how JUnit decides when a test passes or fails lies in
knowing how these assertion methods signal that an assertion has failed.

In order for JUnit tests to be self-verifying, you must make assertions about the
state of your objects and JUnit must raise a red flag when your production code
does not behave according to your assertions. In Java, as in C++ and Smalltalk, the
way to raise a red flag is with an exception. When a JUnit assertion fails, the asser-
tion method throws an exception to indicate that the assertion has failed.

To be more precise, when an assertion fails, the assertion method throws an error:
an AssertionFailedError. The following is the source for assertTrue():11

static public void assertTrue(boolean condition) {
 if (!condition)
 throw new AssertionFailedError();
}

When you assert that a condition is true but it is not, then the method throws an
AssertionFailedError to indicate the failed assertion. The JUnit framework then
catches that error, marks the test as failed, remembers that it failed, and moves on
to the next test. At the end of the test run, JUnit lists all the tests that failed; the
rest are considered as having passed.

10 As Ron Jeffries asks, “Speculation or experimentation—which is more likely to give you the correct answer?”
11 Well, not exactly, because the code is highly factored. Rather than show you three methods, we have

translated them into one that does the same thing.

16 CHAPTER 1

Fundamentals
1.2.6 The difference between failures and errors

You normally don’t want the Java code that you write to throw errors, but rather
only exceptions. General practice leaves the throwing of errors to the Java Virtual
Machine itself, because an error indicates a low-level, unrecoverable problem,
such as not being able to load a class. This is the kind of stuff from which we mor-
tals cannot be expected to recover. For that reason, it might seem strange for
JUnit to throw an error to indicate an assertion failure.

JUnit throws an error rather than an exception because in Java, errors are
unchecked; therefore, not every test method needs to declare that it might throw
an error.12 You might suppose that a RuntimeException would have done the same
job, but if JUnit threw the kinds of exceptions your production code might throw,
then JUnit tests might interfere with your production. Such interference would
diminish JUnit’s value.

When your test contains a failed assertion, JUnit counts that as a failed test; but
when your test throws an exception (and does not catch it), JUnit counts that as
an error. The difference is subtle, but useful: a failed assertion usually indicates
that the production code is wrong, but an error indicates that there is a problem
either with the test itself or in the surrounding environment. Perhaps your test
expects the wrong exception object or incorrectly tries to invoke a method on a
null reference. Perhaps a disk is full, or a network connection is unavailable, or a
file is not found. JUnit cannot conclude that your production code is at fault, so it
throws up its hands and says, “Something went wrong. I can’t tell whether the test
would pass or fail. Fix the problem and run this test again.” That is the difference
between a failure and an error.

JUnit’s test runners report the results of a test run in this format: “78 run, 2 fail-
ures, 1 error.”13 From this you can conclude that 75 tests passed, 2 failed, and 1
was inconclusive. Our recommendation is to investigate the error first, fix the
problem, and then run the tests again. It might be that with the error out of the
way, all the tests pass!

12 It is entirely possible that checked exceptions in Java are a waste of time. As we write these words,
“checked exceptions are evil” returns 18,500 results from Google. Join the debate!

13 Looks like you have some work to do!

17A few good practices
1.3 A few good practices

The recipes in this book reflect a collection of good practices that we have gath-
ered through hard-won experience. We did not learn them all in one day and nei-
ther will you, but we think that the following good practices give you a suitable place
to start.

1.3.1 Naming conventions for tests and test classes

Names are important. The names of your objects, methods, parameters, and pack-
ages all play a significant role in communicating what your system is and does.
A programmer ought to be able to sit down at a computer, browse your code, and
form an accurate mental model of your system just by reading the names. If not,
then the names are wrong. We understand that this is a strong statement. We also
understand that finding the right name is not always easy—far from it. We under-
stand that naming the parts of your system is at times difficult, but we believe that
finding the right name is always worth the effort.

So it is with your tests: name your tests precisely. The name of a test should
summarize the test in a few words, because if it can’t, then you need to write addi-
tional documentation explaining the test. How much better can you explain what
a test does than by pointing to the code that implements it? Your goal is to make
that code as easy to read as this book—or easier.

Naming tests
Start with the test itself: the name of a test should describe the behavior you are
testing, rather than how the test is implemented. In other words, a test name
should reveal intent. If you are writing an object in a banking system, then you will
write a test for the special case where someone attempts to withdraw too much
money. You might name this test testWithdrawWhenOverdrawn(), or testWith-
drawWithInsufficientFunds(). Perhaps even testWithdrawTooMuch() suffices. But
testWithdraw200Dollars() is a doubtful choice: it might describe what the test does,
but not why. Confronted with seeing this test name for the first time, a program-
mer would ask, “Why is withdrawing $200 so special?” We recommend making
that obvious in the name of the test. For the happy path cases (the straight-ahead
scenario in which nothing goes wrong), we recommend simply naming your test
after the behavior you are testing. For the test that withdraws money successfully
from an account, the name testWithdraw() is perfect. If you do not say otherwise,
the reader can assume that you are testing a happy path.

18 CHAPTER 1

Fundamentals
One common convention is to use the underscore character between the name
of the behavior and the particular special case. Some programmers prefer names
such as testWithdraw_Overdrawn() or testWithdraw_Zero(). This makes the test
methods easier to read: it separates the behavior under test from the special con-
ditions being tested. We endorse this convention, although after three or four
special cases for a given behavior, you should consider moving these special case
tests to a separate test fixture—a class that defines both tests and the objects on
which those tests operate. See recipe 3.7, “Move special case tests to a separate test
fixture,” for a full discussion of this technique.

Naming test case classes
When naming your test case classes, the simplest guideline is to name the test case
class after the class under test. In other words, your tests for Account go into the
class AccountTest, your tests for FileSystem go into the class FileSystemTest, and
so on. The principal benefit of this naming convention is that it is easy to find a
test, as long as you know the class being tested. While we recommend starting out
with this naming convention, it is important to understand that this is only a nam-
ing convention, and not a requirement of JUnit. We are surprised by the number
of programmers who ask us what to do about test case classes that grow unusually
large or become difficult to navigate. Any class that becomes too large should be
split into smaller classes, JUnit or otherwise. We recommend identifying the tests
that share a common fixture and factoring them into a separate test case class, to
which the questioner responds, “But don’t they all have to be in the same
TestCase class?” The answer to that is no!

We mentioned earlier that each test is an instance of your subclass of TestCase.
What we did not mention at the time is that your test case class is simply a con-
tainer for related tests. How to distribute your tests into the various test case
classes is up to you. There are some useful guidelines, which we describe in chap-
ter 3. If you find that three tests belong together and should be separated from
the rest of the tests for that class, then move them. We recommend naming the
new test fixture after what those tests have in common. If there are six special
cases for withdrawing money from an account, then move them into a test case
class called AccountWithdrawalTest or WithdrawFromAccountTest, depending on
whether you prefer noun phrases or verb phrases. We prefer verb phrases and
would likely choose WithdrawFromAccountTest.

19A few good practices
1.3.2 Test behavior, not methods

This brings us to another recommendation when writing tests: your tests should
focus on the behavior they are testing without worrying about which class is under
test. This is why our test names tend to be verbs rather than nouns: we test behavior
(verbs) and not classes (nouns). Still, the difference between behavior and meth-
ods might not be clear: we implement behavior as methods, so testing behavior
must be about test methods. But that’s not entirely true. We do implement behavior
as methods, but the way we choose to implement a certain behavior depends on a
variety of factors, some of which boil down to personal preference. We make a
number of decisions when implementing behavior as methods: their names, their
parameter lists, which methods are public and which are private, the classes on
which we place the methods, and so on—these are some of the ways in which meth-
ods might differ, even though the underlying behavior might be the same. The
implementation can vary in ways that the tests do not need to determine.

Sometimes a single method implements all the required behavior, and in that
case, testing that method directly is all you need. More complex behaviors require
the collaboration of several methods or even objects to implement. If you let your
tests depend too much on the particulars of the implementation, then you create
work for yourself as you try to refactor (improve the design). Furthermore, some
methods merely participate in a particular feature, rather than implement it. Test-
ing those methods in isolation might be more trouble than it is worth. Doing so
drives up the complexity of your test suite (by using more tests) and makes refac-
toring more difficult—and all for perhaps not much gain over testing the behav-
ior at a slightly higher level. By focusing on testing behavior rather than each
individual method, you can better strike a balance between test coverage and the
freedom you need to support refactoring.

To illustrate the point, consider testing a stack. Recall that a stack provides a
few basic operations: push (add to the top of the stack), pop (remove from the
top of the stack), and peek (look at the top of the stack). When deciding how to
test a stack implementation, the following tests spring to mind:

■ Popping an empty stack fails somehow.

■ Peeking at an empty stack shows nothing.

■ Push an object onto the stack, then peek at it, expecting the same object
you pushed.

20 CHAPTER 1

Fundamentals
■ Push an object onto the stack, then pop it, expecting the same object you
pushed.

■ Push two different objects onto the stack, then pop twice, expecting the
objects in reverse order from the order in which you pushed them.

Notice that these tests focus on fixture—the state of the stack when the operation
is performed—rather than on the operation itself. Notice also how the methods
combine to provide the desired behavior. If push() does not work, then there is
no good way to verify pop() and peek(). We can say the same for the other meth-
ods. Moreover, when using a stack, you use all three operations, so it does not
make sense to test them in isolation, but rather to test that the stack generally
behaves correctly, depending on its contents. Does this point to a poor design
where methods are overly coupled? No. Instead it reinforces the fact that an
object is a cohesive collection of related operations on the same set of data.
The object’s overall behavior—a composite of the behaviors of its methods in a
given state—is what is important, so we recommend focusing your test effort on
the object as a whole, rather than its parts.

1.4 Summary

We all have the experience of having to track down a defect, whether in our code
or someone else’s. This horrible act that we call debugging generally consists of two
different, concomitant activities: reasoning about what might have gone wrong
and groping in the dark for the slightest clue as to what actually went wrong.
When we are debugging, we start with the former; but when it becomes clear that
the problem is worse than we feared, we end up doing the latter, and at that point
there is no way to know when (or if) we will solve the problem.

The most elementary debugging technique has become known as printf, after
the C library function to print text to the screen. Even Java programmers will say,
“Throw some printfs in there and see what’s going on” (although it might be the
fashion to say println because that’s what Java calls it). The idea is to narrow
down the location of the defect to some reasonably small area of the code and then
litter it with temporary code that prints the value of variables to the screen. You
then run the system, reproduce the defect, and analyze the values of the variables.

Does this sound familiar yet?
What you are doing is exploratory testing, as James Bach described it. The only

difference is that you might not have access to a debugger to make the process

21Summary
smoother: you only have a log file or the console to look at, and you had better
look quickly, because the println statements whiz past you before you know it!

Why not write a test instead? You have already identified the area of the code
that seems to exhibit the problem by narrowing it down to someplace that invokes
a method on an object. Write a test that exercises that method. Rather than grope
around looking at the value of every variable you can find, determine the input to
the method where the defect occurs and then use that input in your test. Make an
assertion with the result you expect, and then run the test. Keep adding tests until
you find the source of the problem; then when you change the offending code,
run your test to verify that the problem is solved. Doing this increases the fre-
quency (and effectiveness!) of the feedback you get each time you think you’ve
solved the problem. After you have solved the problem—and this is the most
important part—keep the test!

That’s right: rather than walking away from this debugging session with only
another war story to tell your programmer buddies, walk away with tests that pro-
vide insurance against reinjecting the defect into the system at a later date. You
might forget the cause of the problem or how you solved the problem, but the
tests will never forget. Save your hard work for posterity and avoid having to go
through this again at a customer site or two days before release or during your
next product demo to the CEO.

Stop debugging. Write a test instead.

Elementary tests
This chapter covers
■ General techniques for testing individual methods
■ Specific techniques for testing JavaBeans
■ Specific techniques for testing interfaces
■ Comparing objects for equality in tests
22

23Elementary tests
The simplest kind of Programmer Test you will write verifies the return value of a
method. This technique is the building block for all the testing you will ever do
with JUnit. In the rest of this book we try to reduce every complex testing problem
down to this, the simplest of scenarios. We begin by describing this scenario in
detail; then the remaining recipes in this chapter will build gradually from there.
These recipes provide not only the solutions to common problems, but also a
rudimentary vocabulary that we can use to describe the solutions to larger, more
complex testing problems. If verifying a method’s return value is the atom of unit
testing, then these recipes are the lightest molecules: the ones that come first and
the ones from which complex organic compounds are built. By the end of this
book you will have strategies for handling most of, if not all, the testing problems
you encounter.

Here is how to test a method that returns a value: invoke the method and com-
pare its return value against the value you expect:

public void testNewListIsEmpty() {
 List list = new ArrayList();
 assertEquals(0, list.size());
}

The method size() returns the number of elements in a list. If we were testing
“by hand” we would print this value to the screen and verify it with our own eyes:
“Zero? Yep. Passes.” With JUnit you go one step further, capturing this expecta-
tion by making an assertion: writing a line of code that describes what you expect,
and then letting JUnit compare your expectation against the actual result. JUnit
provides methods with names that start with the word assert so that you can make
assertions in your tests. A test passes, then, if all its assertions hold true.

Recall Bill Wake’s three “A”s: arrange, act, assert. Our previous example follows
this pattern as simply as possible: start with an empty list (arrange), ask for its size
(act), and verify that the size is zero (assert). This is about as simple as a JUnit test
can get.

The method assertEquals() allows you to compare either primitive values or
objects. Recall that a primitive value is a value of type int, float, boolean, double,
long, char, or byte.1 You can open the source for the JUnit class junit.frame-
work.Assert to see how the assert methods are implemented. The framework com-
pares primitives as values, so that assertEquals(3, value) passes as long as value
is a numeric primitive variable with the value 3. If the method you wish to test

1 Strictly speaking, this list includes short; but frankly, we have never used it, and so we tend to forget
that it exists.

24 CHAPTER 2

Elementary tests
returns an Object, rather than a primitive, then you need to do more work to com-
pare its return value against an expected value.

There are two techniques for comparing the expected value to the actual
return value from the method you have invoked. The first technique is to com-
pare each readable property of the method’s return value with the values you
expect. The second is to create an object representing the value you expect and
then compare it to the actual value with a single line of code. This second technique
is the one we favor. To illustrate the difference, consider the following example:

public void testSynchronizedListHasSameContents() {
 List list = new ArrayList();
 list.add("Albert");
 list.add("Henry");
 list.add("Catherine");

 List synchronizedList = Collections.synchronizedList(list);
 assertEquals("Albert", synchronizedList.get(0));
 assertEquals("Henry", synchronizedList.get(1));
 assertEquals("Catherine", synchronizedList.get(2));
}

Here we are testing Collections.synchronizedList(). This method is supposed to
add thread-safety features to a List without affecting the contents of the list. Our
test verifies that making a List thread safe in this way does not disturb the con-
tents. The method synchronizedList() is simple in that it directly returns a value
which we can inspect for correctness. We do this by treating each element of the
list as a readable property of the list and comparing each one to the corresponding
elements in the original list. This is the first technique we described. It works fine,
but it has its shortcomings.

The most notable shortcoming of this technique is that it involves a great deal
of typing—too much typing, it seems, for something so simple. Certainly, it is pos-
sible to replace the checks with a loop that compares the elements at the corre-
sponding index of the two lists:

public void testSynchronizedListHasSameContents() {
 List list = new ArrayList();
 list.add("Albert");
 list.add("Henry");
 list.add("Catherine");

 List synchronizedList = Collections.synchronizedList(list);
 for (int i = 0; i < list.size(); i++) {
 assertEquals(list.get(i), synchronizedList.get(i));
 }
}

25Elementary tests
Here we have removed duplication by creating a loop. This is better, but there still
seems to be too much to read—or type—compared to our mental model of this
test. If we were to describe the test in words, we might say, “We put some items in
a List and wrap it in a synchronizedList, and the new List should be the same
as the old List.” Admittedly the use of the word “same” is a little sloppy here,
since Java programmers tend to say “the same object” when referring to two refer-
ences to the same object in memory. Perhaps more accurate is “The new List
should equal the old List in terms of comparing elements.” Even better, “The two
lists’ corresponding elements should be equal.” It seems that the code we want to
type just says “list should be equal to synchronizedList,” as long as we define
“equal” to mean “having the same elements.” Fortunately Java has such a method:
Object. equals(). Even better, it turns out that the contract of List.equals()
says that lists are equal if they have the same elements at the same indices. Perfect!
Not only do we get to write the test we want to write, but we can push the responsi-
bility of determining equality into the objects that are best equipped to do it: the
lists themselves.

public void testSynchronizedListHasSameContents() {
 List list = new ArrayList();
 list.add("Albert");
 list.add("Henry");
 list.add("Catherine");

 List synchronizedList = Collections.synchronizedList(list);
 assertEquals(list, synchronizedList);
}

This simplifies the test considerably. We can even simplify the test further by tak-
ing advantage of the method Arrays.asList():

public void testSynchronizedListHasSameContents() {
 List list = Arrays.asList(
 new String[] { "Albert", "Henry", "Catherine" });
 assertEquals(list, Collections.synchronizedList(list));
}

We could write this test in one statement, but it seems to be most readable in its
current form. Not bad considering where we started.

The general form of the simplest test you can write, then, is as follows:

1 Create an object and put it in a known state.

2 Invoke a method, which returns the “actual result.”

3 Create the “expected result,” which may be a primitive value or a more
complex Object.

26 CHAPTER 2

Elementary tests
4 Invoke assertEquals(expectedResult, actualResult).

Writing tests like this will drive you to implement the equals() method for your
Value Objects. See recipe 2.1, “Test your equals method,” for details on how your
equals() method ought to behave. Once you have this technique under your belt,
almost everything else you do with JUnit reduces to this one case.

When testing get and set methods, you apply this technique directly (see recipe 2.4,
“Test a getter,” and recipe 2.5, “Test a setter”). In order to use this technique
effectively, you need to implement equals() correctly (see recipe 2.1, “Test your
equals method”), and in cases where you cannot apply this technique directly, you
need to find another way to expose a return value so that you can compare it to
your expectations (see recipe 2.2, “Test a method that returns nothing”). The
other recipes in this chapter discuss various elementary tests that form the basis
for the rest of the recipes in this book. These early recipes address the most com-
mon and simplest testing issues.

2.1 Test your equals method

◆ Problem

You want to test your implementation of equals().

◆ Background

Surprisingly enough, even though a strong object-oriented design depends on
implementing the equals() method correctly, many programmers implement
this method incorrectly. If you want to take advantage of the rest of this book, you
need to implement equals() correctly for a certain number of your classes: in par-
ticular your Value Objects. Although you generally will not have occasion to com-
pare instances of action- or processing-oriented classes, you will need to compare
instances of Value Objects, which these processing-oriented classes use to receive
input and provide output. To store these Value Objects in collections (List, Set,
Map) requires implementing equals() and hashCode() appropriately.2 Doing so
becomes all the more important when you want to write Object Tests, because in

2 See chapter 3 of Joshua Bloch, Effective Java: Programming Language Guide, Addison-Wesley, 2001; or
Peter Haggar, Practical Java: Programming Language Guide, Addison-Wesley, 2000, the section entitled
“Objects and Equality.”

27Test your equals method
those tests you assert the equality of Value Objects and primitive values a great
deal of the time.

NOTE Value Objects—A Value Object represents a value, such as an Integer,
Money, or a Timestamp. What makes a Value Object different from other
objects is that even if you have 20 different objects that all represent the
same value, you can use those objects interchangeably—that is, you can
treat them equally. It does not matter whether they are different objects in
memory: 5 is 5 is 5, so if you have three objects each representing the
number 5, you can use one of them in place of another without changing
the meaning of your program. You need to implement equals() to
reflect the fact that, in spite of being different objects in memory, my $20
is the same as your $20.

The wrapper classes for the primitive types behave as Value Objects (Integer,
Double, and so on). String also behaves this way. Many examples in this book use
a class called Money, and Money objects are certainly Value Objects.

Note that if your object is not a Value Object, then there is likely no need to
test for equals at all, so stop here. This is true of most objects outside your applica-
tion’s domain model.

NOTE A quick review of equals()—The contract of the method equals() is not
complex, but it may be unfamiliar to programmers who did not study
equivalence relations during their time in mathematics class, so a quick
review is in order. The method equals() must satisfy three well-known
properties: the reflexive, symmetric, and transitive properties, also known
as RST by mathematics students trying to memorize the names.

■ The reflexive property says that an object is equal to itself.
■ The symmetric property says that if I am equal to you, then you are

equal to me and the other way around.
■ The transitive property says that if I am equal to you and you are equal

to that guy over there, then I am equal to that guy over there. To use
the ancient saying: “Equals of equals are equal.”

Beyond these mathematical properties, the equals() method must be
consistent: no matter how many times you call it on an object, equals()
answers the same way as long as neither object being compared changes.
Finally, no object equals null.

With this in mind, you are ready to test your Value Objects for their implementa-
tion of equals().

28 CHAPTER 2

Elementary tests
◆ Recipe

If you were to try to write the various tests on your own, you would quickly find out
that it is a considerable amount of work. If you want to see that work first before
taking a shortcut, skip to the Discussion section of this recipe and then come back
here. If you just want to get to the point, we simplify this recipe considerably by
taking advantage of the good work of Mike Bowler. His open source package
GSBase (http://gsbase.sourceforge.net) provides a number of utilities for writing
JUnit tests, including something called the EqualsTester. This class runs a com-
plete suite of tests on your Value Object to determine whether your implementa-
tion of equals() satisfies all the necessary properties.

Listing 2.1 shows an example of using EqualsTester to test equals() for the
Money class.

package junit.cookbook.common.test;

import junit.cookbook.util.Money;
import junit.framework.TestCase;
import com.gargoylesoftware.base.testing.EqualsTester;

public class MoneyTest extends TestCase {
 public void testEquals() {
 Money a = new Money(100, 0);
 Money b = new Money(100, 0);
 Money c = new Money(50, 0);
 Object d = null;

 new EqualsTester(a, b, c, d);
 }
}

Let us explain a little more fully the parameters you need to pass to EqualsTester:

■ a is a control object against which the other three objects are to be compared.

■ b is a different object in memory than a but equal to a according to its value.

■ c is expected not to be equal to a.

■ If the class you are testing is final—cannot be subclassed—then d ought to
be null; otherwise, d represents an object that looks equal to a but is not. By
“looks equal,” we mean (for example) that d has the same properties as a, but
because d has additional properties through subclassing, it is not equal to a.

Listing 2.1 Testing Money.equals() with EqualsTester

29Test your equals method
Returning to our example, the test will fail if we set d to null while allowing sub-
classes of Money. We must decide whether to declare the class Money to be final or
change the test to the following:

public class MoneyTest extends TestCase {
 public void testEquals() {
 Money a = new Money(100, 0);
 Money b = new Money(100, 0);
 Money c = new Money(50, 0);
 Money d = new Money(100, 0) {
 // Trivial subclass
 };

 new EqualsTester(a, b, c, d);
 }
}

EqualsTester provides a quick way to test Value Objects for equality, defined as
“having properties with the same respective values,” which is sufficient for the vast
majority of business applications.

◆ Discussion

To understand why we recommend using EqualsTester, let us develop the tests
ourselves.

We start with the reflexive property and write this test:

public class MoneyEqualsTest extends TestCase {
 private Money a;

 protected void setUp() {
 a = new Money(100, 0);
 }

 public void testReflexive() {
 assertEquals(a, a);
 }
}

The next property is the symmetric one. We need another Money object for that:

package junit.cookbook.common.test;

import junit.cookbook.util.Money;
import junit.framework.TestCase;

public class MoneyEqualsTest extends TestCase {
 private Money a;
 private Money b;

 protected void setUp() {
 a = new Money(100, 0);

30 CHAPTER 2

Elementary tests
 b = new Money(100, 0);
 }

 public void testReflexive() {
 assertEquals(a, a);
 assertEquals(b, b);
 }

 public void testSymmetric() {
 assertEquals(a, b);
 assertEquals(b, a);
 }
}

You may be tempted to write testSymmetric() as a logical implication, doing
something like this:

public void testSymmetric() {
 assertTrue(!a.equals(b) || b.equals(a));
}

This assumes that you remember how to convert an implication into a logic state-
ment involving only AND, OR, and NOT. Maybe you do, maybe you do not. The
good news is it does not matter, because by writing the test as we did previously,
the test fails only if either assertion fails. In other words, there is an implicit AND
between those assertions, so that both the forward and reverse equalities are veri-
fied. The direct approach works, so we are content with that. In the process, we
added b to the reflexivity test, just to have another data point to help us be more
confident in the code that passes these tests.

The next property to test is transitivity. This normally would require three
objects, but it turns out that in the vast majority of cases, the reflexive and symmet-
ric properties together are enough to guarantee transitivity. The exceptional case
is pretty unusual, so rather than describe it here, we leave it to a separate chapter.
See essay B.2, “Strangeness and transitivity,” for details.

Now that we have verified that objects are equal when we expect them to be, we
need to verify that objects are not equal when we expect them not to be. This requires
introducing a third object different from the first two. We add a declaration for this
new object as a field in our test case class, as well as the corresponding tests:

public class MoneyEqualsTest extends TestCase {
 private Money a;
 private Money b;
 private Money c;

 protected void setUp() {
 a = new Money(100, 0);

31Test your equals method
 b = new Money(100, 0);
 c = new Money(200, 0);
 }

 public void testReflexive() {
 assertEquals(a, a);
 assertEquals(b, b);
 assertEquals(c, c);
 }

 public void testSymmetric() {
 assertEquals(a, b);
 assertEquals(b, a);

 assertFalse(a.equals(c));
 assertFalse(c.equals(a));
 }
}

These tests say that c should equal itself (as should every object), but a should not
equal c and the other way around. You may notice the use of assertFalse
(a.equals(c)). There is no assertNotEquals() method in JUnit, although you
can find it in some of the extension projects, such as JUnit-addons. Some mem-
bers of the community have asked for it, but it is still not part of JUnit. It is easy
enough to write, so if you find you prefer to have it, then we recommend imple-
menting it yourself.

At this point we have checked the three main properties. For consistency, we
need to check equality on a pair of objects a number of times. Because we can’t
use an infinite loop here, we choose a nice high number of comparisons that gives
us some confidence without making the tests needlessly slow:

public class MoneyEqualsTest extends TestCase {
 // No changes to the other tests

 public void testConsistent() {
 for (int i = 0; i < 1000; i++) {
 assertEquals(a, b);
 assertFalse(a.equals(c));
 }
 }
}

Even at 1,000 iterations, the test only lasted 0.05 seconds on a midrange laptop, so
the test should be fast enough. The last thing to do is compare the objects to null:

public class MoneyEqualsTest extends TestCase {
 // No changes to the other tests

 public void testNotEqualToNull() {

32 CHAPTER 2

Elementary tests
 assertFalse(a.equals(null));
 assertFalse(c.equals(null));
 }
}

We choose not to compare b with null because the other tests show that a and b
are already equal. If you want to add the extra test, it does no harm, but we do not
think it provides any value.

This covers all the basic properties of equals(). Although it is not an exhaustive
test, it should detect defects in an implementation of equals() in any classes you
might find in business applications programming. Examine the source of Equals-
Tester to see what additional tests Mike Bowler decided were worth implementing.

NOTE In addition to testing equals(), the EqualsTester verifies that hash-
Code() is consistent with equals(). This means that if two objects are
equal, then their hash codes are also equal, but not necessarily the other
way around. Without these extra tests, it is possible to put an object into a
Map with one key object and not be able to retrieve it with another key
object, even if the two key objects are equal. We say this from experience.
If you do not want to or need to write a suitable hashing algorithm, we
recommend implementing hashCode() to throw an UnsupportedOper-
ationException, which adheres to the basic contract of Object but fails
loudly if you later try to use this object as a key in a Map.3 An alternative is
to return a constant value, such as 0, but that reduces hashing to a linear
search, which may cause a performance problem if done often enough.

Alternative
JUnit-addons also provides an equals tester, which it calls EqualsHashCodeTest-
Case. The intent is the same, but the code is different. You subclass this test case
class and override methods to return instances of your Value Objects. One
method, createInstance(), returns the control object; the other method, create-
NotEqualInstance(), returns objects that you expect not to be equal to the con-
trol objects. You need to implement these methods to return new objects on each
invocation, rather than create one instance and keep returning it. The test will,
for example, invoke createInstance() twice and then compare the two objects
using equals(). If you return the same object twice, the test fails, so you do not
necessarily have to remember to do this correctly. Listing 2.2 shows how we tested
Money using this technique.

3 Thanks go to Ilja Preuß for recommending this technique. It is consistent with the practice of adding a
fail() statement to a new test until it has been fully implemented. Until then, it can only fail, rather
than pass silently.

33Test a method that returns nothing
package junit.cookbook.common.test;

import junit.cookbook.util.Money;
import junitx.extensions.EqualsHashCodeTestCase;

public class MoneyEqualsTestWithJUnitAddons
 extends EqualsHashCodeTestCase {

 public MoneyEqualsTestWithJUnitAddons(String name) {
 super(name);
 }

 protected Object createInstance() throws Exception {
 return Money.dollars(100);
 }

 protected Object createNotEqualInstance() throws Exception {
 return Money.dollars(200);
 }
}

To summarize the main differences between the two utilities, you use EqualsTester
within a single test, whereas you use EqualsHashCodeTestCase by subclassing. Also,
EqualsTester tests for the “subclass equals” issue, whereas EqualsHashCodeTestCase
does not. Otherwise, use whichever technique you prefer.

◆ Related

■ B.2—Strangeness and transitivity

■ GSBase (http://gsbase.sourceforge.net)

■ JUnit-addons (http://junit-addons.sourceforge.net)

2.2 Test a method that returns nothing

◆ Problem

You want to test a method that has no return value.

◆ Background

One of the most common questions for people new to JUnit is, “How do I test a
method that returns void?” The primary reason for this question is that there is no

Listing 2.2 Testing Money.equals() with EqualsHashCodeTestCase

34 CHAPTER 2

Elementary tests
direct way to determine what such a method does. Because you cannot compare
an expected value against an actual, returned value, you need some other way to
describe the expected behavior and compare it to the actual behavior.

◆ Recipe

If a method returns no value, it must have some observable side effect, such as
changing the state of an object; otherwise it does nothing. If it does nothing, then
there is no need to test it and likely no need to use it, so get rid of it. If it has an
observable side effect, you need to identify it and then make the appropriate
assertions based on that side effect.

Let us test adding an object to a collection. The method Collection.
add(Object) returns no value. In spite of this, there is an intuitive way to verify
whether the object was successfully added to the collection:

1 Create an empty collection.

2 The collection should not contain the item in question.

3 Add the item in question.

4 Now the collection should contain the item in question.

Translating that into code, we test ArrayList.add():

public class AddToArrayListTest extends TestCase {
 public void testListAdd() {
 List list = new ArrayList();
 assertFalse(list.contains("hello"));
 list.add("hello");
 assertTrue(list.contains("hello"));
 }
}

We saw that List.contains(Object) allows us to confirm a side effect of the cor-
rect behavior of add(). Even though add() returns no value, we were able to iden-
tify a change in list’s state that implies that add() behaves correctly.

We can apply the same technique to a method that loads data from some source
but does not explicitly signal that that data was successfully loaded.4 This test
loads data from a properties file and then makes some assertions about the prop-
erties we expect to find:

4 Perhaps it should signal that information through a return value, because that would be useful to client
objects other than the tests.

35Test a method that returns nothing
public void testLoadProperties() throws Exception {
 Properties properties = new Properties();
 properties.load(new FileInputStream("application.properties"));
 assertEquals("jbrains", properties.getProperty("username"));
 assertEquals("jbra1ns", properties.getProperty("password"));
}

Notice that this test is somewhat brittle because it duplicates expected values with
data found outside the test, namely in a file on the file system. We address this
problem in recipe 5.3, “Use an inline data file.” Still, the test uses the load()
method’s key side effect to verify its behavior: that the expected data is correctly
loaded from the specified properties file. (And, no, I don’t really use that pass-
word for anything, so don’t bother trying it.)

◆ Discussion

The effectiveness of this technique relies on the existence of an observable side
effect. Any method—any block of code, for that matter—must either return a
value or have a side effect; otherwise, by definition it has no behavior. The only
remaining question is whether the current design allows you to see the side effect.
A cache generally does not provide a way to view its contents, since caching is usu-
ally an implementation detail. Without adding diagnostic methods to query
whether the cache has been hit, there is no way to observe the behavior of a cach-
ing mechanism. Of course, if your cache does not provide some means of verify-
ing cache hits, how do you know that it is caching anything?5

Even with an observable side effect, you may question the value of using one
method to test another. Returning to the List example, we used contains() to
test add(), but typically, add() is used to test contains(). The test in question is
generally the exact test we wrote previously to verify add()! There appears to be a
chicken-and-egg problem here: we cannot guarantee the correctness of add()
without having already demonstrated the correctness of contains(), and the other
way around. Does this mean that our tests mean nothing?

The answer is no. We are testing behavior, and not methods. When we say “We
will test adding objects to a collection,” that leads to testing a number of different
operations: add, clear, remove, contains, find, and so on. All these operations on
a collection pertain to testing the ability to add objects. Taken together, the meth-

5 Imagine a programmer codes his intention to cache an object by naming a method getObjectFrom-
Cache(). In his haste to complete his programming task, he defers implementing the cache until later.
Three months later, in a formal code walkthrough, someone finally notices that there is no cache in this
class. A test would have prevented this.

36 CHAPTER 2

Elementary tests
ods implement certain behaviors, such as the ability to have many objects in a col-
lection or eliminate duplicate elements (for a set, in particular). We recommend
you worry about the bigger picture—testing behavior—rather than testing indi-
vidual methods. Certainly some behavior is straightforward and best implemented
by a single method, but it is the object that we care about, and not just the
method. If we need to invoke add(), contains(), and clear() to verify that our
collection properly sorts elements as they are added to the list, then we invoke
them. We will have more to say on this issue throughout the book.

NOTE The tests are the specification!—If add() and contains() contain defects
that cancel one another out, then the test passes and we can argue that
the behavior is correct. We hope that future tests will uncover the defects,
but if that never happens then we have incorrect code that exhibits cor-
rect behavior. If code does the wrong thing but no test fails, does it have a defect?
More and more JUnit users say, “No.” They say that “The tests are the
specification,” which means that we describe what our code does by pro-
viding the tests our code passes. A feature is not present unless there are
tests to verify it. Each test is a claim that the code behaves a certain way,
so if no test exists to verify that we can add an object twice to the same
List, then we cannot assume that that would work. This certainly puts
pressure on the programmer to write enough tests!

If there is no way to observe a method’s side effect, then in order to test it you must
expose one.6 Although you may cringe at the notion of adding behavior “just for test-
ing,” we argue that the return on investment far outweighs the cost of adding a simple
query method, so long as it is, indeed, simple. In most cases, converting an invisible
side effect into an observable one provides additional design benefits beyond “mere”
testability. One example is allowing a reusable class to emerge from a larger class in
which it is currently trapped. As you gain more experience with JUnit, you will dis-
cover this for yourself. We will also return to this point as needed throughout the book.

◆ Related

■ 5.3—Use an inline data file

■ 14.2—Test an Observable (Event Source)

■ B.4—The mock objects landscape

6 Jason Menard points out that you can use reflection to create an observable side effect by gaining access
to otherwise invisible data or methods. We prefer not to do this, because it is often more work than just
adding a method. But it is a viable alternative. We describe using JUnitX for this purpose in chapter 17.

37Test a constructor
2.3 Test a constructor

◆ Problem

You want to test a constructor.

◆ Background

Testing a constructor can seem like chasing your own tail.
The straightforward approach would be to use the constructor to instantiate an

object and then compare that object to an expected value using assertEquals().
That test would be very simple—you could even write it on one line if you wanted
to. There is only one problem: to create the expected value requires—that’s
right—using the constructor you want to test. Such a test is not very satisfying.
It says, “If the constructor works, then it works.” Great.

So how do you test a constructor?

◆ Recipe

If your class exposes readable properties, then the solution is straightforward: you
can compare their values against the values you had passed into the constructor.
Here, a readable property may be exposed either directly as a field or through a
get method.

NOTE Just for testing—It is most common to test classes entirely through their
public interface. If you adopt this approach as a rule, then you will
encounter some cases where you need to add a public method to your
class’s interface—often a getter—in order to gain access to the data you
need to verify a given behavior. This is a controversial issue among pro-
grammers: adding the method seems to break encapsulation “just for
testing,” which introduces a trade-off that different people evaluate dif-
ferently. As with any such situation, it is up to you to try both options and
measure the difference.

The simplest kind of constructor test uses exposed internal state to verify that
parameters passed to the constructor reached the appropriate properties. Here is
a simple example:

public void testInitializationParameters() {
 assertEquals(762, new Integer(762).intValue());
}

You can use the method intValue(), which returns the underlying value of the
Integer object, to verify that the constructor correctly stores the value you passed

38 CHAPTER 2

Elementary tests
in through the constructor. Even though it does not have get in the name,
intValue() is a get method.

If your class does not expose readable properties, then you must build some
other observable side effect that you can use to verify the correctness of the con-
structor. It is possible to write a method named isValid() to help verify the sanity
of your object without violating the data-hiding principle. Such a test would look
like this:

public void testInitializationParameters() {
 BankDepositCommand command = new BankDepositCommand(
 "123", Money.dollars(125, 50), today());
 assertTrue(command.isValid());
}

This technique also applies well to testing JavaBeans. See recipe 2.7, “Test a Java-
Bean,” for details.

◆ Discussion

Most of these tests seem too simple to be worth writing, which is why many pro-
grammers do not write them. This is the reason that we often do not write them.
On occasion we will be bitten (you know where) by a defect we introduced pre-
cisely because we did not write such a test. It is up to you to determine, based on
experience and your defect rate, whether writing such tests provides sufficient
return on investment to continue doing so. The saying goes, “Test until fear turns
to boredom.”

If you would like a more immediately useful heuristic, use the following technique
to effectively verify any default values you might assign to properties during object
initialization. Consider a Money class whose objects default to zero dollars when no
parameters are passed to the constructor. The test would resemble the following:

public void testDefaultInitializationParameters() {
 assertEquals(0L, new Money().inCents());
}

Here we use the method inCents() to answer the underlying value of the Money
object, represented in cents (which simply avoids using floating-point numbers),
to verify that the default amount of a Money object is zero dollars, which is also
zero cents.

In general, though, a constructor on its own does not do enough to warrant its
own set of tests. Most constructors accept no parameters, store parameters in
instance variables, or pass their parameters to other, more interesting methods. If
you’re worried that storing parameters in instance variables might break, then see

39Test a constructor
the essay “Too simple to break” in appendix B. If your constructor delegates to
more interesting methods, then test those methods rather than this constructor.
If your constructor validates its parameters, then see recipe 2.8, “Test throwing
the right exception,” for examples of tests that expect a method to throw a partic-
ular exception.

Alternatives
You may not wish to expose your object’s data through readable properties
because you have no other need to do so. In this case, how do you verify that the
parameters you passed into the constructor were correctly stored? Your first
thought may be, “Because the test cannot extract the actual values to compare to the
expected values, it should give the expected values to the object and let it make
the comparison.” Here is an example of such a test, again using the class Money:

public void testValueInCents() {
 assertTrue(new Money(0, 50).valueInCentsIs(50));
}

This test uses a new method valueInCentsIs(), which compares the parameter
with the internal state of the Money object and then returns true if the two are
equal and false otherwise. Although this works, it is our opinion that this code is
less clear than simply introducing the inCents() method and comparing the
results within the test. This is a matter of personal taste, and you may decide dif-
ferently. Try them both; then compare the results.

More to the point, however, valueInCentsIs() does not hide data any better
than inCents() does. The former method tries to act like equals() but falls short.
If you want that behavior, then you need to use equals(), but as we said, that leads
to using the constructor to test the constructor. Because we cannot use the solu-
tion we want to use, we should choose the simplest alternative available and add
inCents(). It may look like the method directly exposes the value of a field, but
that is only an accident of the way the data is stored. If the implementation
of Money changes to store its value in two fields (dollars and cents) rather than
one (cents), then by making the corresponding change to inCents(), clients
of Money need not know the difference. Even if you change the method name to
getCents(), which looks even more like it is directly exposing a field, remember
that the method is merely a read-only property and that properties can be calcu-
lated on the fly, rather than simply representing the value of a field. The data
remains hidden.

40 CHAPTER 2

Elementary tests
Pitfalls
Before leaving this topic, we would like to share examples of the kinds of tests we
often see novice programmers write for constructors, which are either entirely
unnecessary or testing the wrong thing, depending on your perspective.

Here is a common constructor “test”:

public void testConstructorDoesNotAnswerNull() {
 assertNotNull(new Integer(762));
}

According to the Java language specification, a constructor always either creates
an object in memory or throws an exception, so there is no way for a constructor
to answer null except for the Java interpreter or compiler to fail. Other creation
methods may choose to answer null to indicate that an object was not created, but
we consider that to be unnecessarily confusing.

Here is another common constructor “test”:

public void testConstructorAnswersRightType() {
 assertTrue(new Integer(762) instanceof Integer);
}

Also according to the Java language specification, if a constructor returns an
object, it can only return an object of the class’s type and nothing else. The only
way in Java to achieve polymorphic construction of objects is through a factory
method. For this reason, there is no need to verify the type of object answered by
a constructor: the language guarantees its correctness.

The two preceding tests are examples of what is called testing the platform. The
only way that those tests could fail would be if there were an error in the Java lan-
guage itself. Unless you are writing tests for the Java language itself, you are wast-
ing effort verifying behavior over which you have no control.7 You have enough
code to test, so don’t test the platform.

◆ Related

■ 2.4—Test a getter

■ 2.5—Test a setter

■ 2.7—Test a JavaBean

■ 14.2—Test an Observable (Event Source)

■ B.1—Too simple to break

7 The only exception that comes to mind is a Learning Test, which helps you learn how third-party code
works. See Kent Beck, Test-Driven Development: By Example, p. 136.

41Test a getter
2.4 Test a getter

◆ Problem

You want to test an object’s get methods, but many of the tests seem overly simple.
You want to know which tests are needed and which are not.

◆ Background

People new to JUnit are often also new to Programmer Testing. Wide-eyed and
enthusiastic, these people want to test everything. Because they are still learning
how to write tests, they zoom in on the simplest parts of their applications to test,
and few things are simpler than the vast majority of methods whose name starts
with “get.” This combination of enthusiasm and lack of experience leads the pro-
grammer to write many, many tests for these methods. This leads to an empty feel-
ing: the feeling that not much is to be gained by all this testing. Perhaps this
recipe can help.

The heuristic we describe for deciding whether to write a test for a get method
follows a more general rule: do not test methods that are too simple to break (see the
essay by the same name in appendix B). A method that only answers the value of a
field can only break if the underlying Java compiler or interpreter does not work
properly. No coding error (excluding typos) can cause a method such as the fol-
lowing not to work correctly:

public class Money {
 private int cents;

 // Code omitted for brevity

 public long inCents() {
 return cents;
 }
}

The method inCents() truly cannot break on its own. For this reason, we do not
recommend going out of your way to write a test for it. Further, since this type of
get method is too simple to break, it is commonly assumed to work and used to test
constructors. See recipe 2.3, “Test a constructor,” for details.

◆ Recipe

The rule of thumb is this: if the get method simply answers the value of a field,
then consider not writing a test for it; however, if the method does anything more

42 CHAPTER 2

Elementary tests
complex than that, consider writing the test. If you decide that the test is worth
writing, then the test is simple: because a get method returns a value, compare that
result with an expected result. We described how to write this kind of test in the
introduction to this chapter.

If the get method in question does any kind of real work, then it certainly war-
rants a test. This kind of test uses the techniques described in the introduction to
this chapter. Typically, you pass a parameter into the constructor and then verify
that the get method calculates the appropriate value. We take this example from
Dave Thomas and Andrew Hunt’s Programming Ruby and adapt it to the Java lan-
guage. The following constructor for the Song class accepts a song title, the name
of the recording artist, and the duration of the song, measured in seconds:

package junit.cookbook.common.test;

import junit.cookbook.common.Song;
import junit.framework.TestCase;

public class SongTest extends TestCase {
 public void testDurationInMinutes() {
 Song song = new Song("Bicyclops", "Fleck", 260);
 assertEquals(4.333333d, song.getDurationInMinutes(),
 0.000001d);
 }
}

As we mentioned in chapter 1, “Fundamentals,” when comparing floating-point
numbers, you need to specify a tolerance level. In this case, we decided that a dif-
ference of one one-millionth of a minute is acceptable.

In this case, a song’s duration (in seconds) is stored in a field and the duration
in minutes is calculated. The parameter 260 passed in to the constructor repre-
sents the duration in seconds, and the method getDurationInMinutes calculates
the duration in minutes. The authors recommend writing this test because the
duration in minutes is calculated, based on the duration in seconds. Consider two dif-
ferent implementations of Song that could pass this test. The first is straightfor-
ward: the method getDurationInMinutes() performs the calculation on demand,
as shown in listing 2.3.

package junit.cookbook.common;

public class Song {
 private String name;
 private String artistName;
 private int duration;

Listing 2.3 Song.getDurationInMinutes()

43Test a getter
 public Song(String name, String artistName, int duration) {
 this.name = name;
 this.artistName = artistName;
 this.duration = duration;
 }

 public double getDurationInMinutes() {
 return (double) duration / 60.0d;
 }
}

Listing 2.4 shows an alternate implementation that passes the test.

package junit.cookbook.common;

public class Song {
 private String name;
 private String artistName;
 private int duration;
 private double durationInSeconds;

 public Song(String name, String artistName, int duration) {
 this.name = name;
 this.artistName = artistName;
 this.duration = duration;
 this.durationInSeconds = (double) duration / 60.0d;
 }

 public double getDurationInMinutes() {
 return durationInSeconds;
 }
}

This implementation calculates the duration in seconds within the constructor
and stores that value for future use. This can be done as a performance optimiza-
tion. In this case, although the get method is now too simple to break, you ought to
keep the test, because now it verifies that the constructor performs the proper cal-
culation. The test assumes that the get method works—and how could it not?—for
testing the constructor. Either way, the test is useful.

◆ Discussion

In spite of the JUnit community’s attempts to determine how simple something
has to be before it is considered too simple to break, there continues to be a consid-
erable difference of opinion as to which methods are complex enough to be

Listing 2.4 An alternate implementation of Song.getDurationInMinutes()

44 CHAPTER 2

Elementary tests
tested. If you do not yet have an opinion on the matter, we suggest that you write
many tests. Read all you want—including the rest of this book and a few other good
ones, but if you do not write the tests, then you will not accumulate the observa-
tions you need to make an informed choice. If, at that point, you think we are crazy,
then please let us know!

◆ Related

■ 2.3—Test a constructor

■ B.1—Too simple to break

2.5 Test a setter

◆ Problem

You want to test your set methods, but the tests you write look too simple to be
valuable.

◆ Background

A common question for novice JUnit users is, “Should I test my set methods?” This
is also an unexpected source of disagreement within the JUnit users community.
We strongly believe that basic set methods are too simple to break; however, if you
are determined to test them, then it is important to understand effective ways to
test them.

◆ Recipe

The most common use of a set method is in a simple JavaBean. In this case, the
bean is little more than a bag of data, wrapping a collection of fields exposed as
read/write properties. In this case, there is a get method for each set method you
want to test, making the implementation pattern as simple as this:

public void testSetProperty() {
 Bean bean = new Bean();
 bean.setProperty(newPropertyValue);
 assertEquals(newPropertyValue, bean.getProperty());
}

The code in italics changes from test to test: Bean is the class name of your Java-
Bean, and Property is the name of the property you want to test. Here is a descrip-
tion of this implementation pattern:

45Test a setter
1 Name the test method appropriately: change Property to the name of the
bean property whose set methods you are testing.

2 Create an instance of your bean class.

3 If newPropertyValue is a complex property, such as an indexed property
or another JavaBean itself, then initialize newPropertyValue accordingly.

4 If property is a more complex object than a String, then you need
to ensure that equals() is appropriately implemented for that property’s
class. See recipe 2.1, “Test your equals method,” for details.

◆ Discussion

If you do not have the corresponding get method and prefer not to build it for the
lone purpose of verifying the set method, then you need to identify an observable
side effect of calling the set method and verify that side effect.

Another common use of set methods is the Command design pattern. If the
command is submitted to a command interpreter for execution, then likely the
command has a corresponding get method for each set method: otherwise, how
can the command interpreter use the command’s input parameters? If, on the
other hand, the command follows the “action” pattern—providing its own exe-
cute() method—then the command can fully encapsulate its input parameters,
leaving no direct way to verify that the set method behaves as expected. In this
case, it is necessary to execute the command (or action, if you prefer the stricter
terminology) and analyze the side effects of the execution to verify that the input
parameter was set as expected.

Look at this example of a simple action class that performs a bank transfer. You
can see the difficulties that arise when you try to test the set method of a well-
encapsulated field:

package junit.cookbook.common;

import junit.cookbook.util.Bank;
import junit.cookbook.util.Money;

public class BankTransferAction {
 private String sourceAccountId;
 private String targetAccountId;
 private Money amount;

 public void setAmount(Money amount) {
 this.amount = amount;
 }

46 CHAPTER 2

Elementary tests
 public void setSourceAccountId(String sourceAccountId) {
 this.sourceAccountId = sourceAccountId;
 }

 public void setTargetAccountId(String targetAccountId) {
 this.targetAccountId = targetAccountId;
 }

 public void execute() {
 Bank bank = Bank.getInstance();
 bank.transfer(sourceAccountId, targetAccountId, amount);
 }
}

Although the implementation of this action is quite simple, we are forced to use
the execute() method to test the behavior of the various set methods, because
there is no other observable side effect at our disposal.

Notice that this action follows the strict implementation pattern of an exe-
cute() method that takes no parameters. Ordinarily, programmers follow this
rule to allow for an Action superclass or interface that enforces the existence of the
execute() method. Because the action is self-encapsulating and self-executing, it
is not clear what design advantage is gained from enforcing this particular imple-
mentation pattern, but we prefer not to pass judgment on the people who think
it’s a good idea.8 In order to write a test for this class, we would like to substitute
our own Bank object and verify the parameters used to invoke its transfer
method. The lone challenge to this approach is substituting a “spy” bank object in
place of the one that the production code uses. Our choices include exposing a
new execute() method that accepts a bank object as a parameter and exposing a
setInstance() method on Bank allowing us to substitute bank objects at will. Nei-
ther option is particularly palatable. These unfortunate trade-offs tend to arise
when using global data.9 We show the results of the first option here, and leave
implementing the second as an exercise for you.

First, listing 2.5 shows a more open action class.

8 If you have not heard of “Grandma’s Ham,” read the book Code Complete by Steve McConnell, Microsoft
Press, 1993, p. 43.

9 A more thorough discussion of the testing difficulties that global data presents can be found in the online arti-
cle “Use Your Singletons Wisely” (www-106.ibm.com/developerworks/webservices/library/co-single.html).

47Test a setter
package junit.cookbook.common;

import junit.cookbook.util.Bank;
import junit.cookbook.util.Money;

public class BankTransferAction {
 private String sourceAccountId;
 private String targetAccountId;
 private Money amount;

 public void setAmount(Money amount) {
 this.amount = amount;
 }

 public void setSourceAccountId(String sourceAccountId) {
 this.sourceAccountId = sourceAccountId;
 }

 public void setTargetAccountId(String targetAccountId) {
 this.targetAccountId = targetAccountId;
 }

 public void execute() {
 execute(Bank.getInstance());
 }

 public void execute(Bank bank) {
 bank.transfer(sourceAccountId, targetAccountId, amount);
 }
}

Next, listing 2.6 shows a test to verify the input parameters.

package junit.cookbook.common.test;

import junit.cookbook.common.BankTransferAction;
import junit.cookbook.util.Bank;
import junit.cookbook.util.Money;
import junit.framework.TestCase;

public class BankTransferActionTest extends TestCase {
 public void testSettingInputParameters() {
 BankTransferAction action = new BankTransferAction();
 action.setSourceAccountId("source");
 action.setTargetAccountId("target");

Listing 2.5 An easier-to-test BankTransferAction

Listing 2.6 BankTransferActionTest

48 CHAPTER 2

Elementary tests
 action.setAmount(Money.dollars(100));
 action.execute(new Bank() {
 public void transfer(String sourceAccountId,
 String targetAccountId,
 Money amount) {
 assertEquals("source", sourceAccountId);
 assertEquals("target", targetAccountId);
 assertEquals(Money.dollars(100), amount);
 }
 });
 }
}

Suddenly the extra typing that writing the get methods requires is not so bad.
We have observed over time that the number of failing set methods and the

resulting time spent trying to diagnose those failures is not nearly significant
enough to warrant expending this amount of effort on testing them. Our recom-
mendation is that you concentrate on testing those parts of your code that are
much more likely to break. If failing set methods is the problem that hurts you the
most, then relax, because your code is in far superior shape compared to the vast
majority of other projects out there!

◆ Related

■ 2.1—Test your equals method

■ 2.4—Test a getter

■ B.1—Too simple to break

2.6 Test an interface

◆ Problem

You want to test an interface, but there is no way to instantiate an interface. You
want to test more than just all the current implementations; you want to test all
possible implementations.

◆ Background

When publishing an interface, the intent is usually to enforce a certain common
behavior among all implementations of that interface. This behavior must be com-
mon not only for all existing implementations, but also for any implementation

49Test an interface
that any programmer might ever write. You then need to write tests that capture
the requirements of the common behavior (the interface) but allow future imple-
mentations to be tested against those same requirements without duplicating the
underlying test code.

◆ Recipe

You should introduce an abstract test case whose methods test the intended com-
mon behavior and that uses factory methods to defer creating the object under
test to the implementation’s test case. Follow these steps:

1 Select one of the implementation’s test cases.

2 Create a new abstract test case class that stores the tests for the intended
behavior. Change the implementation’s test case so that it extends the
new abstract test case.

3 For each implementation test that verifies only interface-scope behavior,
identify each place where an instance of the implementation is created.10

4 Inside the test, find the code that creates the object under test. Move this
code into a separate creation method, but store the instantiated object in a
reference to the interface, and not the implementation. Repeat until the test
has no more direct references to the implementation by its class name.

5 Create an abstract method in the abstract test case for each creation
method you extracted.

6 Now that the test refers only to the interface and other methods in the
abstract test case, move the test up into the abstract test case.

7 Repeat until all such tests have been moved up into the abstract test case.

8 Repeat all the steps for each implementation test case until the only tests
remaining in the implementation test cases verify implementation-specific
behavior.

Next we’ll illustrate this technique by testing the interface java.util.Iterator. We
start with listing 2.7, which shows a concrete test for the java.util.List iterator.

10 Interface-scope behavior only invokes methods on the interface and does not invoke any implementation-
specific methods.

50 CHAPTER 2

Elementary tests
package junit.cookbook.test;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
import junit.framework.TestCase;

public class ListIteratorTest extends TestCase {
 private Iterator noMoreElementsIterator;

 protected void setUp() {
 List empty = new ArrayList();
 noMoreElementsIterator = empty.iterator();
 }

 public void testHasNextNoMoreElements() {
 assertFalse(noMoreElementsIterator.hasNext());
 }

 public void testNextNoMoreElements() {
 try {
 noMoreElementsIterator.next();
 fail("No exception with no elements remaining!");
 }
 catch (NoSuchElementException expected) {
 }
 }

 public void testRemoveNoMoreElements() {
 try {
 noMoreElementsIterator.remove();
 fail("No exception with no elements remaining!");
 }
 catch (IllegalStateException expected) {
 }
 }
}

Next we introduce the abstract test case IteratorTest and move most of the con-
crete test case ListIteratorTest up into IteratorTest. The end result is the fol-
lowing new IteratorTest:

package junit.cookbook.test;

import java.util.Iterator;
import java.util.NoSuchElementException;
import junit.framework.TestCase;

Listing 2.7 ListIteratorTest

See recipe 2.8,
“Test throwing the
right exception”

51Test an interface
public abstract class IteratorTest extends TestCase {
 private Iterator noMoreElementsIterator;

 protected abstract Iterator makeNoMoreElementsIterator();

 protected void setUp() {
 noMoreElementsIterator = makeNoMoreElementsIterator();
 }

 public void testHasNextNoMoreElements() {
 assertFalse(noMoreElementsIterator.hasNext());
 }

 public void testNextNoMoreElements() {
 try {
 noMoreElementsIterator.next();
 fail("No exception with no elements remaining!");
 }
 catch (NoSuchElementException expected) {
 }
 }

 public void testRemoveNoMoreElements() {
 try {
 noMoreElementsIterator.remove();
 fail("No exception with no elements remaining!");
 }
 catch (IllegalStateException expected) {
 }
 }
}

It turns out that we were able to move all the tests up into IteratorTest once we
extracted the method makeNoMoreElementsIterator(). This method is the only
thing we needed to leave behind in ListIteratorTest:

package junit.cookbook.test;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class ListIteratorTest extends IteratorTest {
 protected Iterator makeNoMoreElementsIterator() {
 List empty = new ArrayList();
 return empty.iterator();
 }
}

IteratorTest instead
of TestCase

Return the appropriate
type of iterator

B

C

52 CHAPTER 2

Elementary tests
Rather than extend junit.framework.TestCase directly, ListIteratorTest now
extends our abstract test case IteratorTest.

The ListIteratorTest implementation of this creation method returns an itera-
tor over an empty List. Similarly, if you were testing a Set-based iterator, you
would create a SetIteratorTest (extending IteratorTest) whose makeNoMore-
ElementsIterator() would return an iterator over an empty Set.

◆ Discussion

The abstract test case works because of the way that test hierarchies behave in
JUnit. A TestCase class inherits all tests from any TestCase subclass above it in the
class hierarchy. In our case, ListIteratorTest inherits the tests from Iterator-
Test, so that the tests in IteratorTest are executed when we run ListIterator-
Test in a test runner.

It is worth mentioning an observation by Eric Armstrong, a regular contributor to
the JUnit Yahoo! group: “An interface defines syntax, but does not actually specify
semantics, even though they are frequently implied. An accompanying test suite,
on the other hand, can specify the semantics. We should require every public interface
to be accompanied by a test suite!”11 When publishing an interface or abstract
class as part of a framework, it is a good idea to provide an Abstract Test Case to
codify the essential expectations the framework puts on any client extension.

To that end, return to the Javadoc for the method Iterator.remove(), which
you can find online. This method may throw two different exceptions: Illegal-
StateException to indicate that you are using the method incorrectly, and Unsup-
portedOperationException to indicate that this implementation of Iterator does
not support removing elements. If you were implementing such an iterator, your
tests for remove() would all expect an UnsupportedOperationException, rather than
possibly an IllegalStateException. You could do even better. You could also add
the method supportsRemove() to the Abstract Test Case, which returns true if the
iterator implementation under test supports remove(), and false otherwise. (The
concrete test implements the method, not the abstract test.) The expected behav-
ior for remove() now depends on the return value of supportsRemove(), as shown
in listing 2.8.

B

C

11 Personal communication by e-mail.

53Test an interface
public abstract class MoreCompleteIteratorTest extends TestCase {
 // Other tests as in IteratorTest

 protected abstract boolean supportsRemove();

 public void testRemoveNoMoreElements() {
 try {
 noMoreElementsIterator.remove();
 if (supportsRemove()) {
 fail("No exception with no elements remaining!");
 } else {
 fail("No exception when attempting to remove!");
 }
 }
 catch (IllegalStateException expected1) {
 if (!supportsRemove()) {
 fail("Expecting UnsupportedOperationException on "
 + "attempt to remove!");
 }
 }
 catch (UnsupportedOperationException expected2) {
 if (supportsRemove()) {
 fail("Expecting IllegalStateException on attempt "
 + "to remove!");
 }
 }
 }
}

This test more completely captures the contract of Iterator, as the Javadoc
defines it.

Finally, you will have classes that implement multiple interfaces. We recom-
mend testing each interface’s contract separately, rather than sticking to the rule
of “one test case class per production class.”

◆ Related

■ Design by Contract, as described by Bertrand Meyer and implemented in
the Eiffel programming language (http://archive.eiffel.com/doc/manuals/
technology/contract/page.html)

■ Ward Cunningham’s Wiki (http://c2.com/cgi/wiki?AbstractTestCases)

Listing 2.8 A more complete IteratorTest

Should the iterator under
test support remove?

Not supposed to
support remove!

Supposed to
support remove!

54 CHAPTER 2

Elementary tests
2.7 Test a JavaBean

◆ Problem

You want to test a JavaBean, but the tests you write seem to be both repetitive and
brittle.

◆ Background

Because a JavaBean is little more than a collection of get and set methods, the tests
that you write for your bean look like nothing more than a repetition of the code
under test. This is decidedly not satisfying. If you feel this way about testing Java-
Beans, then you’re not alone.

◆ Recipe

In many ways, there is nothing special about testing a JavaBean:

■ For a bean property that interacts directly with a field and performs no cal-
culations, there is little to gain from testing the corresponding get and set
methods. Don’t waste your time testing them.

■ For a calculated bean property, write simple tests to verify that the property
is correctly calculated.

■ For bean methods, there is typically nothing special to do; therefore, test
each method as you would any other simple method.

■ For bean event methods such as property change events, use the techniques
found in recipe 14.2, “Test an Observable (Event Source),” treating the
bean as an event source—because that is exactly what it is!

The one testing technique that applies well to JavaBeans is the sanity check. The
JavaBean specification requires a no-argument constructor, whereas most beans
have properties that require non-null values. This means that instances of your
bean are virtually guaranteed not to be properly initialized just after the construc-
tor finishes. We call such an object insane, because if you call any of its methods at
this point, you have no idea what you’re going to get.

To implement a sanity check for your JavaBean, introduce a method called
isValid() whose responsibility is to verify that all required properties indeed have
non-null values. Your tests use isValid() to communicate which properties are
required and which are optional. As one reviewer pointed out, it would be nice if
java.util.Calendar provided such a method!

55Test a JavaBean
In a simple JavaBean where writable properties map directly to fields on the
class, it may seem unnecessary to write tests for the set methods, because they are
too simple to break. Still, it is worthwhile to write tests such as the following for your
JavaBeans. In this example, we test a Command object:

public void testBankTransferCommandIsValid() {
 BankTransferCommand command = new BankTransferCommand();

 command.setSourceAccountId("123-456A");
 command.setTargetAccountId("987-654B");
 command.setAmount(Money.dollars(1000));

 assertTrue(command.isReadyToExecute());
}

This test communicates something important to the programmer reading it: that if
the programmer sets the source account ID, target account ID, and amount to
transfer, then the command will be ready to execute. In this case, we have renamed
isValid() to the more intention-revealing name of isReadyToExecute(). This test
shows sufficient conditions for the bank transfer command to be ready to execute,
or valid. For completeness, it is recommended to add tests such as the following:

public void testNeedsAmount() {
 BankTransferCommand command = new BankTransferCommand();

 command.setSourceAccountId("123-456A");
 command.setTargetAccountId("987-654B");
 // Do not set amount

 assertFalse(command.isReadyToExecute());
}

This test says that without providing the amount to transfer, the command will not
be ready to execute. Although the comment is not strictly required, it clarifies
which of the writable properties has not been set. Rarely are comments needed,
because the code can almost always be written clearly enough to stand on its own;
however, to indicate the absence of code requires something other than code.

◆ Discussion

When using this technique, you should provide one test per required property.
Each verifies that without setting that property, the object is invalid. Because here
all three properties are required, we would have four tests in total (one “positive”
one and three “negative” ones).

This recipe describes what not to test as much as what to test. Whenever you
encounter this kind of advice, keep in mind that you should test anything in

56 CHAPTER 2

Elementary tests
which you do not already have confidence. We are only trying to save you some
effort by recommending which tests you can skip, but if you feel you need them,
then write them. Do not let our recommendations become rules, because they are
only guidelines. Remember the underlying reason for these guidelines: test until
fear turns to boredom. If you are worried about your JavaBean working, test every-
thing until you are confident enough to test less. Eventually you will let your
guard down, and a defect will creep in that your tests do not find. In this case,
write more tests until your confidence returns. This cycle generally continues
without end.

◆ Related

■ 2.4—Test a getter

■ 2.5—Test a setter

■ 14.2—Test an Observable (Event Source)

■ B.1—Too simple to break

2.8 Test throwing the right exception

◆ Problem

You want to verify that a method throws an expected exception under the appro-
priate circumstances. You may also be looking for “the simplest way” to write such
a test.

◆ Background

To understand how to implement this kind of test, you need to know how JUnit
decides whether a test passes or fails. A test fails (with either a failure or an error)
if an assertion fails or it throws an exception; otherwise, the test passes. In other
words, if a test falls through—meaning it executes from beginning to end without
exiting from the middle—then it passes. This is enough to infer the way you
ought to write this kind of test: it should fail if the offending line of code does not
throw an exception; it should catch only the expected exception type; and it
should throw any other exceptions up into the JUnit framework.

57Test throwing the right exception
◆ Recipe

The following code demonstrates the implementation pattern for writing tests for
throwing an exception:

public void testConstructorDiesWithNull() throws Exception {
 try {
 Fraction oneOverZero = new Fraction(1, 0);
 fail("Created fraction 1/0! That's undefined!");
 }
 catch (IllegalArgumentException expected) {
 assertEquals("denominator", expected.getMessage());
 }
}

Now that you have seen the pattern, we’ll describe it here in more detail:

1 Identify the code that might throw the exception and place it in a try block.

2 After invoking the method that might throw an exception, place a fail()
statement to indicate “If we got here, then the exception we expected was
not thrown.”

3 Add a catch block for the expected exception.

4 Inside the catch block for the expected exception, verify that the excep-
tion object’s properties are the ones you expect, if desired.

5 Declare that the test method throws Exception. This makes the code
more resistant to change. Someone may change the method under test so
that it declares it might throw additional checked exceptions. That change
likely does not affect your test, so it ought not to cause your test to stop
compiling.

◆ Discussion

If the method under test throws an unexpected exception—something other than
the exception for which you are testing—then JUnit reports an error, rather than
a failure, because the test method throws that exception up into the JUnit frame-
work. Recall that an error generally indicates a problem in the environment or
with the test itself, rather than a problem in the production code. If the produc-
tion code throws an unexpected exception, then indeed, perhaps there is some
underlying problem that hinders the test’s normal execution.

Returning to the example, note the name we use for the exception identifier:
expected. This is important, as it is a clear message to the programmer that throw-
ing this exception—or catching it, depending on your perspective—is a good

58 CHAPTER 2

Elementary tests
thing. Because exceptions are used to model aberrant code execution paths,
we’re accustomed to seeing exceptions as a bad thing. This kind of test is an
exception—pun intended.

In many cases, it is not necessary to make assertions about the expected
(caught) exception. If asserting the correctness of the type of exception caught is
sufficient to give you confidence in the correctness of the production code, then
leave the exception handler empty. In this case, some programmers like to add a
comment reading “Expected path.” We feel that naming the exception object
expected communicates that fact effectively without the need for a comment. This
is a matter of personal taste, so do whatever works for you.

An alternative is to catch all exceptions that the method could possibly throw,
adding a failure statement for each exception you do not expect. Often, when a
programmer wants to do this, it is to report unexpected exceptions as failures,
rather than as errors. We recommend against doing this for two simple reasons:

■ Doing so requires extra code compared to simply throwing the unexpected
exceptions up into the JUnit framework, and all things being equal, less
code is easier to maintain.

■ There is little to gain by reporting the unexpected exception as a failure. In
many cases, you handle the two the same way. Some unexpected exceptions
are production code problems and some are environment problems, and it
is usually difficult to distinguish them without depending strongly on the
underlying object’s implementation details.

A more object-oriented approach
Just when it looked like there was no more to write on this subject, an esteemed
member of the JUnit community, Ilja Preuß (IL-ya PROYSS), presented a more
object-oriented option for this code:

public void testForException() {
 assertThrows(MyException.class, new ExceptionalClosure() {
 public Object execute(Object input) throws Exception {
 return doSomethingThatShouldThrowMyException();
 }
 });
}

Although some find Java’s anonymous inner class syntax a little difficult to read,
the method’s intent could not be more clear: “Assert that this block of code throws
that kind of exception.” Implement the method assertThrows() as follows:

59Test throwing the right exception
public static void assertThrows(
 Class expectedExceptionClass,
 ExceptionalClosure closure) {

 String expectedExceptionClassName
 = expectedExceptionClass.getName();

 try {
 closure.execute(null);
 fail(
 "Block did not throw an exception of type "
 + expectedExceptionClassName);
 }
 catch (Exception e) {
 assertTrue(
 "Caught exception of type <"
 + e.getClass().getName()
 + ">, expected one of type <"
 + expectedExceptionClassName
 + ">",
 expectedExceptionClass.isInstance(e));
 }
}

Rather than catching only the exception we expect, we need to catch them all,
because we cannot know at compile time which exception class to expect. When
making an assertion generic like this one, a good failure message is important,
because you are removing control of the failure message from the invoker. The
alternative is to add another parameter to assertThrows() that accepts a custom
failure message. Finally, because we must catch all exceptions, we are forced to
test the caught exception class against our expectation. The method Class.
isInstance(Object) answers whether the parameter is an instance of the class. It is
the same as using instanceof.

In addition to revealing intent, this approach avoids duplicating the exception-
checking algorithm in hundreds of tests. That’s quite an improvement!

You will notice the use of ExceptionalClosure, which requires some introduc-
tion. A closure is simply a wrapper for a block of code, as is directly supported in
languages like Smalltalk and Ruby. Rather than reinvent the wheel, we usually use
the Closure interface from the Jakarta Commons project (http://jakarta. apache.
org) as often as we can. Unfortunately for this recipe, we cannot use it because its
execute() method does not declare that it might throw a checked exception, so it
can only throw an unchecked one—that is, a descendant of RuntimeException. To
compensate for this deficiency, we added the interface ExceptionalClosure to
Diasparsoft Toolkit, which does what Closure does, but whose execute() method
might throw an exception.

Forced to do this

Detailed failure message

Verify the caught
exception class

60 CHAPTER 2

Elementary tests
Once you have implemented assertThrows() once, you can move it up into
your own customized assertion superclass and use it whenever you want. See rec-
ipe 17.4, “Extract a custom assertion,” for a discussion of customized assertions.

Watch your assertions
Be careful with your assertions about the exception you expect to throw: if you
verify the exception object too closely, you may introduce overly strong coupling
between the tests and the production code. The resulting test is more brittle than
it needs to be.12 Consider what happens if the exception message is meant to be
displayed to an end user, and you write an assertion that checks that message
directly. Typically, you will write a test that resembles the following:

public void testNameNotEntered() {
 try {
 login("", "password");
 fail("User logged in without a user name!");
 }
 catch (MissingEntryException expected) {
 assertEquals("userName", expected.getEntryName());
 assertEquals(
 "Please enter a user name and try again.",
 expected.getMessage());
 }
}

This test is clear: if a user attempts to log in without providing a user name, then
login throws a MissingEntryException including both a name for the missing
entry and a message suitable to present to the end user. This appears to be good
cohesion: the exception object contains simplified exception data for you to use as
well as a user-readable message. This looks like everything that the object could need.

While the first assertion in the catch block is a good idea, we have reservations
about the second. Although the name userName is internal to the program and
part of its behavior, the user-readable message could change at any time without
affecting the way the login feature is implemented. In short, if userName changes,
then the test likely needs to change; however, the test likely does not need to
change in response to a change in the user-readable message. As the test is written
now, a change to either requires a change in the test.

In this case, we recommend removing the second assertion and keeping the
first. It is a general design goal to keep user-readable messages separate from the

12 For example, you may rewrite assertThrows(), changing the “expected exception class” parameter
to an “expected exception object” parameter, which is a stronger assertion—perhaps too strong.

61Let collections compare themselves
internals of an object’s behavior. You can always test an exception message by sim-
ply instantiating the exception and checking the return value of toString() or
getMessage(). There is no need to actually throw the exception to test this aspect
of the exception class’s behavior.

◆ Related

■ 17.4—Extract a custom assertion

■ Jeff Langr, Essential Java Style: Patterns for Implementation, Prentice Hall PTR,
1999

■ Jakarta Commons project (http://jakarta.apache.org)

2.9 Let collections compare themselves

◆ Problem

You want to verify the contents of a collection. Your first instinct is to check for
the items you expect, one by one. You are wondering if there is an easier way.

◆ Background

If you are new to JUnit, then it’s also possible that you are also new to Java. We
have seen this more recently, particularly as high schools, colleges, and universi-
ties begin using JUnit in their Introduction to Java courses. We think this is a pos-
itive development, as we firmly believe in learning a programming language by
writing tests. In particular, some of the most elementary aspects of a new language
can be strange: printing output to a console or executing the entry point of an
application. Doing these things in Smalltalk or using the Microsoft Foundation
Classes application framework is not straightforward at all, but the xUnit test run-
ners are the same, whatever language you use.13 If you are new to Java, then you
may not be familiar with how to ask objects to compare themselves with one
another, and so you may have concluded that item-by-item comparison is the only
way to verify the contents of a collection. There is a simpler way.

◆ Recipe

Build a collection from the items you expect—possibly in the order in which you
expect them—and then compare that collection to the collection you get (from a
method, most frequently) using assertEquals(). Let the corresponding implementation

13 See www.xprogramming.com/software.htm for a list of languages and environments that have an imple-
mentation of the xUnit testing framework.

62 CHAPTER 2

Elementary tests
of equals() determine whether the collections are equal. We provide an example
of this technique in the introduction to this chapter, so now to help you use this
approach in your tests, we summarize the behavior of the equals() method for the
various collection classes. See table 2.1.

It is a simple matter to compare collections then, as long as you compare collections
“of the same kind.” For sample code, refer to the introduction to this chapter,
which includes examples of comparing List objects for equality using assert-
Equals().

◆ Discussion

If you have two collections stored as Lists, but you’d like to compare them with-
out regard to the order of their elements, then you have several options, depend-
ing on the nature of the Lists. If you know the Lists do not contain multiple
copies of the same element, then simply convert the Lists to Sets and compare
the resulting Sets. This is as simple as assertEquals(new HashSet (expectedList),
new HashSet(actualList)).

If, however, the Lists might contain multiple copies of the same element, you
need to be sure that the corresponding number of copies is the same for each ele-
ment. You could build a custom assertion method yourself or use GSBase’s
BaseTestCase, which includes the method assertCollectionsEqual(). This method
compares the two collections as though they were “unindexed” Lists: two collec-

Table 2.1 The behavior of equals() for each type of Collection

Kind of collection Behavior of equals()

List Two lists are “equal” if they contain the same elements, each at the correspond-
ing index in the list. It does not matter whether the implementations of the List
interface are the same. An ArrayList and a LinkedList that have these
properties are equal.

Set Two sets are “equal” if they contain the same elements. It does not matter
whether the implementations of the Set interface are the same. A HashSet
and TreeSet having this property are equal.

Map Two maps are “equal” if their “key sets” are equal and each key maps to the
same value in both maps. It does not matter whether the implementations of the
Map interface are the same. A HashMap and a TreeMap having these properties
are equal.

Collection Two collections are “equal” if they are the same kind of collection (List,
Set, Map) and are equal when treated as the corresponding kind of collection.
A List is not equal to a Set, even if they contain the same elements.

63Test a big object for equality
tions are equal if they contain the same number of copies of the same elements,
even if in a different order. GSBase effectively compares unordered views of the
two collections. This method is invaluable, but if you prefer a more object-
oriented approach, then you need a new collection that encapsulates an unor-
dered view of a List.

We usually call this kind of collection a Bag. A Bag is a collection of elements
that is unindexed but allows multiple copies of the same element. Some call this
collection a Multiset. Two Bags are equal if they contain the same number of cop-
ies of the same elements, so the equals() method should be implemented to
reflect this desired behavior. You could implement this collection class yourself or
search for implementations of it on the Web. You can think of GSBase’s assert-
CollectionsEqual() as the equals() method for an emerging Bag class or inter-
face. Likely the only reason GSBase does not provide a full-on implementation of
Bag is that its creator, Mike Bowler, has not yet needed one. If you do, then consider
submitting a patch to GSBase—but be sure your patch is fully tested with JUnit!

◆ Related

■ GSBase (http://gsbase.sourceforge.net)

2.10 Test a big object for equality

◆ Problem

You have a Value Object with many (say more than six) key properties.14 You have
tried writing a test with EqualsTester or EqualsHashCodeTestCase, but that test
seems inadequate.

◆ Background

GSBase’s EqualsTester (see recipe 2.1, “Test your equals method”) takes four
parameters: two objects that ought to be different (not the same object) but
equal, a third object that ought not to be equal to the first, and a fourth object—a
subclass of the first object’s class—that also ought not to be equal to the first.
While this is effective for most business purposes, you may need a more thorough
test, with n+3 objects: two that are equal, n that are different from those two and
the last one which is a subclass. Here, n is the number of key properties in your

14 By key properties we mean those properties of a Value Object for which different values mean the objects
are no longer equal. The concept is analogous to the object’s primary key if it were a row in a database.

64 CHAPTER 2

Elementary tests
Value Object class. The EqualsHashCodeTestCase found in JUnit-addons suffers
the same problem, because it only operates on two unequal instances of your Value
Object class.

◆ Recipe

It sounds like we need to generalize the equals testing concept to operate on an
arbitrary collection of objects that ought not to be equal from the “control
object.” To that end we have added this testing utility to Diasparsoft Toolkit under
the name ValueObjectEqualsTest. The central algorithm has been shamelessly
taken from JUnit-addons, with permission of course, and generalized to check
each different way that a Value Object can be different from another. First, let us
look at how to use ValueObjectEqualsTest. You can find an example—albeit a
stultifyingly abstract and meaningless one15—in listing 2.9. After you subclass Val-
ueObjectEqualsTest, you implement three methods.

package com.diasparsoftware.java.lang.test;

import java.util.*;

import com.diasparsoftware.util.junit.ValueObjectEqualsTest;

public class ValueObjectEqualsTestFivePropertiesTest
 extends ValueObjectEqualsTest {

 protected List keyPropertyNames() {
 return Arrays.asList(
 new String[] { "key1", "key2", "key3", "key4", "key5" });
 }

 protected Object createControlInstance() throws Exception {
 return new FiveKeys(1, 2, 3, 4, 5);
 }

 protected Object createInstanceDiffersIn(String keyPropertyName)
 throws Exception {

 if ("key1".equals(keyPropertyName))
 return new FiveKeys(6, 2, 3, 4, 5);
 else if ("key2".equals(keyPropertyName))
 return new FiveKeys(1, 6, 3, 4, 5);
 else if ("key3".equals(keyPropertyName))
 return new FiveKeys(1, 2, 6, 4, 5);

15 Sorry about that.

Listing 2.9 Using ValueObjectEqualsTest with five key properties

The names of the key properties

Each object is different
from the control in the
value of that key property

65Test a big object for equality
 else if ("key4".equals(keyPropertyName))
 return new FiveKeys(1, 2, 3, 6, 5);
 else if ("key5".equals(keyPropertyName))
 return new FiveKeys(1, 2, 3, 4, 6);

 return null;
 }
}

Each value object is defined by a set of key properties, the properties that make two
instances of the value object unequal. It is common for all the properties of a
value object to be its key properties, but it is not necessary. To provide the equals
test with the names of those properties, implement keyPropertyNames(), to return
a list of the key property names. The order in which you return them is not impor-
tant. We arbitrarily decided to return them in alphabetical order.

Just like EqualsHashCodeTestCase, you need to define a “control” instance: the
object against which the others will be compared for equality. Implement create-
ControlInstance() to return a new object each time. Which object you decide to
return is arbitrary, but that choice dictates how you implement the remaining
required method. We chose the sample values 1, 2, 3, 4, and 5 for our control
object.

Just like EqualsHashCodeTestCase, you need to implement the last method to
return objects that are different from the control object. When you implement
createInstanceDiffersBy(String keyPropertyName), you must return an object
that differs from the control object in the specified key property. In our example,
when the test asks for an instance that differs in the key1 property, we return the
values 6, 2, 3, 4, 5, where the first key (key1, get it?) is different from the first key
of the control object. From there, we imagine you see the pattern.

◆ Discussion

If you want your equals test to verify more than just a few simple cases, you can
build a Parameterized Test Case (see recipe 4.8, “Build a data-driven test suite”)
from scratch, in which each test accepts three parameters: two objects and a bool-
ean flag to indicate whether the parameters ought to be equal. The resulting test
defines equals() using the technique known as specification by example. You specify
how equals() ought to behave purely through examples: each saying, “This object
and that object should be equal, but this object and that object over there should
not be equal.” If you provide enough examples, you eventually arrive at a point
where only a few sensible implementations of equals() work, of which any one is

66 CHAPTER 2

Elementary tests
likely suitable. Any time the equals() method returns the wrong value, you can
determine which objects uncovered the defect and add them to the test to pre-
vent those problems from recurring.

◆ Related

■ 2.1—Test your equals method

■ 4.8—Build a data-driven test suite

2.11 Test an object that instantiates other objects

◆ Problem

You want to test an object in isolation, but it instantiates other objects that make
testing difficult or expensive.

◆ Background

There are opposing forces in object-oriented design. We use aggregation to express
the notion that an object owns another object to which it refers, much the way a
car owns its wheels. On the other hand, to test an object in isolation, we need to
be able to piece objects together like a jigsaw puzzle. This means that tests prefer
objects that use composition more than aggregation. If the object you want to test
instantiates other objects, then it is difficult to test the larger object without rely-
ing on the correctness of the smaller object, and that violates the principle of test-
ing objects in isolation.

We find it unfortunate that a majority of programmers remain in the dark
about the power of extensive Programmer Testing. One side effect of this trend is
an overuse of aggregation. Designs are replete with objects that instantiate other
objects or retrieve objects from globally accessible locations. These programming
practices, when left unchecked, lead to highly coupled designs that are difficult to
test. We know: we have inherited them and even built some of them ourselves.
This recipe introduces one of the fundamental testing techniques leading to a
small design improvement, making it possible to test an object in isolation.

◆ Recipe

To deal with this problem, you need to pass the object under test an alternate
implementation of the object it plans to instantiate. This creates two small prob-
lems that you need to solve:

67Test an object that instantiates other objects
■ How do you create an alternate implementation of this object’s collaborator?

■ How do you pass it in to the object?

To simplify the discussion, we will use the term Test Object (not to be confused with
Object Test—sorry about that) to refer to an alternate implementation of a class
or interface that you use for testing. There are a number of different kinds of Test
Objects: fakes, stubs, and mocks, and we discuss the differences in the essay “The
mock objects landscape” in appendix B.

Creating a Test Object out of an interface is simple: just create a new class and
implement the interface the simplest way you can, and you have finished. This is
the simplest kind of Test Object. We use EasyMock (www.easymock.org/) through-
out this book to generate Test Objects for interfaces.16 We use this package both
because it eliminates some repetitive work and because it adds some consistency
and uniformity to the way we fake out interfaces. This makes our tests easier to
understand—at least to programmers familiar with EasyMock! You can find
numerous examples of using EasyMock to create Test Objects out of the J2EE
interfaces in part 2.

Creating a Test Object out of a class can be as simple as creating a subclass and
then either faking out or stubbing out all its methods.17 A fake method returns
some predictable, meaningful, hard-coded value, whereas a stub method does
nothing meaningful—only what is required to compile. You may find it advanta-
geous to extract an interface [Refactoring, 341] and change the class under test
so that it refers to its collaborator through an interface, rather than the class. This
allows you to use EasyMock as we described previously. Beyond that, the more your
classes collaborate with one another through interfaces, the more flexible (and
testable!) your design.

As for the second part of the problem, there are essentially two ways to pass your
Test Object into the object under test: either augment the constructor or add a set-
ter method. We recommend passing Test Objects into the constructor simply to
avoid the extra complexity of having to invoke the setter method in the test. To
illustrate this technique, take the example from J. B.’s article “Use Your Singletons
Wisely.”18 In it, a Deployment uses a Deployer to deploy something to a file. In the

16 Had we written this chapter a few months later, we would have been using jMock (http://jmock.code-
haus.org/), but that is the risk you take when writing a book.

17 Again, jMock makes this easier using CGLib (http://cglib.sourceforge.net/). Through bytecode
manipulation, you can fake concrete classes as easily as interfaces.

18 www-106.ibm.com/developerworks/webservices/library/co-single.html.

68 CHAPTER 2

Elementary tests
example, there only needs to be one Deployer, so it is easily designed as a Single-
ton. (See recipe 14.3, “Test a Singleton,” for more on testing and Singletons.) The
method Deployment.deploy(), then, looks as follows:

public class Deployment {
 public void deploy(File targetFile) throws FileNotFoundException {
 Deployer.getInstance().deploy(this, targetFile);
 }
}

Notice that Deployment uses the class-level method Deployer.getInstance() to
obtain its Deployer. If you want to fake out the Deployer, you need to pass a
Deployer into Deployment somehow. We recommend passing it in through a con-
structor, so we add a constructor and instance variable to store the Deployer:

public class Deployment {
 private Deployer deployer;

 public Deployment(Deployer deployer) {
 this.deployer = deployer;
 }

 public void deploy(File targetFile) throws FileNotFoundException {
 deployer.deploy(this, targetFile);
 }
}

But wait! Where did Deployer.getInstance() go? We cannot just lose this bit of
code: now that we have removed the no-argument constructor, we need to add a
new one and have it supply the Singleton Deployer by default:

public class Deployment {
 private Deployer deployer;

 public Deployment() {
 this(Deployer.getInstance());
 }

 public Deployment(Deployer deployer) {
 this.deployer = deployer;
 }

 public void deploy(File targetFile) {
 deployer.deploy(this, targetFile);
 }
}

Now when the production code creates a Deployment using the no-argument con-
structor, it will see the behavior it has come to expect: the Deployment will use the
Singleton Deployer. Our tests, however, can substitute a fake Deployer in order to

69Test an object that instantiates other objects
do things such as simulate what happens if the target deployment file does not
exist. Here is the code for a “crash test dummy” Deployer—one that always signals
that the target file does not exist:

public class FileNotFoundDeployer extends Deployer {
 public void deploy(Deployment deployment, File targetFile)
 throws FileNotFoundException {

 throw new FileNotFoundException(targetFile.getPath());
 }
}

Now we can test how our Deployment class behaves when the Deployer fails to
deploy because the target file was not found. We use the technique in recipe 2.8,
“Test throwing the right exception”:

public void testTargetFileNotFound() throws Exception {
 Deployer fileNotFoundDeployer = new FileNotFoundDeployer();
 Deployment deployment = new Deployment(fileNotFoundDeployer);

 try {
 deployment.deploy(new File("hello"));
 fail("Found target file?!");
 }
 catch (FileNotFoundException expected) {
 assertEquals("hello", expected.getMessage());
 }
}

This test shows how to substitute a Test Object in place of an object’s collaborator, as
well as how to create a Test Object by subclassing the production class. We effectively
make the collaborator an optional parameter to the constructor: if we do not pro-
vide one, then the class provides a sensible default implementation. We use this tech-
nique and variations of it throughout the book and indeed throughout our work.

◆ Discussion

We have used a Test Object to simulate not being able to find the target file,
rather than re-creating that scenario, which would involve trying to deploy to a real
nonexistent file on the file system. We strongly recommend simulating these con-
ditions, because re-creating them can be prone to error. What happens if you
specify a Windows filename for your nonexistent file, and then someone executes
the test on a UNIX machine? On the UNIX file system, your Windows filename
may not even be a valid filename. Worse, what if you happen to choose a “nonex-
istent” filename that matches a file residing on someone’s machine? You could use
JVM properties to look for the machine’s temporary directory, but all in all it is
simpler to simulate the error condition than re-create it.

70 CHAPTER 2

Elementary tests
Faking out class-level and global data and methods is difficult, because you can-
not override a class-level method by subclassing; and even if you could, code that
uses a class-level method hard-codes the name of the class, defeating your attempt
to substitute behavior through subclassing. There is considerable discussion in
the JUnit and Test-Driven Development communities regarding the use of class-
level methods and how to overcome their use in creating testable designs. The
consensus is that it is best to minimize the use of class-level methods by moving
them into new classes and making them instance level, at least when it makes
sense. There are several coping strategies, including hiding class-level methods
behind a facade that makes these methods look like they are instance level. These
all require considerable and mechanical refactoring, generally done without the
safety net of tests! Fortunately, Chad Woolley has begun building a toolkit that
uses aspects to make it possible to fake out even class-level methods.19

His toolkit, named Virtual Mock (www.virtualmock.org/), promises to provide
an easier way to build the refactoring safety net that you need to repair highly cou-
pled designs—particularly those that make heavy use of class-level methods and
data. Although still in the alpha stage as we write these words, Chad’s work is
exciting, and we recommend that you add Virtual Mock to your arsenal for the
next time you inherit such a design. That said, we strongly recommend using Vir-
tual Mock objects to install a safety net for refactoring; do not use it to cover up
the bad smells in your design, but rather let it enable you to start cleaning it up.20

◆ Related

■ 2.8—Test throwing the right exception

■ 14.3—Test a Singleton

■ B.4—The mock objects landscape

■ The Virtual Mock project (www.virtualmock.org)

19 www.parc.xerox.com/aop.
20 Martin Fowler popularized the use of the term smell for something about a program that we don’t like.

We now commonly say that code smells, or design smells, or the process smells, to indicate that some-
thing is not quite right.

Organizing and
building JUnit tests
This chapter covers
■ Deciding where to place production code

and test code
■ Dealing with duplicate test code
■ Organizing special case tests
■ Building tests in various development

environments
71

72 CHAPTER 3

Organizing and building JUnit tests
Once you understand the fundamentals of writing JUnit tests, the next step is to
begin writing them. Once you open your favorite Java editor and begin writing
test code, you need to decide into which package you should place the test code.
Although this decision seems simple enough, there is a considerable difference
between placing your test code in the same package as your production code1 or
in a different package. For that reason, we offer a few recipes to help you decide
which to do.

After deciding on a package for your tests, you can only type two words (public
class) before you come to the class name of your new test. At this point you need
to decide how to organize your tests into test case classes. Many tutorials on JUnit
suggest writing one TestCase class per production class; however, those authors
generally mean that to be a simple guideline for programmers just starting out. As
you write your tests, the names you choose can tell you when it may be time to
move tests into a new fixture. We provide a few recipes that describe when to reor-
ganize your test code.

In order to execute your new test, you need to save your new source file. You
need to decide whether to separate your test source code from your production
source code. Some programming environments support multiple source trees quite
easily, others do not. We offer some recipes that suggest how to keep from mixing
up your tests and your production code.

Before you can execute your test, you need to build the new test class, which
brings into question how to organize your build tree. You may need or want to
keep your tests entirely separated from your production code, or you may decide
to distribute your tests. To help you decide, we offer some recipes that describe
each, including when each choice might be particularly desirable.

A place to start

Before diving into the recipes in this chapter, let us review the simplest and most
straightforward way to organize your tests. When you are ready to start writing
tests, begin by creating a new test case class that corresponds to the class you plan
to test. This guideline applies both to existing production classes and to produc-
tion classes you are “test driving.” Following our previous advice for naming test
case classes (see chapter 1, “Fundamentals”), add Test to the end of the produc-
tion class name to get your test case class name. Continuing with our example,

1 We will use the terms production code and test code to differentiate the code that implements your system
from the code that tests your system.

73Organizing and building JUnit tests
you place your first tests for the Money class in a new test case class named Money-
Test. To simplify things further, place this test alongside class Money, in the same
package and in the same source code directory.

The simplest way to start is to write each test for Money as a method in Money-
Test. If your first test verifies that the default constructor sets the underlying
Money value to $0.00, then you should have something that resembles listing 3.1.

package junit.cookbook.organizing;

import junit.framework.TestCase;

public class MoneyTest extends TestCase {
 public void testDefaultAmount() {
 Money defaultMoney = new Money();
 assertEquals(0, defaultMoney.inCents());
 }
}

As you think of more tests for Money, write each one as a new method in Money-
Test. Remember to name your methods starting with “test” so that the JUnit test
runners automatically execute them. Eventually you will find that a number of
tests use the same objects—that is, objects initialized to the same state. When you
see this begin to happen, you may end up with duplicated code within your tests.
We recommend removing that duplication by creating a test fixture (see recipe 3.4,
“Factor out a test fixture”). As you build up fixtures inside your TestCase class, you
may find that certain tests use one part of the fixture and other tests use another
part of the fixture. This may signal the need to separate your tests into different
TestCase classes. Over time, the new test fixtures begin to arrange themselves—as
if by magic—into a TestCase hierarchy. See recipe 3.5, “Factor out a test fixture
hierarchy,” for details on how to factor out the common parts of existing test fix-
tures into a kind of “superfixture.” At some point, you may decide that you need
to separate the test source code from the production source code, either to sim-
plify distributing your application or even just to keep the tests from “muddling
up” your production code. See recipe 3.2, “Create a separate source tree for test
code,” for details.

The recipes in this chapter help you organize and build your tests effectively,
using best practices acquired over the years through hard experience. We cannot
cover all possible—or even feasible—approaches, but we have shared what has
worked well for us.

Listing 3.1 Simple Money test

74 CHAPTER 3

Organizing and building JUnit tests
3.1 Place test classes in the same package as production code

◆ Problem

You either do not wish to, or cannot, place test classes in a separate package from
the production code under test.

◆ Background

Many Test-Driven Development practitioners prefer to place their test classes in a
separate package from their production code, as this practice tends to improve
the production system’s design over time. We like this practice, and this is our
default mode of operation. This is easy enough to do when writing tests for code
not yet written, but less so when writing tests for existing code.

We are not often fortunate enough to work on greenfield projects where we are
building new components or systems from the ground up. For the most part, we
are called in to either add features to or fix systems already in production, and in
spite of JUnit’s increasing popularity, it remains less common to join a project
that uses JUnit than it is to join a project not using JUnit.2 If you have inherited
code with inadequate tests and your job is to add those tests, then you may not be
able to place your test classes where you like.

The majority of systems in production are not designed to be easy to test. We
don’t mean that the programmers intentionally made testing difficult—although
in some cases that wouldn’t surprise us—but that most programmers are not
aware of the need to design testable systems. There are a number of reasons why
this is so, and contrary to what some might believe, programmer incompetence is
low on the list.3 A programmer can easily execute “tests” by hand using breakpoints,
the debugger, and her eyes. If you are reading this book, then you obviously want
to go beyond this primitive form of testing and are beginning to write tests for
your inherited code using JUnit. Pretty soon, if you haven’t done so already, you
will attempt to write an assertion and realize that you have no way to talk to the
object that knows whether your assertion passes or fails. Something has to give.

2 When the day comes that this statement is no longer true, we hope someone lets us know, in case we
miss it. We may well have lost some of our mental faculties by then, but we hold out hope.

3 Although we prefer not to offend anyone, we tactfully point out that lack of focus on testing is the num-
ber one reason why programmers build difficult-to-test systems. That focus generally needs to come
“from above.”

75Place test classes in the same
package as production code
◆ Recipe

When you write a test class, simply place it in the same package as the production
code you plan to test. Your test will have access to all but the private parts of the
production class’s interface, allowing you to write tests for behavior that would
otherwise remain hidden from you.

◆ Discussion

We prefer not to place test classes in the same package as the code they test,
because the resulting tests tend to be brittle. That is, small changes in the produc-
tion code affect an unexpectedly large number of tests. In particular, purely struc-
tural changes to the production code can lead to changes in the tests, even
though the simplest tests to write are the ones that depend only on the observable
behavior of the code under test! Purely structural changes include the following:

■ Renaming a method that client classes use indirectly by calling other meth-
ods (the method being renamed has protected or package-level visibility)

■ Changing the method signature (parameters, return type) of such an indi-
rectly called method

■ Extracting a number of indirectly called methods into a new “helper” class

In many cases, we choose to perform these refactorings to improve the code.
Renaming the method may better reveal its intent or, at a minimum, replace a
nonsensical or abbreviated name with a name programmers can more easily
understand. Changing the method signature may remove unnecessary parameters
or replace difficult-to-understand parameters—such as boolean flags4—with more
easily understood parameters (such as symbolic constants). Extracting a number
of methods into a new class generally simplifies any design by reducing the num-
ber of responsibilities per class, a technique we use to simplify naming certain
tests, as you will see in recipe 3.4. Tests that impede refactoring increase costs in a
number of ways:

■ You waste time performing the current refactoring.

■ Your annoyance at the current refactoring discourages you from performing
future refactorings.

■ “Ugly” code leads to “ugly” tests.

4 In Java, C, or Ruby, where parameters are matched by their position in the parameter list, it is impossible
to understand from the call site what getTreeCellRendererComponent(myJTree, aValue, true,
false, true, 0, false) means!

76 CHAPTER 3

Organizing and building JUnit tests
Although the first problem is evident, the second is subtler and potentially more
damaging. The goal of refactoring is to improve the system’s design incrementally
over time to reduce future costs. Refactoring does this by adding features, fixing
defects, and training others to navigate the code. Refactoring the design incre-
mentally on an ongoing basis tends to go against human nature. This slow,
methodical refactoring requires a certain level of discipline that not all of us have
(or, at the very least, not all of us can maintain over time), so you need to avoid
any situation that encourages you to abandon your discipline. Brittle, overly depen-
dent tests are an excellent way to discourage ongoing refactoring, so any practice
that naturally leads to brittle tests is to be used with caution. This is why we
strongly recommend placing tests in a separate package from the production
code (see recipe 3.3 for details). If you decide to place your test code in the same
package as your production code, then consider whether to move the test source
code into a separate directory structure, as this provides some of the benefits of a
separate test package. We cover this technique in recipe 3.2.

The last problem is perhaps the worst, as it is a positive feedback loop of nega-
tive feelings. Poorly factored code is difficult to test. The tests we do write for such
code are usually poorly factored themselves. Both the production code and the
test code are brittle, difficult to read, and costly to maintain. If you just keep adding
production code and test code without refactoring any of it, then both become
progressively worse, taking more and more time and effort to develop. Eventually,
usually sooner than you realize, the most cost-effective strategy is to stop trying,
rip it all out, and start over. It is better to deal with the problem now, while it is fresh
in your mind, than later when you are under more pressure and have forgotten what
to do. Any small technique that can help you avoid this situation is worth trying.

Although we recommend against it, we recognize the reasons why you may
need to place tests in the same package as the production code. One particular
situation involves wanting to test a protected method before making it public. In
this case, we recommend that you use this as a starting point from which you
slowly refactor the production code to allow all your tests to compile using only
the production code’s collective public interface. If you undertake this task, get
some coffee, grab your copy of Refactoring, and, above all, take your time. It’s not
easy, but it’s usually worth it, even if you only refactor a little at a time.

◆ Related

■ 3.2—Create a separate source tree for test code

■ 3.3—Separate test packages from production code packages

■ 3.4—Factor out a test fixture

77Create a separate
source tree for test code
3.2 Create a separate source tree for test code

◆ Problem
You want to be able to easily distribute your production code separately from your
test code. You would also prefer not to confuse yourself or others by mixing up
test code with production code.

◆ Background
Although we wish that programmers would ship their test code, it is still the norm
to distribute production code without the corresponding tests. For good or for ill,
more projects operate this way, either by choice or by corporate decree. You have
decided that you need your test classes to be built to a separate part of the file sys-
tem from your production classes. If you have tried targeting two build trees from
the same source tree, then you know that it is at best confusing and at worst
impossible to comprehend. If you have not tried to do it, then save yourself some
brain cells: read this recipe rather than trying it yourself.

◆ Recipe
Choose two different parts of your file system: one for your production source
code and another for your test source code. Also choose two different parts of the
file system as build targets for each source tree. One common way to do this is to
have two different directories inside your workspace (the part of the file system to
which you check out the project on which you’re working).5 Although the names
vary from project to project, here are the basic steps:

1 Create directories called source/production for the production source
code and source/test for the test source code.

2 Configure your build mechanism (Ant, simple script, whatever you have) to
build the directory source/production into a directory called classes/pro-
duction and the directory source/test into a directory called classes/test.

3 When running your tests, you need both classes/production and classes/
test in your test runner’s class path; however, when running the system
itself, ignore the test classes directory.

4 When distributing your production code, simply package the directory
classes/production, along with whatever accompanying documentation
you might provide.

5 You are using a version control system such as CVS, right?

78 CHAPTER 3

Organizing and building JUnit tests
Organizing your source code this way makes it very easy to ignore the tests—both
source and classes—whenever you need to distribute the production code. Even
so, to bundle the tests along with the production code, simply package an extra
directory structure. You have the flexibility of choosing either one without incur-
ring much cost at all. Although you may make your project build slightly more
complex, it is still quite manageable. See the rest of this chapter for other recom-
mendations when building your tests.

◆ Discussion

You may wonder what tangible benefits there are to gain from adding a layer of
complexity to your development environment. We can think of two, although
there are others. Project managers may be interested in monitoring the ratio of
test code to production code to identify whether the team is roughly writing the
proper amount of programmer test code. The “sweet spot” tends to be in the
neighborhood of 1:1, although in some cases 5:4 (five lines of test code for four
lines of production code) is appropriate. Less test code means the team has a false
sense of security about the degree to which the tests provide a refactoring safety
net. More test code may indicate that the team is spending too much effort writ-
ing tests, although this is often a good problem to have.6 In addition to making it
easier for project managers to count test code separately from production code, it
is easier for those installing the product to decide whether to remove the tests
from their installation. Imagine that you could install the product with its tests,
execute those tests on the target platform to verify the installation, and then
remove or archive the tests to save disk space. That would be nice for your customers.
You gain these benefits and more, just from separating test source code from pro-
duction source code during development. It sounds like a good trade-off to us!

It is increasingly common to see projects using full-featured Java IDEs rather than
the command line and a trusty text editor such as jEdit (www.jedit.org). Since the
open source Eclipse project became established, it is now possible to obtain an
excellent Java IDE without paying for licenses, making it easier for programmers to
manage their project resources. The majority of these IDEs organize resources into
projects consisting of a directory containing source files, built classes, documents—
whatever resources you need to write, build, and distribute code. It is natural, then,
to place tests in their own projects to keep them separate from their production

6 The more experienced the team is with programmer testing, the more you ought to pay attention to
writing “too much” test code—it could be a sign that the team is stalling, unsure which features to imple-
ment. They might need extra direction, including more customer tests.

79Separate test packages
from production code packages
code. (But not too far away. The further away the tests are, the more easily people
will forget they are there!)

If you are (or plan to become) a practitioner of Test-Driven Development, you
will write a number of different kinds of tests for your production code: Object
Tests, Integration Tests, Customer Tests, End-to-End Tests, Database Tests, and so
on. Create a different project in your IDE for each kind of test you plan to write.
Name each test project after both the name of the project containing the code
under test and the kind of test you plan to put into the project. For an online
banking application, you might have Online Banking Model Programmer Tests
and Online Banking Customer Tests, among others. This further separation
makes it easier to run certain subsets of your tests, particularly for the End-to-End
Tests that tend to run more slowly than your Programmer Tests. Using the IDE to
divide code into projects provides a natural and simple way to separate test code from
production code. See recipe 4.6, “Separate the different kinds of test suites.”

◆ Related

■ 3.1—Place test classes in the same package as production code

■ 3.3—Separate test packages from production code packages

■ 4.6—Separate the different kinds of test suites

3.3 Separate test packages from production code packages

◆ Problem

You do not want your tests to have intimate knowledge of the classes under test.
You find it difficult to navigate your source tree because the production classes
are interspersed with test classes.

◆ Background

The easiest way to organize your tests is to place them directly alongside your pro-
duction code, in the same package and source tree. If you do this, all the code you
need to compile is in one directory structure, simplifying your build process. Tak-
ing this approach also ensures that you build your tests at the same time that you
build your production code, avoiding an entire set of problems. This seems fine
until you begin (or someone else working on the same project begins) to write
tests that “know too much” about the implementation of the code they are meant
to test. This trap is easy to fall into, because the compiler does not complain when

80 CHAPTER 3

Organizing and building JUnit tests
you do this. You have this problem if, as you refactor the production code, you
find yourself continually changing these tests, even in response to purely internal
changes upon which no other class should depend. This is not only a waste of
time but also a source of frustration, and it flies in the face of the object-oriented
principle of encapsulation. You need a way to improve the situation so that the
tests do not have too much access to the production code.

◆ Recipe

We recommend placing your tests in a different package than the production
code under test. This way, the compiler detects any attempt by the tests to use the
non-public parts of the classes under test, forcing the tests to use only those parts
of the production code intended to be exposed to the outside world.

Placing your tests in a separate package from the production code creates a test
package hierarchy. This hierarchy should mimic your production code package
hierarchy: create one test package for each production code package so that the
test package tree has the same shape as the production code package tree.

Assuming you apply this technique, the last details to consider are how to name
your test packages and where to place them. There are two prevailing conventions:

■ For each production code package, add the subpackage test to the end of
the production code package name to get the name of the corresponding
test package. To test the Java collections framework, you create a test pack-
age named java.util.test.

■ Create a top-level package named test, and then place all test packages
inside this top-level package, with each test package otherwise named the
same as the corresponding production code package. To test the Java I/O
libraries, you create a test package named test.java.io.

As with most naming conventions, it matters little which you choose, so long as
everyone on the project applies it consistently.

◆ Discussion

It is interesting to see what happens when you place your tests in a different pack-
age than your production code. As a result, your tests are forced to use the code
under test through its public methods. The jury is still out whether using “out-
sider” tests leads to better or worse designs—there are arguments to support each
point of view—but there is one simple argument in its favor. When you test code
only through public methods, the tests better reflect the way that clients use that

81Separate test packages
from production code packages
code, which helps identify significant design problems—ones that will actually
affect the way others use the code.7

As you begin testing behavior, rather than methods, your design will tend to
show certain characteristics. In particular, there will be a public method for each
operation, representing an “entry point” for exercising the behavior. For a collec-
tion, these operations include add() and remove(). Behind this public method
there may be non-public methods that the former invokes to help do its work. For
a collection, these “helpers” may include resizing a dynamically sized collection
when the underlying data structure runs out of space. This is part of the add()
behavior but not necessarily a method you expect the outside world to invoke.
Typically, you extract blocks of code and place them in private methods. There
will come a time during the testing of a complex bit of behavior that you will want
to test one of those private methods on its own.

If you want to write a test for that private method, the design may be telling
you that the method does something more interesting than merely helping out
the rest of that class’s public interface. Whatever that helper method does, it is
complex enough to warrant its own test, so perhaps what you really have is a
method that belongs on another class—a collaborator of the first. If you extract
the smaller class from the larger one, the helper method you want to test becomes
part of the newly extracted class’s public interface, so it is now “out in the open”
and visible to the test you are trying to write. Moreover, by applying this refactor-
ing, you have taken a class that had (at least) two independent responsibilities and
split it into two classes, each with its own responsibility. This supports the Single
Responsibility Principle of object-oriented programming, as Bob Martin describes
it.8 You can conclude that having tests in a separate package helps separate
responsibilities effectively, improving the production system’s design.

On the other hand, it may be necessary to add methods to a class’s public inter-
face just for testing. Consider a class that acts as an event source. The typical Java
event/listener design implies that an event source has methods for registering and de-
registering listeners, usually called addBlahListener() and removeBlahListener(),
where Blah is the kind of event this event source generates. Typically there is no
way to query the event source for its event listeners, because only the event source
needs to know who might be listening for its events. In spite of this, you may want
to write a test that verifies that addBlahListener() correctly adds the BlahListener.

7 Thanks to Roger Cornejo for reminding us of this simple but salient point.
8 Robert C. Martin, Agile Software Development, Principles, Patterns, and Practices. Prentice-Hall, 2002.

82 CHAPTER 3

Organizing and building JUnit tests
At this point you have two options:

■ Your test adds the listener and then asks the event source, “Do you have the
listener I just added?”

■ Your test adds a Spy listener, asks the event source to generate an event, and
then verifies that your Spy listener “heard” the event.

Certainly the second option is much more complex than the first, a design trade-
off we discuss in recipe 14.5, “Test an Object Factory.” The first option, however,
requires adding a method such as containsBlahListener() that answers the ques-
tion, “Do you have this listener?” If your test were in the same package as the
event source, you could make the event source’s internal collection of listeners
protected or give them package-level visibility, allowing the test to query the col-
lection without polluting the public interface with a method that only the tests
need. You can conclude that having tests in a separate package weakens the pro-
duction system’s design.

Which is the right answer? As usual, there is no definitive right answer to this
question. Test-Driven Development practitioners typically argue that there is no
such thing as “just for testing,” but rather that having comprehensive tests is
important enough to warrant adding whatever methods are necessary to a class’s
public interface to make the class more testable. A testable design is usually a
good design. Still, if half a class’s public interface consists of methods that only the
tests use, then it is possible that another design problem is crying out to be solved.
Deciding whether this is the case requires judgment that typically comes only
from experience. In programming, as in life, practice makes perfect.

NOTE If you use IBM’s VisualAge for Java (VAJ), it may be necessary to place your
tests in a different package than your production code. If you want your
test code in a different project than your production code, then you must
place your tests in a different package, because VAJ does not support mul-
tiple projects containing packages with the same name. Unless you want
to place your tests and production code in the same VAJ project, write a
script to “strip out” the tests during packaging; you have no choice but to
move tests to a separate package.9

9 See http://c2.com/cgi/wiki?OrganizeJavaUnitTests.

83Factor out a test fixture
◆ Related

■ 3.1—Place test classes in the same package as production code

■ 14.5—Test an Object Factory

■ Robert C. Martin, Agile Software Development, Principles, Patterns, and Practices.
Prentice-Hall, 2002.

3.4 Factor out a test fixture

◆ Problem

You have written several tests for the same production class, and they contain
duplicate code. Knowing that duplication is the root of all evil in software, you
want to remove it.

◆ Background

One of the earliest patterns you see when writing tests for the same production
class is that the first few lines of each test look the same. Remember that each test
has three basic parts: create some objects, invoke some methods, check the
results. The second of these three is usually different for each test; deciding which
method to invoke usually identifies the test: “If I call the constructor with these
parameters, I expect that result; but if I pass null, then the constructor should
throw that kind of exception.” This is the kind of internal dialog—or external, if
you’re talking to a Pair Programming partner—that leads to the list of tests you
intend to write for a class. Duplication is possible here, but relatively uncommon.

The third part of the test, checking the result, depends entirely on the method
you invoke. If the tests invoke different methods, the expected results will also be
different. You normally only see duplication here if there is duplication in invok-
ing the method.

Creating the object, however, leads to the most duplication from test to test. It
is common to have many more methods on a class than constructors, so once you
write even a second test for your class, you run the risk of duplicating the “create
some objects” part of the first test, because you may well be calling the same con-
structor with the same parameters. Because this kind of duplication is so common,
it would be nice if JUnit had a built-in mechanism for eliminating it.

Kent Beck calls the objects under test a test fixture: a “configuration” of objects
whose behavior is easy to predict.10 Using Kent’s terms, the first part of a test—the

10 Kent Beck, “Simple Smalltalk Testing: With Patterns” (www.xprogramming.com/testfram.htm). This is
the original paper in which Kent describes SUnit, a Smalltalk-based predecessor to JUnit.

84 CHAPTER 3

Organizing and building JUnit tests
“create some objects” part—can be called “create a fixture.” The goal is to create
some objects and then initialize them to some known state so that you can predict
their responses to invoking methods on them.

◆ Recipe

Identify the duplicated test fixture code in your tests. Move that code into a new
method called setUp(). The resulting code may no longer compile because you
are now declaring variables in setUp() and then using them in your tests. Change
those variables into instance-level fields so that both setUp() and your tests can
refer to them. Because each test executes in its own instance of your test case class,
there is no need to worry about instance-level fields being set incorrectly from test
to test. When you execute your tests, the test runner invokes setUp() before each test.
Every other test you write in this test case class can use this common test setup.

To illustrate this technique, listing 3.2 shows three Money tests that use the same
Money object.

package junit.cookbook.organizing.test;

import junit.cookbook.util.Money;
import junit.framework.TestCase;

public class MoneyTest extends TestCase {
 public void testAdd() {
 Money addend = new Money(12, 50);
 Money augend = new Money(12, 50);
 Money sum = addend.add(augend);
 assertEquals(2500, sum.inCents());
 }

 public void testNegate() {
 Money money = new Money(12, 50);
 Money opposite = money.negate();
 assertEquals(-1250, opposite.inCents());
 }

 public void testRound() {
 Money money = new Money(12, 50);
 Money rounded = money.roundToNearestDollar();
 assertEquals(1300, rounded.inCents());
 }
}

Listing 3.2 MoneyTest before moving code into setUp()

85Factor out a test fixture
Notice that the first line of each of these three tests is almost identical. Each test
uses a Money object representing $12.50, so this object appears to be a candidate to
move into setUp(). Because testAdd() calls its object addend and the others call it
money, you first need to rename addend to money to make the first line in all three
tests identical. Then you can move that line into setUp(). Finally, change money
from a local variable to an instance-level field so that setUp() and the test meth-
ods can all use it. When you’ve finished, the code looks like listing 3.3, with the
new fixture code highlighted in bold print.

package junit.cookbook.organizing.test;

import junit.cookbook.util.Money;
import junit.framework.TestCase;

public class MoneyTest extends TestCase {
 private Money money;

 protected void setUp() throws Exception {
 money = new Money(12, 50);
 }

 public void testAdd() {
 Money augend = new Money(12, 50);
 Money sum = money.add(augend);
 assertEquals(2500, sum.inCents());
 }

 public void testNegate() {
 Money opposite = money.negate();
 assertEquals(-1250, opposite.inCents());
 }

 public void testRound() {
 Money rounded = money.roundToNearestDollar();
 assertEquals(1300, rounded.inCents());
 }
}

Each test now assumes that there is already a Money object called money with the
value $12.50. The test duplication has been removed.

◆ Discussion

JUnit provides direct support for test fixtures through two methods, setUp() and
tearDown(), found in junit.framework.TestCase. When you subclass TestCase,
you can override these methods to set up and tear down (clean up) the fixture for

Listing 3.3 MoneyTest after moving code into setUp()

86 CHAPTER 3

Organizing and building JUnit tests
each test. To see how JUnit uses these fixture methods, examine the source for
runBare(), another TestCase method:

public void runBare() throws Throwable {
 setUp();
 try {
 runTest();
 }
 finally {
 tearDown();
 }
}

When it is time to execute your test, the framework invokes runBare(), which sets
up your fixture, runs the test, and then tears down your fixture. Notice that by
placing tearDown() in a finally block, this method is guaranteed to be called
even if the test fails. This is particularly important to avoid the situation where
your test initializes some expensive, external resource and then is left unable to
clean up after itself. It may leave an open database connection, files on the file system,
or something on a network. Executing these tests repeatedly in a short time
period may exhaust system resources—yours or someone else’s. It is very impor-
tant for a test to tear down any fixture that it sets up. In our example, there was
nothing in our fixture to clean up: when the test finishes executing, the underly-
ing TestCase object simply goes out of scope and is ready to be garbage collected.
This is why we did not override tearDown(). By default—that is, in TestCase
itself—setUp() and tearDown() do nothing.

We would be remiss if we failed to mention one disadvantage to extracting
common setup code into a test fixture. The resulting tests use instance-level fields
that are initialized in another method, and this level of indirection introduces
extra steps for someone trying to read the tests. Rather than reading each test
method as a complete “story,” the programmer has to look at setUp(), the field
declarations, and the test. One of the benefits of implementing tests as methods is
that they are easy to read; however, extracting part of a test’s code into a different
method without leaving behind an explicit call to that method can bewilder the
programmer trying to read the test. We want to avoid hearing, “Where did these
objects come from?!” If you name the fields appropriately, then the test will com-
municate effectively. As always, names are important.

To counter this disadvantage, we feel that removing duplication ultimately
does more good than the harm that might be done by making the tests slightly
less easy to read. We argue that before long, the JUnit practitioner is trained to
remember that the framework invokes setUp() before each test and therefore

87Factor out a test fixture hierarchy
automatically looks for that method when reading a test for the first time. Also, if
the tests are sufficiently focused on a single behavior, then they tend to be short.
If the entire test case class fits on one screen, then perhaps it is not so much more
difficult to read than the alternative. As always, we recommend that you try both
techniques and decide which works better for you, your team, or your project.

◆ Related

■ 3.5—Factor out a test fixture hierarchy

■ 3.7—Move special case tests to a separate test fixture

■ 5.10—Set up your fixture once for the entire suite

3.5 Factor out a test fixture hierarchy

◆ Problem

You have multiple test fixtures that share some common objects. These objects
are duplicated in the various TestCase classes that implement your fixture. You
would like to reuse these objects, rather than duplicate them.

◆ Background

This problem arises most frequently when writing Customer Tests or End-to-End
Tests—that is, tests that target the entire system, rather than a single class. On occa-
sion, JUnit users—the ones who focus almost entirely on JUnit as a Test-Driven
Development tool—forget the programmers out there who are not Test-Driven
Development practitioners who nonetheless use JUnit because it provides an easy-
to-use Java framework for writing tests.11 We mention this because a Test-Driven
Development practitioner would say, “If you have such large fixtures, then your
tests are too large. Change your tests so that they focus on a smaller piece of the sys-
tem. If you do that, then your problem will go away.” They are right, but that
answer is like a typical mathematician’s answer: focused, accurate, and useless.12

If you can make your fixtures smaller or if you can identify parts of your fixture
that not all your tests actually share, then so much the better: we prefer a simpler
test case hierarchy to a more complex one. If you cannot make things any sim-
pler—or at least cannot see how to do it yet—then you should at least try to move

11 On occasion the authors themselves are guilty of this, although we are starting to catch on. There is hope.
12 It’s an old joke, and possibly not a good one, but the tradition must live on.

88 CHAPTER 3

Organizing and building JUnit tests
the common fixture to one place; and because you’re reading this recipe, that must
be what you want to do.

◆ Recipe

The secret to solving this problem is simple: even though you are writing tests,
those tests are still implemented by methods and objects, so treat them as meth-
ods and objects. One way to extract duplicate behavior in a group of classes
is to create a class hierarchy by applying the refactoring Extract Superclass
[Refactoring, 336]. In case you do not have Martin’s book handy, here is a step-by-
step approach:

1 Select two test case classes that have fixture code in common.

2 Create a new subclass of TestCase. This becomes the superclass for the test
case classes with overlapping test fixtures. In this recipe, we call this new
class BaseFixture, but you should name it something more meaningful.

3 Declare BaseFixture as an abstract class. There’s no reason to create
instances of this class.

4 Change your test case classes so that they inherit from BaseFixture rather
than directly from TestCase.

5 Copy the overlapping fixture into BaseFixture—that is, copy the fields
and the code in setUp() that initializes those fields. You likely need to
change the fields, declaring them as protected rather than private; oth-
erwise, the test case classes cannot use them. You could encapsulate the
fields in protected get methods, but in this case we think that’s extra code
for no reason.

6 From each test case class, remove the fixture fields and the code from
setUp() that you moved into BaseFixture.

7 Add super.setUp() at the beginning of each test case class’s setUp() method.

Now you can rebuild and rerun your tests to verify that their behavior has not
changed. You can repeat these steps for as many test case classes as you have that
share common fixture objects.

After you verify that you have not introduced any errors during these steps,
look at the setUp() methods and see whether any could be eliminated because of
being empty or containing only super.setUp().

89Factor out a test fixture hierarchy
◆ Discussion

We can summarize this recipe by saying, “Extract a superclass of your test case
classes, declaring it abstract because there is no reason to instantiate it.” If we
could be certain that everyone had read Martin’s excellent work, we could cer-
tainly have done that. Extracting a Super Fixture, to give this recipe a snappier
title, embodies the spirit of this recipe by combining these two key points:

■ It is a good idea to eliminate duplicate test fixture code by moving it up into
a superclass.

■ We often do not see the duplication until it happens.

This second point is the reason that this recipe’s title mentions factoring out a test
fixture hierarchy rather than building it in. If we knew exactly where all the dupli-
cation would be, then we would avoid it; however, we have observed that such
clairvoyance is out of our grasp. Instead, we content ourselves to eliminate dupli-
cation as soon as we find it. This recipe is just another tool in the toolbox for man-
aging design complexity.

When deciding whether to use this recipe, consider the amount of duplication
in your test fixtures. While your test fixtures need not be identical to use this rec-
ipe effectively, there needs to be enough duplication to warrant the complexities
of introducing a new class and moving fields around. Sometimes it is the tests, and
not the fixture code, that are duplicated, as in recipe 2.6, “Test an interface.”
Although the compiler is unaffected by the complexity of your test class hierarchy,
humans are: other programmers need to be able to read your test code. You may
even find it difficult to navigate your own complex test case hierarchies after a few
months away from the code. While some people feel that eliminating all duplica-
tion is the One True Path, remember that eliminating duplication is only a rule.
If, after thoughtful reasoning, you have decided to break the rule, then by all
means go ahead. If breaking the rule lands you in trouble, try to remember which
rule you broke so that you can learn from your mistake.

One more thing: remember to call super.setUp() and super.tearDown(), as
necessary. When you subclass TestCase directly, you do not need to worry about
this, because the superclass implementations do nothing; but now you may have
superclass implementations of each method that do something very important!
This is a common mistake—one we will all continue to make until the end of our
programming days—so don’t feel bad about it. Instead, see chapter 8, “Trouble-
shooting JUnit,” for other common mistakes when writing JUnit tests.

90 CHAPTER 3

Organizing and building JUnit tests
◆ Related

■ 3.4—Factor out a test fixture

■ 3.6—Introduce a Base Test Case

■ 8.3—JUnit does not set up your test fixture

3.6 Introduce a Base Test Case

◆ Problem

You have a common set of methods that you would like to use throughout your
tests. It would be nice to refer to these methods as though they were part of the
test case class, rather than as class-level methods on some utility class.

◆ Background

It is very common over time to build up a sizable library of reusable utility meth-
ods for JUnit tests. Perhaps the most common type of reusable method is the cus-
tom assertion. As we explain in recipe 17.4, “Extract a custom assertion,” if you
make the same kind of assertion often enough, and if you want the same failure
message every time you make that assertion, then we recommend wrapping the
underlying condition and failure message into a new assertion method. This new
method’s name should start with assert to help classify it as an assertion. Whoever
uses this method will know immediately that it might cause an assertion failure.

You may want to use this custom assertion in other test cases, and not just the
one that “gave birth” to it. In this case, you need to make it available to other test
case classes somehow. This recipe describes a simple way to do it.

◆ Recipe

If you treat these commonly used utility methods the same way you would treat
fixture objects, then you can apply recipe 3.5 and move the utility methods into
the new superclass. This recipe is essentially a special case of that one, although
we have some additional recommendations to make.

Introduce a base test case—that is, a class to act as the superclass for all your test
case classes. If you have already written some tests, then simply change them all to
inherit from your new base test case class, which we often call BaseTestCase. (We
have tried to come up with more meaningful names, but failed. If you have any
suggestions, then please let us know.) Even if BaseTestCase has no methods to
begin with, starting your project with a base test case provides a natural place for
programmers to put any utility methods that they believe other tests will need to use.

91Introduce a Base Test Case
If a method ends up in BaseTestCase that does not need to be there, it is a simple
matter to “push it down” into the specific test case class (or subhierarchy) that uses
it. It is also easy to pull any commonly used method up into BaseTestCase as needed,
because all test case classes in your project already inherit from BaseTestCase.

◆ Discussion

The Test-Driven Development purist may read this recipe and say, “You aren’t
gonna need it.”13 In short, they argue that a BaseTestCase should evolve naturally
from the needs of the design, rather than being forced onto a project from the
beginning. We wholeheartedly agree with the YAGNI principle and believe that
this is not a violation of it. Our experience on several projects has told us that,
sooner or later, a BaseTestCase pops up out of the design.

In the course of refactoring test code—especially in Customer Tests or End-to-
End Tests—we routinely add two basic kinds of commonly used methods: custom
assertions and extensions to the testing framework. This is true whether we use
JUnit, HttpUnit, HtmlUnit, DbUnit, or any of the other frameworks out there.
Invariably, we end up with a collection of methods that all our tests ought to be
using, and because we cannot change TestCase, we need a bridge between JUnit
and our extensions to it. That is the central function of BaseTestCase: to provide a
home for these extensions.

Some advanced JUnit practitioners have even taken to extracting some of their
JUnit extensions—the ones that apply to any problem domain—and packaging
them into a BaseTestCase that they take with them from project to project. The
open source project GSBase (http://gsbase.sourceforge.net) includes one such
BaseTestCase implementation that includes a number of useful JUnit extensions,
such as comparing unordered collections, asserting that an object is an instanceof
a specific class, even a reimplementation of assertSame with a more useful failure
message than the one that JUnit provides by default.

Introducing a BaseTestCase, then, is a rare example of speculative design that
always seems to work, which is why we recommend it for any project using JUnit.

◆ Related

■ 3.5—Factor out a test fixture hierarchy

■ 17.4—Extract a custom assertion

■ GSBase (http://gsbase.sourceforge.net)

13 Read http://c2.com/cgi/wiki?YouArentGonnaNeedIt to find out more about this catch-phrase.

92 CHAPTER 3

Organizing and building JUnit tests
3.7 Move special case tests to a separate test fixture

◆ Problem

You have written several tests for special cases of the same system behavior. You
have noticed duplication both in the test code and in the test names.

◆ Background

There are a few forces that lead you to the realization that some of your tests are
slightly out of their element. The first thing you notice is that you have seven dif-
ferent tests for the same behavior, while others have only one or two. The next
thing you notice is that the names of your tests all look the same:

testConnect()
testConnect_ConnectionRefused()
testConnect_WrongAddress()
testConnect_NullAddress()
testConnect_TemporarilyUnavailable()

You next look at the rest of the tests and notice that they use these fixture objects
while your other tests use those fixture objects, and they don’t seem to overlap.
Clearly, these tests don’t belong with the rest. This happens most often when
there is an unusually large number of special cases for a single behavior, but these
warning signs can emerge for any reason.

◆ Recipe

You should move the special case tests into their own fixture, naming the fixture
after the behavior under test. Follow these instructions:

1 Create a new test case class and name it after the behavior under test. In our
example, we might name the test case class ConnectToWebServiceTest.14

2 Copy the test methods and corresponding fixture objects from the old test
case class into the new test case class.

3 Rename the test methods, removing the name of the behavior under test
and leaving the name of the special case. In our example, the tests would be re-
named to testHappyPath(), testConnectionRefused(), testWrongAddress(),
testNullAddress(), and testTemporarilyUnavailable().15

14 We didn’t really say what it was we were trying to connect to, so arbitrarily we choose “web service.”
15 We like the phrase happy path. If you don’t, then try testSuccessful() or something boring like that.

93Move special case tests
to a separate test fixture
4 Run your tests, verifying that they still behave as they did before.

5 Remove the tests from the other test case class. Remove any test fixture
objects that the remaining tests are not using.

6 Add the new test case class to any manually built customized test suites
that include the other test case class.

You end up with two test case classes where there was previously one. The old one
contains the remaining tests, and the new one contains all the special cases for
that specific behavior. Because you have taken care to use good names, it should
still be easy to find the tests when you need them. If your development environ-
ment does not provide an easy way to find all references to a method, leave a com-
ment in the old test case class indicating where the tests are located.

◆ Discussion

If you never thought of doing this, you might be a novice JUnit practitioner.16

When we started out with JUnit, they told us to write one test case class per pro-
duction code class, keeping all the tests for that class together in one place. This
makes sense as a starting point, but there is no need to cram dozens of tests into
one class, especially once it becomes clear that that is difficult to navigate and
maintain. These guidelines have a way of developing into rules and even laws if
the people following the guidelines do so without an understanding of why. If you
believed that your tests have to stay in the same test case class, then we’re here to tell
you, “It’s all right. Move the tests to another test case class. Nothing bad will happen.”
We’re here to take the magic away and leave you with a better understanding.

The one-test-case-per-class guideline is there to give you a place to start organiz-
ing your tests. It would be silly for you to obsess over exactly where to place your
first test, so we tell you, “If you’re testing the class Chicken, then put your test in a
class called ChickenTest.” It’s a simple rule to follow and a sound place to start. It
allows you to get past worrying about what to do and on to doing it. If you think of
something better later, then starting doing that.

“I’ll take a good plan violently executed now over a perfect plan tomorrow.”—
General George Patton.17

16 Our apologies to comedian Jeff Foxworthy.
17 Of course, on the other hand, “As long as I hold on to the ball, nothing bad can happen.”—Mediocre

major-league baseball pitcher Brian Horton.

94 CHAPTER 3

Organizing and building JUnit tests
◆ Related

■ 3.4—Factor out a test fixture

■ 3.5—Factor out a test fixture hierarchy

3.8 Build tests from the command line

◆ Problem

You would like to build your tests using the command line, rather than relying on
a full-featured IDE.

◆ Background

We love all the great Java IDEs available these days. There are even times when we
wonder if we could possibly live without them. Unfortunately, there are a number
of occasions where using an IDE is not an option.

The unattended build is an example of such an occasion. If you are running
nightly builds using scheduled Ant scripts or using Cruise Control, then you need
to run your tests from a command-line interface suitable for scripting. There are
less fortunate situations in which you need to rely on building tests from the com-
mand line.

You may be forced to work—we hope temporarily—in an operating system that
does not support your favorite IDE or, indeed, any IDE.18 You may be forced to
work in a windowless environment, such as a remote telnet session over a slow
network connection or into a server on which you do not have permission to run a
windowing environment. We have seen programmers forced into debug sessions
over dial-up from North America to Australia, so don’t think it will never happen
to you. Eventually it will.

In this situation—especially when diagnosing defects—you may want to make a
small change to your tests and then rebuild them and execute them in this kind of
hostile environment. You want to know exactly which libraries you need to build
your tests and which of those fancy automatic class path IDE features you can live
without.

18 We know that this is rare nowadays, but the moment we start to believe that we’ll always have access to
an IDE is the moment someone will tell us to work on some crazy platform no one has ever heard of.
It could happen.

95Build tests from the command line
◆ Recipe

Fortunately, JUnit is about as simple as it gets. To build your tests in a plain-
vanilla, command-line environment, simply put junit.jar on the class path when
you run the Java compiler. You will find junit.jar in the root directory of the JUnit
package you download from the JUnit web site. See chapter 1 for details on down-
loading, installing, and looking through the JUnit package.

If you follow our recommendations in recipe 3.2, “Create a separate source tree
for test code,” then your Java compile command will look something like this, at
least on flavors of UNIX:

$ javac -classpath $JUNIT_HOME/junit.jar:$PROJECT_HOME/classes/production

➾ -d $PROJECT_HOME/classes/test $PROJECT_HOME/source/test/*.java

This command makes some assumptions: that you have set the environment vari-
able JUNIT_HOME to point to the location on the file system where you have
unpacked JUnit; that you have set the environment variable PROJECT_HOME to point
to the root of your project’s directory structure; and that you only need to com-
pile the tests in the root of your test source code directory structure. If you run
the command from the root of your project, then omit the references to
PROJECT_HOME, because that would be the current working directory. As a general
rule, it is better to use environment variables than to refer to hard-coded, fully
qualified path names. Environment variables are easier to change than the (even-
tually) large number of scripts that refer to those paths.

◆ Discussion

With the plain-vanilla Java compiler you cannot recursively compile all the Java
classes in a given directory structure, something that we view as a restriction so
severe that we would never use the compiler on its own for large projects. That is
one reason to use tools such as Ant or your favorite IDE to build both your pro-
duction code and your tests. The automated, repeatable build process is such an
important project management practice that we typically assume that all projects
do it, and Ant is the standard Java project build tool, so we recommend it highly.
See recipe 3.9, “Build tests using Ant,” to automate (among other things) compil-
ing all the test classes in your test source code tree. It is possible to write a shell
script to do the work, but Ant provides a platform-independent way to do it. The
solution is portable and relatively easy to set up in a foreign environment. It is cer-
tainly easier than learning how to write shell scripts for some crazy platform that
no one has ever heard of.

96 CHAPTER 3

Organizing and building JUnit tests
◆ Related

■ 3.9—Build tests using Ant

3.9 Build tests using Ant

◆ Problem

You need to build your tests in an environment where you cannot use your usual
IDE. You can build the tests from the command line, but you would like to auto-
mate this task in a portable way.

◆ Background

In recipe 3.8, we describe the conditions under which it may be necessary to build
your tests without your trusty IDE. We also describe the most serious limitation in
using the Java compiler to build your tests: there is no direct support for building
all the tests in your test source tree. If you need to work in this strange environ-
ment for a prolonged period of time—that is, you need to build all your tests
more than once or twice—you’ll want to automate the build so that you can con-
centrate on higher-level thinking, such as solving the problem before you. We like
to remind ourselves that the computer is supposed to do work for us and not the
other way around. We should not waste our time satisfying some operating system
or Java compiler.

◆ Recipe

Ant to the rescue! If you’re unfamiliar with Ant, then run (don’t walk) to http://
ant.apache.org and read about this automated build tool that has become an
industry standard among Java programmers. Ant is simple to install and integrates
well with JUnit.

Building your tests with Ant is straightforward: use the <javac> task to build
your test classes, specifying a source directory, a target directory, and a few ele-
ments on the class path, notably JUnit itself. If you already know how to build your
tests from the command line, then transcribing that command into an Ant target
is easy. Start with the simplest example: the test source, production source, and all
the classes are in the same directory on the file system. Just add junit.jar to the
build-time class path and everything works. Listing 3.4 shows a simple Ant build-
file that builds the tests.

97Build tests using Ant
<project name="Simplified Project Structure" default="compile">
 <property name="junit.home" value="d:/junit3.8.1" />
 <target name="compile">
 <javac fork="yes" srcdir="." includes="**/*.java">
 <classpath>
 <pathelement path="${junit.home}/junit.jar" />
 </classpath>
 </javac>
 </target>
</project>

Here we have the simplest Ant buildfile we can think of that includes building
JUnit tests. Because the test source code and production source code is all in one
place—at the root of the project’s directory structure—it’s enough simply to build
every Java class we find. The only item we need in the build-time class path is JUnit
itself. It is a best practice in Ant not to hard code the location of tools such as
JUnit into your Ant tasks, but rather to factor them out into properties. Although
this book is not meant to be a primer on Ant, we have used a property to refer to
junit.jar, as we would on a real project.19 This covers the simplest case.

If you follow our recommendations on separating the test source code and
test classes from the production code, then your buildfile will look like the one
in listing 3.5.

<project name="Simplified Project Structure" default="compileTest">
 <property name="junit.home" value="d:/junit3.8.1" />

 <target name="compileTest" depends="compileProduction">
 <javac fork="yes"
 srcdir="source/test" includes="**/*.java"
 destdir="classes/test">
 <classpath>
 <pathelement path="${junit.home}/junit.jar" />
 <pathelement path="classes/production" />
 </classpath>
 </javac>
 </target>

Listing 3.4 A minimal Ant buildfile for JUnit tests

19 Actually, we would move this property into a properties file because we expect the person using this
buildfile to need to change that property to suit her environment. We decided that a separate properties
file would be too much of a distraction for this example, so we left the property inside the buildfile.

Listing 3.5 A more useful Ant buildfile for JUnit tests

98 CHAPTER 3

Organizing and building JUnit tests
 <target name="compileProduction">
 <javac fork="yes"
 srcdir="source/production" includes="**/*.java"
 destdir="classes/production" />
 </target>
</project>

The biggest difference between this buildfile and the one in listing 3.4 is that
there are two targets: one to build the production code and one to build the tests.
Because we have placed the tests and production source in different source trees,
we need a different target for each source tree: Ant does not support specifying
multiple “source tree to destination tree” mappings in a single task.

Next, notice that the compileTest target depends on the compileProduction
target. This ensures that the tests are always built with the most up-to-date produc-
tion code. Failure to include this dependency can lead to difficult-to-diagnose
class incompatibility problems when running your tests: the Java interpreter gen-
erates ClassCastException, VerifyError, or one of a host of odd-sounding and
confusing errors, when what you really need is the message “Your classes are out of
date. Build again.”

Finally notice that we must add classes/production to the build-time class path
of the test classes, as the tests depend on classes in the production code but not the
other way around. If your production classes need your test classes in the build-time
class path, then you have a serious dependency problem: specifically, you have test
classes in your production code. If moving the class into the test source tree
doesn’t work, then the situation is much worse: your class has some production
features and some test-only features. You’ll have to split that class in two and put
the corresponding part in the right place for your project to build. Although not
ideal, doing so ensures that test-only features do not gum up the works of your
production-quality system. The increased discipline is worth it.

◆ Discussion

Using Ant to build your project, even if you always have access to your favorite
IDE, can help point out dependency problems in your code. As you saw in the
previous example, it is easy to create a class that is part production and part test
utility but not realize that the class lives this double life, because the IDE manages
class paths and the like, freeing you from having to figure it out for yourself. We
all want our IDE to simplify our lives (at least as programmers), but you should be
concerned when a feature of your IDE allows you to be too lazy. The IDE is a tool,

99Build tests using Eclipse
and not a crutch; you should be able to build your system without the IDE, just in
case you ever need to. This is the reason we recommend managing your build
with Ant.

◆ Related

■ 3.8—Build tests from the command line

3.10 Build tests using Eclipse

◆ Problem

You’ve been using Eclipse to write code for a while, but you haven’t built JUnit tests
yet. You’d like to know if there is anything specific to know about building JUnit
tests with Eclipse.

◆ Background

Eclipse, the powerful open source IDE of choice these days, is interesting in that,
on its own, it does virtually nothing. All the real power behind Eclipse comes in
the form of high-powered plug-ins. After downloading Eclipse, trying it out, and
using it on a daily basis, you begin to wonder whether you’ll ever know everything
there is to know about using Eclipse effectively. While there are definite limits to
the power of the Eclipse plug-ins, it can seem as though they provide limitless ben-
efit. It can be easy to believe that integrating something like JUnit into Eclipse is
fraught with complexity.

◆ Recipe

Eclipse makes building your tests simple, whether you decide to put everything in
one project and one source tree or use multiple projects and multiple source
trees. Your task consists of little more than setting a few Java project properties. As
with building your tests using any other tool set, you must have junit.jar on your
build-time class path, and your test code must have the production code in its
build-time class path. If you already know how to do these things with Eclipse,
then go to it; but if you don’t, then read on.

Adding JUnit to your project’s build-time class path is the same whether you
have one “kitchen drawer” Eclipse project20 or have separated each kind of test

20 That is, a project into which you throw everything. It’s a wonder we ever find anything in there.

100 CHAPTER 3

Organizing and building JUnit tests
code into its own project. The steps in table 3.1 describe how to add JUnit to a
project’s Java Build Path.

NOTE If you don’t have a Classpath Variable for JUnit, then follow these steps first:

1 From the workbench menu bar, select Window > Preferences.

2 In the left pane of the Preferences dialog, expand Java and then select
Classpath Variables.

3 At the list of Classpath Variables, press New.

4 At the New Variable Entry dialog box, enter JUNIT_JAR for the Name
and then browse to (or type) the location of junit.jar on your file
system. Press OK.

5 Press OK at the Preferences dialog box to return to the workbench.

Your Classpath Variable is now ready to use in your project’s Java Build Path.

Table 3.1 Adding JUnit to an Eclipse project’s Java Build Path

Action Result

1 Right-click the project and
then select Properties.

Eclipse opens the project properties dialog box.

2 In the left pane, select Java
Build Path.

Eclipse displays the Source tab, showing the various source
folders in your project. Here you can add, change, or remove
source folders to manage multiple source trees. No matter how
many source trees you have, all the classes will be built to the
same folder, the output folder, which you can choose at the bot-
tom of this pane.

3 Select the Libraries tab. Eclipse lists the external *.jar files and class folders—that is,
folders containing loose class files—where the Java compiler
currently looks for classes during compilation.

4 Press Add Variable. Eclipse lists all available Classpath Variables. These variables
point to various locations on the local file system and allow
you to install JUnit to any location you choose without having
to change the build path of every project that depends on it.

5 Select JUNIT_JAR,
and then press OK.

Eclipse adds JUNIT_JAR to the list of *.jar files on the
project’s build path.

6 Select the Order
and Export tab.

Eclipse shows the order in which locations on the build path are
evaluated. When searching for a class at build time, Eclipse
starts at the top of the list, then works its way to the bottom,
so that classes from libraries near the top of the list are used
before classes from libraries near the bottom of the list.

101Build tests using Eclipse
Now that you have added JUnit to your project’s Java Build Path, simply configure
your source trees and your build output folder as you need for your project. By
default, Eclipse suggests naming your directories “source” and “classes” for each
Java project. Much of the time, these settings suffice.

If you follow our recommendations in recipe 3.2, then you will have separate
Eclipse projects for your production code and each kind of test. In that case, use
the Projects tab in your project’s Java Build Path properties to include your pro-
duction code project in the build path of each test code project. You may need to
select multiple production code projects for a test project containing End-to-End
Tests that use classes from the entire system.

◆ Discussion

Eclipse simplifies managing the build-time class path (or Java Build Path, which is
probably a better term to use, anyway) by providing intuitive dialogs for adding
projects and external *.jar files through Classpath Variables. We are generally
quite happy with the features that Eclipse’s Java Development Toolkit (JDT) pro-
vides; however, there is one minor feature missing.

We have recommended you have separate source and build trees for your pro-
duction code and each kind of test you intend to write. This implies multiple
source folders and multiple build output folders, a configuration that the Eclipse
JDT does not enable by default within a single Eclipse project. You need to change
the properties for each Eclipse project to enable different output folders for each
source folder. Consult the Eclipse documentation for details.

◆ Related

■ 3.2—Create a separate source tree for test code

■ 3.9—Build tests using Ant

7 Select JUNIT_JAR from the
list and then press Up repeat-
edly until JUNIT_JAR comes
directly after JRE_LIB, the
Java Runtime Environment.

This step is optional, but it’s useful if your project includes
extensions to JUnit that may conflict with classes in JUnit itself.
Extensions to JUnit should not attempt to change the JUnit
framework, but if you need to use such an extension, this is
the way to cope with that unfortunate situation.

8 Press OK. Eclipse rebuilds your project using the changes to the Java
Build Path. You return to the workbench.

Table 3.1 Adding JUnit to an Eclipse project’s Java Build Path (continued)

Action Result

Managing test suites
This chapter covers
■ Manually collecting tests into custom test suites
■ Automatically collecting tests into

different kinds of test suites
■ Ordering and filtering tests in test suites
■ Using Parameterized Test Cases to build

a data-driven test suite
102

103Managing test suites
In JUnit, the smallest unit of “test execution” is the test suite. JUnit doesn’t actu-
ally execute individual tests, but only executes test suites, so in order to execute
your tests, you need to collect them into a test suite. The recipes in this chapter
describe different ways to create and manage test suites.

The simplest test suite to create consists of all the tests in a test case class. This is
so simple that JUnit does it for you. See recipe 4.1, “Let JUnit build your test
suite.” If you need to create your test suites by hand, go to recipe 4.2, “Collect a
specific set of tests.” If you have data-driven tests and don’t want to write by hand a
bunch of test methods that simply use your test data, see recipe 4.8, “Build a data-
driven test suite.” After that you’ll probably want to move your test data outside
the code. For that, see recipe 4.9, “Define a test suite in XML.”

Building a test suite from a single test case class is just the beginning. The real
power of JUnit comes from its ability to build arbitrarily complex test suites. Start with
recipe 4.3, “Collect all the tests in a package,” and then move on to recipe 4.4, “Col-
lect all the tests for your entire system” so that you can execute all your tests at once.

After a while, though, you’ll want to build these large test suites automatically.
See recipe 4.5, “Scan the file system for tests.” You may even want to categorize your
tests and run the tests in a given category as one suite. For that, see recipe 4.6,
“Separate the different kinds of test suites.”

Finally there are times when you need some control over the tests in your test
suite, but you don’t want the burden of keeping track of every single test. In that
case, see recipe 4.7, “Control the order of some of your tests” to find out how to
gain just the control that you need.

In this chapter we concentrate on building the test suites without discussing
exactly how to run them. This topic is complex enough without test runners get-
ting in the way. We will assume that the goal is to build a single test suite so that
even the simplest test runners can execute it. We will talk more about how to exe-
cute your tests in Chapter 6, “Running JUnit Tests.”

4.1 Let JUnit build your test suite

◆ Problem

You would like to stop maintaining the list of tests in a test suite. You would rather
have JUnit build the test suite from the tests in your test case class.

104 CHAPTER 4

Managing test suites
◆ Background

You may have read one of the first articles ever written about JUnit, entitled
“Test Infected: Programmers Love Writing Tests.”1 This article was written in
1999, a time when JUnit was still in its infancy. Some of the techniques in this
article are outdated. In particular, the article shows the reader how to build a
test suite from the tests in the current test case class. The article shows the
reader the following example:

public static Test suite() {
 TestSuite suite= new TestSuite();
 suite.addTest(new MoneyTest("testEquals"));
 suite.addTest(new MoneyTest("testSimpleAdd"));
 return suite;
}

This builds a test suite containing two tests implemented by the methods test-
Equals() and testSimpleAdd(). We call this manually building a test suite, or
doing it by hand, because the programmer must remember to update this list of
tests every time he adds a new test method. Before JUnit 2.0 this was the only way
to build test suites, and if you last used JUnit “a long time ago”—back before ver-
sion 2.0—then this may be the only way you know how to build a test suite.

It also may be that you learned to write test suites from another programmer
who did not understand or know about how to let JUnit build test suites automati-
cally. If you have been using this manual test suite–building technique, you recog-
nize how error prone it can be: every time you add a test, you need to remember
to update this suite() method. Removing or renaming a test is easier; at least
JUnit fails at runtime, indicating that it cannot find the test. But if you add a test to
your test case and not to your suite() method, then you may not notice that JUnit
is not executing your test. This can lead to a false sense of progress, as you think
your test passes, when JUnit is not executing it at all!

This recipe will help you avoid this unfortunate situation.

◆ Recipe

Since the advent of JUnit 2.0, the framework provides a way to build a test suite
out of the test methods in your test case class. As long as you follow a few simple
rules, JUnit will find your tests and execute them:

1 http://junit.sourceforge.net/doc/testinfected/testing.htm.

105Let JUnit build your test suite
■ Your test methods must be instance-level, take no parameters, and return
nothing. That is, you must declare them as public void testMethodName().
This is a general requirement for test methods in JUnit, whether you build
the test suite yourself or let the framework do it, but it bears repeating.

■ The name of your test method must start with “test” (without the quotes),
all lowercase.

Otherwise, there are no restrictions on how you declare your test methods. You may
throw whatever exceptions you like, although you should understand how JUnit han-
dles that (see recipe 2.8, “Test throwing the right exception,” for details). The code
in your test can do whatever you need it to do, although it should follow the typical
rhythm of a test: create some objects, invoke some methods, check the results.

Returning to the example in the “Test Infected” article, the authors have
already named their test methods according to the rules. Although the article
describes implementing the suite() method as follows, JUnit does even that auto-
matically for you. If you omit the suite() method altogether, JUnit will build the
“default” suite as though you wrote this code. (It does the same work, but a little
differently, which causes a minor difficulty that we describe in recipe 4.3.)

public static Test suite() {
 return new TestSuite(MoneyTest.class);
}

We hope it is clear by now that you should always let JUnit build your test suite
automatically. As you will see in other recipes, there are times when you need to
build a suite by hand, but that should be the exception, rather than the rule. Let
the framework do the heavy lifting.

◆ Discussion

JUnit uses Java reflection2 to build the default test suite at runtime. In particular,
JUnit searches your test case class for declared methods that follow the rules we
have outlined and then adds those tests to a test suite. You can think of it as gener-
ating the “manual test suite” code at runtime. JUnit implements this feature in the
class junit.framework.TestSuite. We summarize what each method does in table 4.1.

2 These are the classes in the standard Java package java.lang.reflect.

106 CHAPTER 4

Managing test suites
The way that JUnit builds the default test suite promotes writing isolated tests, a
generally accepted good Programmer Testing practice. You ought not to rely on
your tests executing in a particular order, nor should the failure of one test affect
the outcome of the remaining tests in the suite. Commonly, programmers want to
run a set of tests in a particular order because they share a common test fixture:
they set up some data, run multiple tests using that data, and then throw the data
away. To do this, not only do you need to set up and tear down the test fixture at
the right time, but you also need to ensure that the tests run in a prescribed
order. If not, a future test will look for fixture data that is not there. Even if the
tests execute in the proper order, a failing test using a shared fixture typically
leaves the fixture in an unexpected state, rendering the remaining tests essentially
useless. You can learn about Kent Beck’s early experience with automated tests in
his discussion about the Test-Driven Development pattern he calls Isolated Test.3

He tells the story of long-running, GUI-based automated tests that his project
ran every night. In the morning, Kent would see paper on his chair: either a single
page saying, “Everything works”; or a stack of pages detailing the failures, one per
failing test. He writes, “I noticed after a while that a huge stack of paper didn’t

Table 4.1 How JUnit builds the default test suite

TestSuite method What it does

Constructor
TestSuite(Class)

• Verifies there is a public constructor
• Verifies the class itself is public
• Invokes addTestMethod() for each declared method in the class
• Extracts test methods for all tests in this class’s superclasses up to the top

of the class hierarchy
• Issues a warning if there are no tests

addTestMethod() • Verifies that the method is a public test method by invoking
isPublicTestMethod()

• Issues a warning if the test method is correctly named but not public
• Creates the Test object for the method and adds it to the suite, if the

method is a valid test method

isPublicTest-
Method()

• Determines whether the method is a test method by invoking
isTestMethod()

• Determines whether the method is public
• Returns true only if the method is both public and a test method

isTestMethod() • Verifies that the method has no parameters, no return type, and a
name starting with test

3 Kent Beck, Test-Driven Development: By Example (Addison-Wesley, 2002), page 125.

107Collect a specific set of tests
usually mean a huge list of problems. More often it meant that one test had bro-
ken early, leaving the system in an unpredictable state for the next test.” His con-
clusion: “Tests should be able to ignore one another completely. If I had one test
broken, I wanted one problem. If I had two tests broken, I wanted two problems.”
The goal is to make it easier to decide from the list of failing tests where the pro-
duction code is broken. This is one philosophy that underlies JUnit’s design, and
one of the ways in which JUnit works—subtly, mind you—to help you improve
your design: writing isolated tests leads to highly cohesive, loosely coupled classes,
a hallmark of good object-oriented design.

The last key point to have in mind is that the default test suite for a test case
class includes more than just the test methods you have declared on that class.
JUnit also adds any valid test methods it finds on any superclass of your test case
class—all the way up to the root of the class hierarchy.4 Although many beginning
JUnit practitioners are surprised by this design choice, it is deliberate and makes
sense: this is the mechanism that enables you to enforce an interface’s contract.
In other words, it allows you to execute the same tests on all implementations of
an interface, or on all subclasses of an abstract class, such as a framework exten-
sion point. For more information on building Abstract Test Cases, see recipe 2.6,
“Test an interface.”

◆ Related

■ 2.6—Test an interface

■ 2.8—Test throwing the right exception

■ 4.2—Collect a specific set of tests

■ 4.5—Scan the file system for tests

4.2 Collect a specific set of tests

◆ Problem

You cannot use (or do not wish to use) the default test suite that JUnit creates
from your test case class. You want to ignore certain tests or have control over the
order in which JUnit executes the test, if not both.

4 Strictly speaking, that would be the class Object, but for our purposes, we mean the class TestCase.

108 CHAPTER 4

Managing test suites
◆ Background

There are a number of good reasons to want to manually choose which tests go
into the test suite for your test case class. Unfortunately, there are also a number of
not-so-good reasons to want to do this, which is why we highly recommend read-
ing the Discussion section of recipe 4.1, “Let JUnit build your test suite,” before
you read any further. If you are reading on, then either you remain unconvinced
by our recommendations or you really do need to build your test suite by hand.

JUnit practitioners—in particular, the ones who also do Test-Driven Develop-
ment—have the tendency to be dogmatic in their approach to writing tests. Look-
ing to Kent Beck as a leader, we are told repeatedly how important it is to write
isolated tests, as doing so forces us to work that little bit harder to improve our
design. This works wonders when we are able to practice Test-Driven Develop-
ment—that is, when the production code under test has not yet been written. In a
legacy code environment, though, you do not have the luxury of a testable design.
It is hard enough to achieve 100% test isolation in a well-designed system; it is
generally impossible to do so in a system designed entirely without testing in
mind. You may well be one of the lucky people charged with testing such a system,
and if you are, then you almost certainly need to read this recipe, in addition to
most of the rest of the recipes in this chapter. They provide instructions on con-
trolling the order of tests in a test suite so that you can build a safety net to help
you move toward 100% test isolation.

◆ Recipe

To build your test suite by hand, do the following:

1 Create a method on your test case class called suite(). It must be declared
as public static Test suite(), taking no parameters and returning a
Test object.5

2 In the body of your custom suite method, create a TestSuite object, and
then add Test objects to the suite: either individual tests or other test
suites. Return this TestSuite object.

That is a sketch of how to build the test suite by hand. We offer an example from
“Test Infected”:

5 It actually returns a TestSuite object, but remember that TestSuite implements Test.

109Collect a specific set of tests
public static Test suite() {
 TestSuite suite= new TestSuite();
 suite.addTest(new MoneyTest("testMoneyEquals"));
 suite.addTest(new MoneyTest("testBagEquals"));
 suite.addTest(new MoneyTest("testSimpleAdd"));
 suite.addTest(new MoneyTest("testMixedSimpleAdd"));
 suite.addTest(new MoneyTest("testBagSimpleAdd"));
 suite.addTest(new MoneyTest("testSimpleBagAdd"));
 suite.addTest(new MoneyTest("testBagBagAdd"));
 return suite;
}

The order in which you specify these tests is the order in which JUnit executes
them, if test order is important to you.

◆ Discussion

To understand this code in more depth, first note (or remember, if you already
know this) that each test runs in its own instance of your test case class. This is one
of the fundamental aspects of JUnit’s design: it is the way that JUnit encourages
test isolation. This is also the reason that we implement test fixture objects as
instance-level fields on the test case class: each test is an instance of the test case
class, so it has its own copy of the fixture. The constructor MoneyTest(String)
takes as its parameter the name of the method that JUnit should call to execute
the test. This constructor creates an instance of the test fixture (an isolated copy
of the fixture) that invokes the specified method to run the actual test. When the
framework executes this test, it eventually invokes the method TestCase.run-
Test(), which uses reflection (yet again!) to invoke the method whose name you
provided to the test case class’s constructor.6

The method TestSuite.addTest() simply encapsulates an internal collection—
a List, in particular—of Test objects. When the framework runs the test suite, it
runs each Test object in that suite in the order in which they appear in the list.
Most of those Test objects are single tests, but JUnit allows you to build bigger
suites out of smaller suites, so you can add either a TestCase or a TestSuite when
you call addTest(). For an example of building a suite of suites, see recipe 4.3,
“Collect all the tests in a package.”

There is one simple consequence of the way JUnit lets you build a test suite that
not many practitioners take advantage of. We do not know whether this is a use-

6 This method also verifies that the test is a valid test method. Open the source for junit.frame-
work.TestCase for more detail. There is no better documentation than the source code.

110 CHAPTER 4

Managing test suites
less feature or simply a large, collective blind spot.7 Look back at the suite()
method and notice one kind of duplication: the class name MoneyTest. This test
suite is a collection of tests coming from the same test case class. If we specify
some other test case class than MoneyTest, we can collect tests from a diverse set of
test case classes. You may now ask yourself, “Why tell us this? What good is it?”
Frankly, we have not leveraged this fact in any meaningful way in our past work
with JUnit, but there is a particular scenario that we feel puts this feature to good
use. It’s nothing obscure: you can use it in the course of investigating defect
reports coming from outside the programming team.

One of the recommendations that the Test-Driven Development community
makes concerns what to do when someone else finds a defect in your team’s
code.8 TDD practitioners would say that because someone else has found a defect,
you have either missed a test that you should have written or written a test incor-
rectly. Often you have decided on an expected result that is unexpected for your
users, so although your code passes your tests, the end users see behavior they do
not expect. In this case, TDD recommends that you do as follows:

1 Identify the Customer Test (or functional test, or acceptance test) that does
not match the expectations of the end users.

2 Use the Customer Test to help you determine which objects are involved
in making that Customer Test pass, and then identify the Programmer
Test that you either got wrong or missed altogether.

3 Fix (or write) the Programmer Test, make it pass, and then fix the Cus-
tomer Test in the corresponding way. It may already pass as a result of
your code changes, but if it does not, tie up whatever loose ends you may
have to make the Customer Test pass.

At this point you have zero failing tests and can rerelease your software complete
with a fix for this defect.

Now, what does this have to do with building a suite of JUnit tests?9

As you identify the Programmer Tests that match the failing Customer Test, we
recommend creating a temporary suite for those tests. This test suite is an object-
level view of the behavior the Customer Test verifies. As you work on the problem,
execute the Programmer Test suite repeatedly as you go. This keeps you focused

7 We suspect the feature is quite useful, but we may forget to use it the next time we have the opportunity.
8 We think it couldn’t happen to us.
9 We try to get to the point quickly; we really do.

111Collect all the tests in a package
on fixing the problem at hand, while giving you object-level feedback on the
effects of your changes. This is an alternative to running all the system’s tests after
every change, which will cause more changes—changes that you may not be ready
to make yet—to ripple out and thus distract you from the work at hand. This Pro-
grammer Test suite may include tests from a number of different test case classes
throughout the system, and JUnit allows you to build a test suite from an arbitrary
slice of the system’s entire collection of tests. That is quite handy.

After reading this, you might think it a good idea to start building these Pro-
grammer Test suites as you write (or receive) each Customer Test. We recom-
mend against it: the relationship between a Customer Test and its constituent
Programmer Tests may change a great deal over time, and the cost of maintaining
those relationships in code is more than the time you might save discovering
those relationships when required. Either way, we have described a typical sce-
nario in which you may want to build a test suite from an arbitrary collection of
tests.

◆ Related

■ 4.1—Let JUnit build your test suite

■ 4.3—Collect all the tests in a package

4.3 Collect all the tests in a package

◆ Problem

You have a number of test case classes in a package and would like to run them all
at the same time, but the test runners ask you to specify a single test case class
name. You need a way to collect all the tests in a package into a single test suite.

◆ Background

JUnit makes it easy to run the tests in a single test case class: simply pass the name
of a test case class as a command-line parameter to the test runner. Because JUnit
automatically builds a test suite from your test case class, it is not obvious how to
collect the tests from multiple test case classes together into a single suite. Because
you didn’t have to do anything special to run all the tests in a single test case, how
could you possibly know how to collect multiple test case classes together into one
big test suite?

You may be tempted to move all those test methods into a single test case class.
Don’t. It makes navigating your test source code much more difficult. Different

112 CHAPTER 4

Managing test suites
tests operate on different fixtures and so should be separated into different test
case classes (see recipe 3.7, “Move special case tests to a separate test fixture”).
Some day you will want to run one test case class’s tests on their own. When that
happens, don’t copy the test methods back into a separate test case class! Follow
this recipe instead.

◆ Recipe

To collect all the tests in a package, you build a custom test suite just as we
describe in recipe 4.2, “Collect a specific set of tests,” but rather than adding indi-
vidual tests to the suite, add the suites from each test case class in your package.
There are essentially two different ways to add a test suite to a larger test suite.
The following example, taken from the class junit.tests.AllTests, shows both:

public static Test suite() {
 TestSuite suite= new TestSuite("Framework Tests");
 suite.addTestSuite(TestCaseTest.class);
 suite.addTest(SuiteTest.suite());
 suite.addTestSuite(TestListenerTest.class);
 suite.addTestSuite(AssertTest.class);
 suite.addTestSuite(TestImplementorTest.class);
 suite.addTestSuite(NoArgTestCaseTest.class);
 suite.addTestSuite(ComparisonFailureTest.class);
 suite.addTestSuite(DoublePrecisionAssertTest.class);
 return suite;
}

We call this the AllTests pattern. The two methods you can use to add one test
suite to another are addTestSuite() and the familiar addTest(). The first auto-
matically extracts a test suite from the test case class you specify. The second uses
the test case class’s custom test suite method. In what must be called an unfortu-
nate flaw in JUnit’s design, you need to know when you build a suite of suites
whether to use a test case’s custom suite method or JUnit’s automatic test suite
extraction feature.10 The only way to know this is to know the source code of the
other test case classes in your package. Fortunately, the odds are high that you
already do.

There are a few common conventions related to this technique:

■ Name the package-level test suite class AllTests.

■ Create one AllTests class per package.

10 The method TestSuite.addTestSuite(Class testClass), for example, does not bother to look
for a custom suite() method at all, even though the test runners do.

Add the default
TestSuite

Add a custom
TestSuite

113Collect all the tests in a package
■ Collect the test suite from each package’s AllTests into a larger AllTests
class one level up in the package hierarchy. This is the way to build a suite
for the entire system. See recipe 4.4, “Collect all the tests for your entire sys-
tem” for details.

◆ Discussion

The method TestSuite.addTestSuite() is simply shorthand for writing
suite.addTest(new TestSuite(MyTestCase.class)), as you can see by its imple-
mentation. (Look at the source!) JUnit practitioners had been writing this code so
often in their AllTests classes that it became apparent a refactoring was in order
to remove this duplication. You can now simply call addTestSuite() to extract a test
suite from a test case class automatically and then add that suite into a larger one.

We mentioned in recipe 4.2, “Collect a specific set of tests,” that you can invoke
addTest() to add any Test object to a test suite, whether a single test or another
test suite. In this case, AllTests includes SuiteTest’s custom test suite: first it
invokes SuiteTest.suite(), returning a TestSuite object; then it adds that
TestSuite object to its own, larger test suite. Use this technique to build up suites
of custom test suites. If you know that MyTestCase collects its tests using the
suite() method, then you should collect its tests by invoking addTest(MyTest-
Case.suite()).

Finally, note that the class that declares a suite() method does not have to be a
subclass of TestCase. Such a class is typically just a collector for other test suites
and does not define any tests of its own. In particular, one look at the source of
junit.framework.AllTests reveals that it is just a regular Java class—not a descen-
dant of junit.framework.TestCase. Although it is common for a test case class to
provide its own custom suite() method, any class can collect tests into a suite()
method.11 This is another of those subtle parts of JUnit that even many experi-
enced practitioners do not realize. In JUnit, an amazingly small amount of code
can have its own nuances.

◆ Related

■ 4.1—Let JUnit build your test suite

■ 4.2—Collect a specific set of tests

■ 4.4—Collect all the tests for your entire system

11 Refer back to the discussion of arbitrary suites of tests in recipe 4.2.

114 CHAPTER 4

Managing test suites
4.4 Collect all the tests for your entire system

◆ Problem

You want to run all the tests in your entire system, but the test runners only allow
you to run the tests in one test case class at a time.

◆ Background

It is a good programming practice to run all the tests in your entire system as
often as you can. It may be uncomfortable to do this frequently if it takes a long
time to execute the tests or if an external resource (database, network connection,
or web service) you need is not always available. Still, the more often you can run
all your tests, the less time there is between injecting a defect into your system and
finding it. Keeping that time interval short generally leads to a high-quality system.
Unfortunately, it can seem like JUnit makes it difficult to run all your tests
because the test runners only seem to run the tests from one test case class at a
time.

Sure, you could write a script to automate running the tests from each test case
class in your system, but you’d rather have all those tests in one big suite. This way
you can take advantage of the way JUnit reports the results: the total number of
tests, failures, and errors in the entire system. Seeing something like “4,192 tests,
0 failures, 0 errors” really gives you a sense of completion.12 You believe that there
should be a way to do this with JUnit.

◆ Recipe

Here we examine building a suite of suites following the instructions we have
already described in recipe 4.2, “Collect a specific set of tests,” and in recipe 4.3,
“Collect all the tests in a package.”

To collect all the tests for your entire system, do as follows:

1 For each test package in your system, create an AllTests class. This class
builds a test suite from all the test case classes in the package. For detailed
instructions, see recipe 4.3, “Collect all the tests in a package.”

2 Most of your test packages will contain other packages, forming a package
hierarchy. For each test package containing another test package, add

12 See Ron Jeffries, Ann Anderson, and Chet Hendrickson, Extreme Programming Installed (Addison-Wesley,
2000), page 45, for a discussion about how an ongoing sense of completion makes a project go faster
and better.

115Collect all the tests for your entire system
each child package’s AllTests suite to the parent package’s AllTests
suite. This means that most of your AllTests classes will collect test suites
from both the test case classes in the current package and all the AllTests
classes in the packages below them.

3 At the top of your test package hierarchy you should now have the “grand-
daddy” AllTests suite. This suite collects all the test suites from the pack-
ages below it, and each of these collects from the packages below it, and
so on down to the very bottom of the hierarchy. This granddaddy All-
Tests suite contains every test in the system.

Because the granddaddy AllTests class has a suite() method, you can pass it as
the parameter to your test runner to run every single test in your system.

Following is an example of a granddaddy AllTests suite: JUnit’s own, found in
junit.tests.AllTests. The name of the test suite is only used for display pur-
poses, so choose any name you like:

public static Test suite() {
 TestSuite suite= new TestSuite("Framework Tests");
 suite.addTest(junit.tests.framework.AllTests.suite());
 suite.addTest(junit.tests.runner.AllTests.suite());
 suite.addTest(junit.tests.extensions.AllTests.suite());
 return suite;
}

This suite() method adds the AllTests suite from each main test package in
JUnit: the framework tests, the test runner tests, and the extensions tests. Each of
these packages has its own AllTests suite, and so on down until you reach the
“leaf” packages—the ones at the bottom of the test hierarchy. JUnit does not have
a particularly deep test package hierarchy, but it still demonstrates the technique
we have described here.

◆ Discussion

One other issue that JUnit’s own AllTests hierarchy demonstrates is that building
ever-larger suites of suites requires discipline and can be prone to error. You need
discipline to maintain the relationships among the various AllTests classes. A rel-
atively straightforward refactoring such as moving a package around can force
you to make considerable changes to the AllTests suites. Although many mod-
ern IDEs automate moving packages around or moving classes from package to
package, they do not update your AllTests hierarchy for you—that remains your
job. You will begin to resent your AllTests classes because of the ongoing,
mechanical changes you continually need to make. We understand these feelings;

116 CHAPTER 4

Managing test suites
we’ve been there. This is why we recommend seeking automated alternatives to
maintaining an AllTests hierarchy by hand. Refer to recipe 4.5, “Scan the file sys-
tem for tests,” for some specific advice in this direction.

Even though maintaining these suites by hand can be time consuming and
prone to error, for small systems the technique works well. If you are just starting
out with JUnit and are on a smaller project—or at the genesis of a project—we
recommend you concentrate on gaining experience in the other aspects of test-
ing your system using JUnit. After you master those more important fundamen-
tals, look for automated alternatives to the AllTests hierarchy. We find it simpler
to start out using this technique on a small project and then change to an auto-
mated technique later, after our project has converged on a particular source
code layout, package structure, and so on. Many of the automated alternatives
involve scanning your source tree and discovering JUnit tests. If you haven’t set-
tled on a source tree structure yet, then you might need to make ongoing changes
to your automatic suite builder as the project evolves. Why go through the pain?
Start small, but be able to deal with the evolving complexity. The remainder of
this chapter—indeed, this book—will help.

◆ Related

■ 4.3—Collect all the tests in a package

■ 4.5—Scan the file system for tests

■ 16.2—Collect tests automatically from an archive

4.5 Scan the file system for tests

◆ Problem

You want like to build a test suite from all the tests in a certain part of your file sys-
tem, without having to maintain AllTests classes by hand.

◆ Background

When a project grows to a certain size, maintaining test suites by hand becomes a
real chore. You feel this pain the most when you need to make a structural change
to your project, such as moving classes from package to package or even moving
packages around in the hierarchy. These kinds of changes should not affect the
overall behavior of your system, and many modern IDEs support these operations
with the click of a mouse, so why are you forced to rewrite all these AllTests
classes? There has to be a better way.

117Scan the file system for tests
The better way is to scan the file system for tests. Let some object discover all
the test case classes in a given directory structure and then present them to you as
a test suite.

◆ Recipe

Although you could build a utility to do the work of scanning a part of your file
system for anything that might be a test, Mike Bowler’s GSBase (http://
gsbase.sourceforge.net) already provides that feature with RecursiveTestSuite.
This test suite builder is simple to use: point it at a directory containing built test
classes (not source) on your file system and specify a TestFilter, an object that
identifies whether or not to add a test case class to the test suite.13 You are still
building a custom test suite, but you are building it programmatically rather than
by specifying individual test case classes. Listing 4.1 shows an example of using
RecursiveTestSuite with a TestFilter that simply accepts all test case classes.

import junit.framework.Test;

import com.gargoylesoftware.base.testing.RecursiveTestSuite;
import com.gargoylesoftware.base.testing.TestFilter;

public class AllTests {
 public static Test suite() throws Exception {
 return new RecursiveTestSuite("classes", new TestFilter() {
 public boolean accept(Class eachTestClass) {
 return true;
 }
 });
 }
}

The first parameter to the constructor for RecursiveTestSuite is a location on the
file system, either a path name (as a String) or a File object (representing a
directory). This is where the test suite builder looks for Java class files that look
like tests. Following a prevailing naming convention, any class whose name ends
with Test is considered a test case class. So the first thing RecursiveTestSuite
does is collect all the classes it believes are test case classes.

13 This concept of filters is explained in detail in Jeff Langr’s Essential Java Style (Prentice Hall PTR, 2000).
Pay particular attention to chapter 4, “Collections.” The techniques he describes there are derived from
Smalltalk, where filters like this are everywhere.

Listing 4.1 Collecting all the tests in one part of the file system

Custom suite
method

Always add
the test case

No need to extend TestCase

118 CHAPTER 4

Managing test suites
You can then use the TestFilter to include (or exclude) test case classes
according to any criterion you can determine from a class object, including
whether it implements any interfaces. Implement the accept() method to return
true for all the test case classes you want to include in your test suite and false for
the ones you want to exclude. In our example, we include them all. You can use
this technique to separate the different kinds of tests you write into different test
suites. See recipe 4.6, “Separate the different kinds of test suites,” for details.

◆ Discussion

Although this works well, you may find a warning such as the following when you
use RecursiveTestSuite to run your tests:

junit.framework.AssertionFailedError: Cannot instantiate test case

You will see this warning if you have Abstract Test Cases (see recipe 2.6, “Test an
interface”), which generally look like test case classes but, being declared
abstract, cannot be instantiated. You can use the TestFilter to eliminate those
abstract classes from the suite, as listing 4.2 shows.

import java.lang.reflect.Modifier;

import junit.framework.Test;

import com.gargoylesoftware.base.testing.RecursiveTestSuite;
import com.gargoylesoftware.base.testing.TestFilter;

public class AllTests {
 public static Test suite() throws Exception {
 return new RecursiveTestSuite("classes", new TestFilter() {
 public boolean accept(Class eachTestClass) {
 boolean classIsConcrete =
 ! Modifier.isAbstract(
 eachTestClass.getModifiers());

 return classIsConcrete;
 }
 });
 }
}

This test filter asks each test case class whether it is concrete (not abstract), ensur-
ing that the suite contains only test case classes that JUnit can actually instantiate.

Listing 4.2 Eliminating abstract classes from a test suite using TestFilter

119Scan the file system for tests
Alternative
JUnit-addons (http://junit-addons.sourceforge.net) also provides a way to build a
test suite from an entire directory structure with its utility class junitx.util.
DirectorySuiteBuilder. It also supports filtering tests based on criteria you spec-
ify, but the code looks a little different. We can write the previous example
“gather all concrete TestCase classes” as shown in listing 4.3.

public class AllConcreteTestsSuite {
 public static Test suite() throws Exception {
 TestFilter filter = new TestFilter() {
 public boolean include(Class eachTestClass) {
 boolean classIsConcrete =
 !Modifier.isAbstract(eachTestClass.getModifiers());

 return classIsConcrete;
 }

 public boolean include(String eachTestClassName) {
 return true;
 }
 };

 DirectorySuiteBuilder builder =
 new DirectorySuiteBuilder(filter);
 return builder.suite(new File("test/classes"));
 }
}

We can think of only one strong difference between this code and the Recursive-
TestSuite worth mentioning: RecursiveTestSuite’s filter has a single “accept”
method, whereas DirectorySuiteBuilder tests the class object and the class name
separately. You may prefer the former because it is simpler. Deciding which tool
to use is largely a matter of preference and depends mostly on which tools you are
already using. If you are already using GSBase or JUnit-addons for something else,
then stick with that package. There is talk between Mike Bowler and Vladimir
Bossicard of joining the projects, anyway.

◆ Related

■ 2.6—Test an interface

■ 4.4—Collect all the tests for your entire system

■ 4.6—Separate the different kinds of test suites

Listing 4.3 Eliminating abstract classes from a test suite using DirectorySuiteBuilder

Include only
concrete classes

Do not filter based
on class name

Use the
filter we
created

Look in the
directory

test/classes
for tests

120 CHAPTER 4

Managing test suites
■ GSBase (http://gsbase.sourceforge.net)

■ JUnit-addons (http://junit-addons.sourceforge.net)

4.6 Separate the different kinds of test suites

◆ Problem

You have different kinds of tests—Programmer Tests, Customer Tests, End-to-End
Tests—and you want to collect all the tests of a particular type to run them as a sin-
gle suite.

◆ Background

As your project increases in size and in scope, you will build many different kinds
of tests. Most commonly, you will have Programmer Tests and Customer Tests.
You will want to be able to build a test suite from just the Programmer Tests
because they generally execute more quickly and tend not to rely much on exter-
nal resources (such as a database) that may not always be available. You will want
to be able to build a test suite from just the Customer Tests when you want to ver-
ify that your team is progressing in the direction that the customers or end users
need. There are a number of ways to keep the two separate, and this recipe
explores a few techniques that have worked well.

◆ Recipe

You have several options are your disposal, which we highlight here and then dis-
cuss in detail in the next section:

■ Maintain separate IDE projects for each kind of test. This is supported very
well by most Java IDEs, but if you’re using CVS you have to work harder to
coordinate changes across the CVS module boundary.

■ Maintain a separate test source tree for each kind of test, but in the same
CVS module. While Ant supports this complex project structure, Eclipse
(for one) does not.

■ Classify each individual test case class and then use RecursiveTestSuite and
TestFilter (see recipe 4.5, “Scan the file system for tests”) to collect the test case
classes that fit each classification. An easy way to differentiate Customer Tests
from the rest is have them implement a tag interface called CustomerTest.14

14 A tag interface is a Java interface with no methods. You can use these tag interfaces and simple instanceof
checks to classify your classes. The most commonly used tag interface is java.io.Serializable.

121Separate the different kinds of test suites
There are likely others, but one of these three will satisfy your needs.

◆ Discussion

Your first option is to maintain separate test source trees, just as we recommend in
chapter 3. It is easy to use RecursiveTestSuite to collect all the tests in the Pro-
grammer Tests source tree without worrying about the tests in the Customer Tests
source tree. If you are using a project-based IDE such as Eclipse, then keep the dif-
ferent kinds of tests in different projects. In such an environment, this is the
source code layout that we recommend. This option’s one downfall is that you
may need to coordinate changes to multiple projects in your source control repos-
itory, particularly if you use CVS. Each project is stored in its own CVS module, and
CVS does not directly support versioning multiple modules together. To simulate
this, you need to tag the modules with the same tag name to signify that those ver-
sions of the various projects go together. If you are using Subversion, which sup-
ports global versioning, this is not an issue; but until Subversion releases version
1.0, CVS will likely continue its dominance in the source control arena.15 What
should you do, then, if you need to coordinate changes across all the different
kinds of tests you write and you are using a system such as CVS?

You can have multiple source trees within the same CVS module: there is cer-
tainly nothing to stop you; however, some IDEs do not support building from mul-
tiple, different source trees into different destination directories. (Fortunately,
Eclipse does support this feature, although you have to enable it on a project-by-
project basis.) You could move to Subversion, which supports global versioning,
but there is another, less drastic solution that may be right for your project.16

The last solution we recommend is one we have used with success: identify each
test case class as a Programmer Test or a Customer Test or an Integration Test (or
whatever kind of test) by implementing a tag interface. Specifically, we recom-
mend that your Customer Test case class implement the interface CustomerTest,
and the other test case classes follow suit. You can then build your test suite using
GSBase’s RecursiveTestSuite utility and its accompanying TestFilter. (See rec-
ipe 4.5, “Scan the file system for tests,” for details on using RecursiveTestSuite.)
In this case, the test filter you build accepts test classes that implement the desired
tag interface. Listing 4.4 shows an example of collecting all the Customer Tests,
assuming that you identify them with a tag interface called CustomerTest.

15 Subversion was nearing version 1.0 as we wrote this and more than likely has been released by the time
you read this.

16 Nothing against Subversion, but old habits die hard.

122 CHAPTER 4

Managing test suites
import junit.framework.Test;

import com.gargoylesoftware.base.testing.RecursiveTestSuite;
import com.gargoylesoftware.base.testing.TestFilter;

public class AllCustomerTests {
 public static Test suite() throws Exception {
 return new RecursiveTestSuite("classes", new TestFilter() {
 public boolean accept(Class eachTestClass) {
 return (
 CustomerTest.class.isAssignableFrom(
 eachTestClass));
 }
 });
 }
}

The standard Java class Class provides the method isAssignableFrom() to answer
the question, “Can I refer to an instance of that class through a reference to this
class?”17 For example, List is assignable from ArrayList, because we can assign an
ArrayList to a List reference.18 The choice of method names is a little clunky, in
our opinion. If we had an instance of the test case class, we could have asked the
simpler question, “Is testObject instanceof CustomerTest?” Still, you cannot
fault GSBase for wanting to filter out unwanted test case classes before any
instances of them are created, so we’re stuck with a slightly more unwieldy way of
filtering out the test case classes that are not Customer Tests. If it annoys you
more than it annoys us, then simply change RecursiveTestSuite. That’s what
open source is all about.19

◆ Related

■ 4.5—Scan the file system for tests

Listing 4.4 Collecting tests that implement the CustomerTest interface

17 It’s worth noting that MyClass.class.isAssignableFrom(object.getClass()) is the same as
object instanceof MyClass.

18 In object-oriented shorthand, an ArrayList is-a List.
19 That is, the freedom to change software that doesn’t work as you need it to, not randomly throwing away

other people’s hard work.

Does eachTestClass
implement CustomerTest?

123Control the order of some of your tests
4.7 Control the order of some of your tests

◆ Problem

You have a test case class with some tests that need to execute in a particular order
and others that do not. You want to specify the order of the order-dependent tests
without worrying about the order of the rest of the tests.

◆ Background

If you follow the instructions in recipe 4.2, “Collect a specific set of tests,” then
you are forced to specify the order of all the tests in your test case class; otherwise,
you remain at the mercy of JUnit’s arbitrary ordering of your tests.20 This can be
annoying if only 3 of your 22 tests need to execute in a certain order. What you
would really like to do is identify the order of a few tests, and let JUnit do the rest.
Because JUnit doesn’t seem to handle this situation very well, it is worth asking,
“How did we get into this mess in the first place?” Actually, it’s not very unusual.

Let’s say you have a suite of order-dependent tests. Maybe you’re writing tests
for a legacy system, perhaps you have some End-to-End or Integration Tests in
which multiple tests use a fixed fixture,21 or you might have inherited tests from
an uninspired programmer—it could be anything. Your goal is to refactor the
tests in the direction of total test isolation, considered a good practice among
JUnit practitioners. If you build your test suite using the suite() method, you
have no way to know whether your incremental changes are really moving you in
the direction of test isolation, because the order of the tests in your suite()
method determines the order in which JUnit executes the tests. You’re not get-
ting that warm, fuzzy feeling that you’re headed in the right direction.

Even if you can’t refactor this way, you’d like to have as much test isolation as
you can have, given the current tests. JUnit doesn’t seem to support what you’re
trying to do.

◆ Recipe

GSBase to the rescue! Mike Bowler ran into this problem on a project and
decided to write a test suite builder that guarantees the order of some tests but

20 If you think you “know” the order in which JUnit automatically extracts tests from a test case class, then
throw that information away as quickly as possible. JUnit makes no test-order guarantee. If you rely on
its current implementation, and then it changes, you’ll wish you hadn’t “known” quite so much!

21 Try saying that five times in a row.

124 CHAPTER 4

Managing test suites
leaves the rest to the order in which JUnit decides to execute them. He calls this
an OrderedTestSuite. Using the OrderedTestSuite class is simple:

1 If your test case class does not already have a suite() method, create one.
Refer to recipe 4.2, “Collect a specific set of tests,” if you need detailed
instructions.

2 Code your suite() method to create an OrderedTestSuite from your test
case class, specifying as a list the names of the tests you wish to execute in
a particular order. Return this OrderedTestSuite object.

It sounds simple, as it should, because it is. Here is an example:

public static Test suite() {
 String[] orderDependentTests = new String[] {
 "testQueryWithNoAccounts",
 "testInsert",
 "testInsertAccountExists",
 "testQueryWithOneAccount",
 "testDelete"
 };
 return new OrderedTestSuite(
 AccountDataStoreTest.class, orderDependentTests);
}

Let us look at how we arrived at this solution. Consider a test case class from an
online banking application that verifies some basic operations on a data store for
bank accounts. The person writing these tests decided it would be best to have the
tests execute in a particular order; that way, each test does not need to set up and
tear down its own fixture each time.22 After some trial and error, you have deter-
mined that there are only five tests that need to run in a certain order:

1 Querying the accounts when there are none should return an empty collec-
tion of accounts.

2 Inserting a new account should work.

3 Inserting the same account a second time should fail with a duplicate key
exception.

4 Querying the accounts with some accounts in the data store ought to
return those accounts.

5 Deleting an existing account should work.

22 The performance benefit seems tempting, and the apparent simplicity of the tests seems tempting, but
believe us, you will feel much more pain later on. See recipe 4.1, “Let JUnit build your test suite.”

125Control the order of some of your tests
There are other tests, though, that could be run in any order:

■ Querying a certain account that isn’t in the data store should fail with
“object not found.”

■ Deleting an account that doesn’t exist should fail with “object not found.”

■ Inserting a number of accounts in a row and then performing a mass delete
should work.

■ Performing a mass delete on no accounts should do nothing.

There may be more, but this second list of tests has a common fixture: an empty
account data store. JUnit could execute them before or after executing the tests
you care about—either works. By using OrderedTestSuite, JUnit can execute the
first set of tests in the order you specify them and then execute the second set of
tests in whatever order it chooses. Our example shows specifying the first set of
tests as order-dependent but makes no explicit mention of the second set. It sim-
ply lets JUnit do its job. This is exactly what we are looking for.

◆ Discussion

We have said before—and will say again—that you should strive for 100% test isola-
tion. Every time we have decided that test isolation is not important, it eventually
slapped us in the face and showed us who is boss. We also admit that it is not always
easy to achieve total test isolation. In particular, we may not have it right now. Even
if you are an avid Test-Driven Development practitioner, you may inherit some
tests that are order dependent. You can use OrderedTestSuite as a tool to help you
refactor in the direction of total test isolation. Here is the basic approach:

1 Create an OrderedTestSuite that specifies the order of all the tests in the
test case class, just as they are specified in the current suite() method.

2 Select a test to fix, and remove its dependence on the behavior of the pre-
ceding tests.

3 Remove the test you have fixed from the list of order-dependent tests.

4 Repeat until the list of order-dependent tests is empty.

5 Remove the suite() method, and let JUnit build the default test suite for you.

This may be time consuming, but it certainly works. Without OrderedTestSuite,
you would not be able to perform this delicate code surgery incrementally with
the tests as a safety net. Until you experience how calm you are when you make
big changes with tests as a safety net, you don’t know how empowering it can

126 CHAPTER 4

Managing test suites
feel.23 Using OrderedTestSuite in this situation enables a gradual transition to
total test isolation without the risk of breaking the system along the way. In this
way, OrderedTestSuite is invaluable.

Remember that OrderedTestSuite executes the order-dependent tests first,
then the rest. The rest of your tests may assume an empty test fixture—that is, one
in which no data has been changed by a test. If the last of the order-dependent
tests leaves your fixture in an unknown state, then the remaining tests just won’t
work. To overcome this problem, add a fixture barrier at the end of the list of order-
dependent tests. It is a barrier in that it protects the “good tests” from whatever
havoc the “bad tests” might wreak. This is a method that cleans up the fixture,
placing it in the state that the remaining tests expect. We usually call this method
resetFixture(). Add this method to your class and code it to reset the fixture, as
in this example:

public static Test suite() {
 String[] orderDependentTests = new String[] {
 "testQueryWithNoAccounts",
 "testInsert",
 "testInsertAccountExists",
 "testQueryWithOneAccount",
 "testDelete",
 "resetFixture"
 };
 return new OrderedTestSuite(
 AccountDataStoreTest.class, orderDependentTests);
}

This change causes JUnit to call resetFixture() after executing the order-depen-
dent tests you’ve specified, creating a sparkling clean environment for the rest of
the tests to use. Once you have refactored the remaining tests to have total test iso-
lation, remove resetFixture(). This solution is a hack, and JUnit will erroneously
report resetFixture() as a passed test; but because it is a temporary solution
you’re working toward removing, we promise not to call the JUnit Police.

It seems strange to view such a useful piece of software as something that you
hope never to use and as something you want out of your code as soon as possible,
but it is still an important tool in your arsenal as a JUnit practitioner.

23 J. B. once spent 9 days changing 60% of a system because of massive database schema restructuring. The
only reason it could be done in 9 days was because the system had a comprehensive suite of JUnit tests. Oth-
erwise, large sections would had to have been rewritten, and no one knows how long that would have taken.

127Build a data-driven test suite
◆ Related

■ 4.1—Let JUnit build your test suite

■ 4.2—Collect a specific set of tests

4.8 Build a data-driven test suite

◆ Problem

You want to build a suite that runs the same test many times with different data.

◆ Background

The obvious way to do this with JUnit is simple, but tedious. Let us describe how
we first experienced this tedium.

We had a method we wanted to test, so we wrote a test. This first test verified a
simple case and was easy both to write and to make pass. The next test tried a slightly
more complex case, but it too was simple to write and make pass. At that point we
had two test methods that looked very similar. The next test tried a boundary condi-
tion, where the output was a little different. We wrote this test, made it pass, and
then saw the amount of duplication in our tests. All three tests did essentially the
same thing: they invoked the same methods on the same kinds of objects. The only
differences were the method parameters and the expected results. The names of
the methods even showed some duplication: each test method’s name had both the
name of the method we were testing and the particular condition we were testing.
We wanted to do something about all this duplication.

Being good little programmers, we factored out the common parts of the tests
into a method that performed the core of the test by accepting the input and
expected result as parameters. We called this method doTest() to indicate that it
was actually performing the test. We changed all the JUnit test methods to call
doTest() with the various parameters. This solution pleased us, but every time we
wanted to test a new boundary condition, we had to add a test method that did
nothing more than invoke doTest() with a new set of parameters. If all we’re
doing is adding new test data, why are we writing code? We should just be adding
data somewhere.

This recipe describes how to parameterize a test case so that adding new tests is
as simple as adding the new test data. These kinds of tests are generally referred to
as data-driven tests.

128 CHAPTER 4

Managing test suites
◆ Recipe

First, you need to build a Parameterized Test Case. This is a test case class that
defines a single test method but includes a custom suite method that provides the
data for each test. The suite method builds a suite of tests, each test executing the
same test method but providing a different test fixture for each instance of the
test. The fixture contains the input to the test and the expected results. The end
result is a suite of test objects, each of whose test method is the same, but whose
test fixture is different. JUnit can then execute the resulting test suite, executing
each test on its own, different fixture. Here is a sketch of how to transform a gar-
den variety test case class into a Parameterized Test Case:

1 If you have not done so already, factor out the common parts of your
test—what we call the engine of the test—into its own method. Call the
method doTest(). Its parameters will be the input to the method under test
and the result you expect.

2 Change each test method to call doTest() with the appropriate parameters.

3 At this point, you have a test case class whose test methods all delegate to
doTest() and otherwise only specify the input and expected result for
each test. Factor that data out into a test fixture.

4 Create a constructor for your test case class whose parameter list matches
the parameter list of doTest(). Your constructor should call super
("doTest") and then store the parameters in instance-level fields. For sim-
plicity, name the fields the same as the parameters to doTest().

5 Create a suite() method to build a custom test suite.

6 For each test method in your test case class, take the parameters you pass
to doTest() and use them to create an instance of your test case class. Add
this test object to the test suite. Remove the test method.

7 Once all the test methods have been removed, remove the parameter list
from the method doTest(). It should now resemble a test method in that
it is public, it occurs at the instance-level, it has no parameters, and it has
no return value. Because you have added fields with the same name as the
parameters to doTest(), the method should still compile.

8 Consider renaming doTest() to something that better reveals the intent of
the test. Remember to change the first line of the new constructor to match
the new name of this method.

129Build a data-driven test suite
You end up with a test suite created from test objects that correspond to the test
methods you had written by hand before. Your test data was formerly scattered
among the various test methods, but now it is found in one place: your new
suite() method. This makes it easier to see at a glance all the data you use in your
test suite.

To illustrate this technique, let us return to our Money class and consider a
problem that Martin Fowler raises in Patterns of Enterprise Application Architecture:
allocating an amount of money evenly to multiple accounts. Although splitting
money n ways seems like a simple problem, people tend to be very concerned
about rounding problems when their money is involved, so it is important to get
this algorithm right.24 The essence of the problem is that blindly rounding off to
the nearest penny either loses money or creates it out of thin air, neither of which
makes everyone happy. Because concrete examples are always better, consider
how $1,000 should be split 6 ways: 2 of every 3 accounts receives $166.67, the
other $166.66. In total, 4 accounts should receive $166.67 each and 2 accounts
$166.66 each. The total remains exactly $1,000. Blindly rounding would have cre-
ated two cents where there were none.25

You will want to have a number of these tests, with different amounts to split
and different ways to split them. Each test does essentially the same thing: take an
amount of money, split it some number of ways, and then check that the accounts
received a fair “cut” of the money. The engines of the tests are the same, but the
input and expected output are different; so we push the data into our custom
suite() method, as you can see in listing 4.5.

public class AllocateMoneyTest extends TestCase {
 private Money amountToSplit;
 private int nWays;
 private Map expectedCuts;

 public AllocateMoneyTest(
 Money amountToSplit,
 int nWays,
 Map expectedCuts) {

 super("testAllocate");

24 There are a surprising number of ways to get it wrong.
25 Printing money causes inflation, which leads to the overall collapse of the economy. Programmers can

do real damage when they put their minds to it.

Listing 4.5 AllocateMoneyTest

Must match test
method name

The test parameters
become the fixture

130 CHAPTER 4

Managing test suites
 this.amountToSplit = amountToSplit;
 this.nWays = nWays;
 this.expectedCuts = expectedCuts;
 }

 public static Test suite() throws Exception {
 TestSuite suite = new TestSuite();

 Map oneGSixWays = new HashMap();
 oneGSixWays.put(new Money(166, 66), new Integer(2));
 oneGSixWays.put(new Money(166, 67), new Integer(4));
 suite.addTest(
 new AllocateMoneyTest(
 new Money(1000, 0),
 6,
 oneGSixWays));

 Map oneGTwoWays =
 Collections.singletonMap(
 new Money(500, 0),
 new Integer(2));
 suite.addTest(
 new AllocateMoneyTest(
 new Money(1000, 0),
 2,
 oneGTwoWays));

 return suite;
 }

 public void testAllocate() {
 List allocatedAmounts = amountToSplit.split(nWays);
 Map actualCuts = organizeIntoBag(allocatedAmounts);
 assertEquals(expectedCuts, actualCuts);
 }

 // A bag is a collection of objects that counts the
 // number of copies it has of each object.
 // The map's keys are the objects and the values are
 // the number of copies of that object.
 private Map organizeIntoBag(List allocatedAmounts) {
 Map bagOfCuts = new HashMap();

 for (Iterator i = allocatedAmounts.iterator();
 i.hasNext();
) {

 Money eachAmount = (Money) i.next();
 incrementCountForCutAmount(bagOfCuts, eachAmount);
 }
 return bagOfCuts;
 }

Creates the
first test

Creates the
second test

131Build a data-driven test suite
 private void incrementCountForCutAmount(
 Map bagOfCuts,
 Money eachAmount) {

 Object cutsForAmountAsObject =
 bagOfCuts.get(eachAmount);

 int cutsForAmount;
 if (cutsForAmountAsObject == null) {
 cutsForAmount = 0;
 }
 else {
 cutsForAmount =
 ((Integer) cutsForAmountAsObject).intValue();
 }

 bagOfCuts.put(
 eachAmount,
 new Integer(cutsForAmount + 1));
 }
}

The key points here are that you have created a test fixture from the old test
parameters, your constructor must specify the test method name when calling
super(), and you create a test object for each group of data you’d like to use in
your test. These are the features of a Parameterized Test Case.

◆ Discussion

Note that although we named our test method testAllocate(), following the JUnit
naming rules, we did so as a matter of convention rather than out of necessity.
Because we built the test suite ourselves, we could have named the method any
way we like, as long as it was otherwise a valid test method (meaning it is public,
occurs at the instance-level, has no parameters, and has no return value). What is
important is that the name you pass into the test case class’s constructor is the name
of your test method. JUnit still uses reflection to execute your test method. Unless
you have good reason to change the name, we recommend following the conven-
tion. It is simply easier for everyone that way.

One drawback to this approach is that although each test operates on different
data, all the tests in your suite will have the same name. This can make it difficult
to determine exactly which test is failing from JUnit’s output alone. One simple
solution is to add the test input into the failure messages for each assertion in the
test. This would work, but it is better to have meaningful names. You can achieve

132 CHAPTER 4

Managing test suites
this by overriding runTest() and placing your test code directly inside that
method. This way you sidestep JUnit’s default behavior, which is to invoke a method
whose name matches the name of the test case.26 If you override runTest(), you
can pass a more meaningful name as a parameter to the constructor of your test
case class. For a complete example, refer to solution A.2, “Parameterized Test Case
overriding runTest().”

The method you want to test may have a few different ways to respond to its
input, depending on whether the input is valid. It is common, for example, for a
method to process valid input but throw an exception on invalid input. In this
case, you need to change your Parameterized Test Case a little. Build one test
method for each major kind of behavior: one test verifies that the object under
test correctly processes valid input; the other test verifies that the object throws
the correct exception when it receives invalid input (see recipe 2.8, “Test throw-
ing the right exception”). When you build the test suite, remember to choose the
appropriate test method based on the input you plan to pass in—valid or invalid.
You may decide to implement these different behaviors in separate Parameterized
Test Cases, but if there are only a few data sets, it may be simpler to combine the
two into a single test case class. As always, experiment with each solution and com-
pare the results.

It is common to move the test data to a file, a database, or some other location
away from the test code. This makes adding new test cases simpler because it
avoids rebuilding Java code. For an example of externalizing test data to an XML
document, see recipe 4.9, “Define a test suite in XML.”

NOTE Don’t try this with Cactus!—If you are using Cactus for in-container J2EE
testing (see chapter 11, “Testing Enterprise JavaBeans”), then you cannot
employ this technique to build a data-driven test suite. Cactus instantiates
TestCase objects when executing tests on the server, which means that
although you may be passing in test fixture objects on the client side,
Cactus does not pass those fixture objects into the server-side test, render-
ing that fixture data useless for in-container testing. Your only recourse is
to extract a method containing the test logic, such as the doTest()
method from this recipe, and then write a test method for each combina-
tion of parameters that invokes doTest(). The main drawback is that
adding new test data requires changing Java code rather than just data.
You can probably generate the Parameterized Test Case class source code
using something like the Velocity template engine, but we recommend

26 This is part of the machinery that performs automatic test suite extraction from your test case class.

133Define a test suite in XML
doing so only after you have analyzed the trade-off between manually
maintaining the test and building the code generator (and then integrat-
ing it into your build and test environment).

◆ Related

■ 2.8—Test throwing the right exception

■ 4.9—Define a test suite in XML

■ A.2—Parameterized Test Case overriding runTest()

4.9 Define a test suite in XML

◆ Problem

You want to externalize a data-driven test suite’s data in an XML document. To do
so, you need to know how to create a TestSuite object that contains test objects
corresponding to the “test” elements in your XML document.

◆ Background

JUnit’s design assumes that different tests test essentially different things. When
we wrote about extracting a test fixture (recipe 3.4, “Factor out a test fixture”), we
mentioned that of the three main parts of a test, it is usually only the first part that
we duplicate among many tests: creating the objects to test. The other two parts—
invoking methods and checking the results—vary from test to test; if they didn’t,
we would have to question why we have five tests when one might do an equally
good job. This is the reason that, by default, each test is defined as a separate test
method inside a test case class. This is certainly not the only way to write tests.

If you’re reading this recipe, then likely it is because you have a small suite of
data-driven tests that you’d like to run. These tests all invoke the same methods
on the same objects, but the input and output vary from test to test. You started
writing a few test methods, factored out the common part of the test—the engine—
and you now have a bunch of test methods, each invoking the one method that
executes the engine. Although you need only one method to implement the logic
behind your test, you have written a number of test methods that simply invoke
the engine with different parameters for the input and expected result. All that
duplication! You feel that there must be a better way.

Don’t worry, because there is, and if you have chosen XML as the way to define
your test case input and output, this recipe will show you how to integrate your
XML document into a JUnit test.

134 CHAPTER 4

Managing test suites
◆ Recipe

The following is a sketch of the solution:

1 Create an XML document to store the data for your tests. The document
structure includes one XML element for each test. Each test element
includes an XML element for the input and another XML element for the
expected result.

2 Create a Parameterized Test Case using the instructions in recipe 4.8,
“Build a data-driven test suite.” In the process, you will create a custom
suite method.

3 Change your custom suite method so that it loads your XML document,
reads the input and expected result for each test, and then calls your new
constructor to create the corresponding test object. Your suite()
method returns a TestSuite containing a test object for each test in your
XML document.

In essence, you are going one step beyond the Parameterized Test Case by push-
ing the test data out into a file—in this case, an XML document. Listing 4.6 shows
an example of an XML document describing a test for the “allocate money” prob-
lem we describe in recipe 4.8.

<tests name="Money Allocation Tests">
 <test>
 <input>
 <amount-to-split>$1000.00</amount-to-split>
 <number-of-ways>6</number-of-ways>
 </input>
 <expected-result>
 <cut>
 <amount>$166.67</amount>
 <number>4</number>
 </cut>
 <cut>
 <amount>$166.66</amount>
 <number>2</number>
 </cut>
 </expected-result>
 </test>
</tests>

Listing 4.6 Test data for splitting money n ways

The input
for this test

One test tag per test

The output
for this test

135Define a test suite in XML
This format should be simple enough to read, although the expected result may
need some explanation. We expect $1,000 split 6 ways to result in 4 accounts with
$166.67 each and 2 accounts with $166.66 each. Because we need to give these
concepts names for our XML document, we say that we expect 4 cuts of $166.67
each and 2 cuts of $166.66 each.

Our task is now to follow the earlier steps and create a Parameterized Test
Case whose data comes from our XML document. Because the entire solution
requires about 200 lines of code—well-factored, of course—we refer you to solu-
tion A.1, “Define a test suite in XML,” to see how we parsed the XML document
into test objects. The result is a suite of data-driven tests whose data source is an
XML document.

◆ Discussion

Although we used XML to define our test data, you don’t need to use XML to
employ this technique. Any text file or other external data format is equally good:
flat file, comma-separated values, or database tables. Ron Jeffries often uses a very
simple file format for his Customer Tests: a kind of rudimentary structured text,
with a section for the input, a section for the actions to execute, and then a section
for the expected result. To see an example, consult Ron’s Adventures in C# series
at www.xprogramming.com.27 The article “The First Customer Test” provides an
example of writing a Customer Test using NUnit, a C# cousin of JUnit. Although
the sample code is C#, most Java programmers do not have problems reading it.
The most important lesson about writing Customer Tests is this: you don’t need a
framework; you need tests. The framework will evolve if you just start writing tests.

◆ Postscript

Not long after we wrote this recipe, we had the opportunity to work with Ward
Cunningham’s Fit framework for the first time (http://fit.c2.com). It is a spread-
sheet- or table-based way to write Customer Tests and may be the next big wave in
testing. This is the framework we’ve been waiting for. Go check it out.

◆ Related

■ 3.4—Factor out a test fixture

■ 4.8—Build a data-driven test suite

■ A.1—Define a test suite in XML

27 Either that or his book Extreme Programming Adventures in C# (Microsoft Press, 2004).

Working with test data
This chapter covers
■ Retrieving test data from system properties
■ Retrieving test data from environment variables
■ Retrieving test data from files on disk
■ Retrieving test data from a database
■ Managing test data using such tools as

Ant, JUnitPP, and DbUnit
136

137Working with test data
Object-oriented software deals with data and behavior. If you are going to test
most software prior to releasing it to users or into a production environment, you
need test data to simulate inputs that trigger behavior you expect to occur when
the software works correctly. Software is commonly written for transforming input
data into different output data. You cannot test whether the system outputs the
correct output data, usually, without providing it with test input data. Software can
also be designed to generate answers from digested input data or to manage data
storage and retrieval. Obviously, testing these software behaviors require a lot of
test data.

JUnit and its extensions are used to test software at a variety of scopes, not just
the unit level. JUnit is great for traditional unit testing and Test-Driven Develop-
ment at the unit scope. It is also good for Integration Testing, often up to the sub-
system level. At higher integration levels and in testing complex subsystems, a JUnit
extension such as Cactus or JUnitEE must be used. Often your organization has its
own in-house test harness based on extensions of JUnit that can be used to test
these higher integration levels. You need different amounts and types of test data,
depending on whether you want to write Object Tests, Integration Tests, or End-
to-End Tests. Keep in mind that the more of the system you test at once, the more
you need to engage the real production system for both retrieving and restoring
test data between runs. This adds complexity to both the tests and the test environ-
ment and makes the task of writing and executing tests more difficult.

Test data should be specialized and designed to force the code under test into
branches and states that are only tested when fed specific inputs. Working with
test data includes parameterizing data in test cases, which means identifying data
that changes from test to test and providing it externally. A simple approach to
parameterizing involves abstracting test data into parameters that can be passed
in, or retrieved dynamically, at runtime rather than hard coded directly into the
test case classes. Parameterization is a good thing because it decouples your tests
and your test data into separate concerns with separate alternatives and solutions
available. Parameterized tests should rely on good, portable Java conventions and
good practices and idioms for dynamically passing data to test cases at runtime. By
the same token, another good practice is to avoid creating test harness infrastruc-
ture until it is needed; at that point, making test data globally available—possibly
even in the test case class itself—makes more sense. A range of gradations exists in
between the two extremes of parameterization and global (class-level) definition.
Generating data dynamically (possibly large amounts of data, as in volume test-
ing) and restoring the state of shared data between test runs are important tasks
for some types of testing, especially database-related tests.

138 CHAPTER 5

Working with test data
If you have test data that does not need to be variable, you probably can hard code
it in your tests. Otherwise, there are several good practices for parameterizing test
data out of test cases. Some techniques use basic built-in Java features, such as sys-
tem properties, command-line arguments to the JVM, the Java Properties API, or
ResourceBundles. While parameterizing data and configuring test cases and suites
with data are the main activities in working with test data, another important activ-
ity is setting up and restoring data to its initial state between test cases or test runs,
preferably with some degree of efficiency so that test run durations are kept to a
minimum. This chapter offers techniques for resetting database data and other
general kinds of data using DbUnit and the JUnit TestSetup Decorator.

Data can come in a variety of forms, from primitive Java data type variables and
Strings, to XML files, to records in database tables. The nature of the data needed
for testing is determined by the responsibilities of the classes under test. Once,
when working on a commercial J2EE application server, we needed a great deal of
test data in the form of EJB JARs, WARs, and EARs because we had to test applica-
tion server responsibilities, such as the ability to deploy, undeploy, and redeploy
J2EE EARs, WARs, and JARs. On another project, which involved human resources
middleware applications, we needed test data in the form of large hierarchical
data sets of managers and employees in a relational database. At both companies
we needed different, smaller amounts of file-based test data to test service and
application configurations, security settings, and utility classes. We also used envi-
ronment variables and system properties to glue it all together and make test har-
nesses and test suites portable and easy to run on different user environments,
platforms, and operating systems. Setting up and maintaining different types of
test data is an important and time-consuming investment for unit and integration
testing large and complex systems. Using portable solutions for these concerns
even at the level of individual test cases enforces best practices, which is especially
important as you move up the scale from utility classes to small command-line
applications, to middleware applications, application servers, and so on. This chap-
ter covers working with data in a variety of formats including XML, properties files,
text files, relational databases, and system and environment variables. And it cov-
ers some best practices and useful JUnit extensions, such as JUnitPP and DbUnit,
for working with databases and homegrown test data repositories.

5.1 Use Java system properties

◆ Problem

You need a quick and easy way to set and retrieve variable data in your tests at runtime.

139Use Java system properties
◆ Background

Sometimes you need a simple and quick way to pass a small amount of variable
data to your test cases. Hard coding the data and recompiling the test case every
time you want to change a value is more time consuming and less efficient than
making the variable something that can be passed in on the command line. A
database is too heavy duty to set up and use in many situations (or the database
might not be designed or finished when you need to be coding and testing). Even
reading in a properties file to retrieve variables can be time consuming and cause
undesirable overhead if there are only a few variables.

You shouldn’t have to go to great lengths just to parameterize some test data
for a one-off test or a test that occurs early in the project that you’ve written to try
out a new API or investigate a design issue. Yet it would be nice to always stay
within the realm of portable Java solutions. You should never need to hard code a
path to a file on your Windows C: drive in a test case when you might turn around
and e-mail that test to your colleague who wants to run it quickly from the com-
mand line without editing the source and recompiling it.

◆ Recipe

Use Java system properties on the command line, in your IDE settings, or in Ant to
pass parameterized data values into the system environment of the JVM where
they can be retrieved using methods of the java.lang.System class.

There are several ways to set a system property, depending on the way you launch
tests. How you set the property also depends on whether you want to set the prop-
erty programmatically or outside your test. The simplest is to key it in at the com-
mand prompt using the standard command-line option -Dpropertyname=value
syntax accepted by the java application launcher. The propertyname is the name of
the system property you want to create, and value is what you want the property to
be set to, both of which can be any valid Java string. You can choose any name you
want, but if you choose a name of one of the standard Java system properties, you
override its value (which you probably don’t want to do). Most of the standard prop-
erties begin with "java." but you can refer to a list of their names (also called keys)
in the Javadoc for java.lang.System.getProperties().1

1 The Javadoc does not contain a complete list—the keys listed there are guaranteed to be available, but
there may be more.

140 CHAPTER 5

Working with test data
The following command-line snippet demonstrates setting two system proper-
ties. The first is given the uninteresting name FOO and the value BAR and the sec-
ond is given the name spaces.are.ok and the value “string with spaces”:

java –DFOO=BAR –Dspaces.are.ok="string with spaces" [class] [arguments]

ANT TIP In Ant, system properties can be passed directly to the <junit> task with
one or more <sysproperty> subelements as shown here. In an Ant
build file, this is how you set the same FOO and spaces.are.ok proper-
ties we set on the command line in the previous example.

<junit printsummary="yes" dir="${basedir}" fork="yes">
 <sysproperty key="FOO" value="BAR"/>
 <sysproperty key="spaces.are.ok" value="string with spaces"/>
 <test name="some.company.SomeTestCase"/>
</junit>

NOTE Eclipse—If you are running your tests inside the Eclipse IDE, you can set
system properties for JUnit test runs by using the Run wizard for JUnit
run configurations as shown in figure 5.1. Other IDEs (NetBeans, IntelliJ
IDEA, and JBuilder) have similar capabilities for passing system proper-
ties to their built-in JUnit test runners.

Regardless of the execution mechanism (whether you use the command line, Ant,
or Eclipse), you access these system property values from your test by using

Figure 5.1
Setting system property arguments
in Eclipse’s JUnit Run wizard

141Use Java system properties
java.lang.System.getProperty(String key). The name you give the property on
the command line or in the key attribute of the <sysproperty> subelement deter-
mines the string you must pass to System.getProperty(String key) to retrieve its
value. Listing 5.1 shows a complete example of getting two system properties and
using them in an assertion.

package junit.cookbook.testdata;

import junit.framework.TestCase;

public class SystemPropertyDemo extends TestCase {
 private String fooProperty = System.getProperty("FOO");
 private String spacesProperty = System.getProperty("spaces.are.ok");

 public void testSystemProperty() {
 if (fooProperty == null) {
 fail("Expected 'FOO' to be set as a system property.");
 } else {
 assertEquals("BAR", System.getProperty("FOO"));
 }
 }
}

You can run SystemPropertyDemo with any test runner, but here is the command
line to run it with the text-based test runner:

java –DFOO=BAR –Dspaces.are.ok="string with spaces" -cp .;junit.jar

➾ junit.textui.TestRunner junit.cookbook.testdata.SystemPropertyDemo

◆ Discussion

This recipe is most useful for String variables or primitive data type variables whose
values can easily be converted from a String using the standard JDK conversion
methods, such as Double.parseDouble(String s) or Boolean.getBoolean (String s).

In addition to being useful for dynamically setting a small number of variable
values, this recipe is useful for setting configuration variables for your test frame-
work. For example, a system property may be used to set a default global or package-
level logging threshold (handy if you’re using a logger for logging test results or
test debug messages).

The overloaded System.getProperty(String key, String defaultValue) method
returns a default value if a system property’s value has not been set. For example,
you may set a default value for the database server hostname to use when running a

Listing 5.1 SystemPropertyDemo

142 CHAPTER 5

Working with test data
test locally on your desktop, which you know will be overridden with QA’s test data-
base hostname during the automated build. Here’s an example of that usage:

String hostName = System.getProperty("database.hostname","localhost");

Two particular built-in Java system properties are worth special mention not only
because they are always available from any Java runtime on any platform but also
because they are relative to the current user’s name and platform-specific temp
directory. They are user.home and java.io.tmpdir. On Windows XP, these have
the following values (“My User” would be replaced with your actual user name on
your machine):

user.home = C:\Documents and Settings\My User
java.io.tmpdir = C:\DOCUME~2\MYUSER~1\LOCALS~1\Temp\

On UNIX, user.home usually defaults to something similar to /home/myuser and
java.io.tmpdir resolves to /tmp.

The user.home property can be useful for reading in user settings related to test
data configuration, such as the local test data repository location. The java.io.
tmpdir property can be useful for writing out temporary data files during testing,
and it is the directory in which java.io.File.createTempFile(String prefix,
String suffix) writes temporary files.

◆ Related

■ 5.6—Use a file-based test data repository

5.2 Use environment variables

◆ Problem

You need an easy way for users to set some global test data, such as the location of
a test file, a data repository, or database connection parameters.

◆ Background

We often distribute Java applications with a Windows *.bat file, a UNIX shell script,
or an Ant build script as a convenience wrapper to enable end users to execute our
apps. It is not uncommon to have several command-line options and arguments
needing to be passed to the JVM when starting your application. But your users
might not be savvy enough or don’t need to be bothered with a lot of command-line
parameters every time they have to execute your application. Your product may

143Use environment variables
actually ship as a Weblogic domain instance, or an EAR file that has to be deployed
on JBoss. Think of your product as a black box that users should be able to execute
and run as easily as possible without knowing about implementation details such as
whether they are even running a Java program. These are all reasons why you may
want to provide a simplified wrapper script for your application, hiding the details
of how to deploy and execute it. Such a script would depend on one or more system
environment variables to configure some fundamental parameters of your tests,
such as which database server to use or where to write out test results files.

Your first users are probably Release Engineering people or QA staff who will
run your unit tests as part of qualifying builds. If a test breaks, someone in QA or
development will probably need to execute the failing test on their desktop in
order to debug the cause of the failure. Other users might be systems integrators
or a professional services team completely outside your department or company,
who use a set of unit tests shipped with your product as a regression test suite for
their extensions, customizations, or configuration of your code. In cases such as
these, there is an easy way to decouple your tests from their execution environ-
ment. Store information about the execution environment in environment vari-
ables and then pass those into your JUnit tests using Java system properties.

◆ Recipe

Require a system environment variable to be set prior to running your tests, and
code your application wrapper script so that it passes the OS environment variable
to your application as a Java system property (see recipe 5.1, “Use Java system
properties”). Optionally, perform a check in the wrapper script to exit and warn
the user if the variable has not been set.

For example, say that you want to access a critical operating system–specific
variable, such as the APP_HOME environment variable in this UNIX bourne shell script:

#!/bin/sh
if [-z "$APP_HOME"]; then
 echo "Please set your APP_HOME environment variable"
 exit 1
fi
if [! -e "$APP_HOME"]; then
 echo "Folder '$APP_HOME' does not exist."
 exit 1
fi
java -DAPP_HOME=$APP_HOME PrintSystemVar

Now the APP_HOME variable can be retrieved in a test class using System.getProp-
erty(), as shown in listing 5.2.

144 CHAPTER 5

Working with test data
public class PrintSystemVar {

 public static final String APP_HOME = "APP_HOME";

 public static void main(String[] args) {
 System.out.println(PrintSystemVar.APP_HOME
 + " = " + getAppHome());
 }

 public static String getAppHome() {
 return System.getProperty(PrintSystemVar.APP_HOME, ".");
 }
}

This program declares a constant APP_HOME String variable and uses it to get the
Java system property by that name and print it.

◆ Discussion

Relying on a HOME environment variable is a good practice and a convention many
professional software users are accustomed to using. Several popular applications
that run in Java developer, testing, and production environments require their
own environment variables. Here are a few common examples:

■ Ant: ANT_HOME

■ Java: JAVA_HOME, CLASSPATH

■ Maven: MAVEN_HOME, MAVEN_REPO

■ Weblogic: BEA_HOME, WL_HOME

Environment variables and Java system properties play the same role in decou-
pling your tests from the environment in which they execute. The principal differ-
ence between the two approaches is that environment variables are best used to
hide operating system details, such as where third-party libraries are installed,
whereas Java system properties are best used to hide test environment–specific
details, such as the location of test data files or test suite descriptors (such as we
described in recipe 4.9, “Define a test suite in XML”).

◆ Related

■ 5.1—Use Java system properties

Listing 5.2 PrintSystemVar

Use “.” if APP_HOME
property not defined

145Use an inline data file
5.3 Use an inline data file

◆ Problem

You need a configuration file or input file for your test, and you don’t want to
worry about where the file should be stored in source control or bother writing
special setup code in a test case to read it from the file system.

◆ Background

If you are testing a class that operates on small chunks of text or small input files
and you just need to test a few different scenarios (say a dozen or less), it is proba-
bly easiest and fastest to code the file snippets in the test class.

Imagine that you have an application to test. A configuration system is planned
but not yet implemented, so all you have in the meantime is a flat configuration
file. Your test cases include configuration tests, and to cover a class fully with tests
you need to use several different configuration files—maybe a different one for
each test method. You could read the file in a BaseTestCase extension class from
which all your other test cases could extend and inherit the retrieval mechanism.
But this is already more infrastructure than you need for an elegant solution. The
configuration files are just another type of input file, so consider coding them
statically in the test classes. If at a later date you need less coupling between the
tests and the test files (perhaps the tests are getting difficult to read and maintain
with too many snippets of files statically coded into them), you can easily extract
the files from the tests and save them as files on the file system.

◆ Recipe

Hard code or dynamically build the input file as a String or StringBuffer in your
TestCase and “read” it using a java.io.StringReader instead of reading it from
the file system.

Hard coding the input file is easy enough. Here is an imaginary XML configura-
tion file coded as a String:

String configFile = "<?xml version='1.0'?>"
 + "<services>"
 + "<service name='myService' version='1.0'>"
 + "<service-param name='thread-pool-size'>8<service-param>"
 + "<service-param name='session-timeout'>300<service-param>"
 + "</service>"
 + "</services>";

Now the configuration file can be converted to a byte array using String.getBytes()
and passed to a Reader, which is used to create a new org.xml.sax.InputSource:

146 CHAPTER 5

Working with test data
Reader reader = new InputStreamReader(
 new ByteArrayInputStream(configFile.getBytes()));
InputSource inputSource = new InputSource(reader);

Here is a more flexible example of this technique from a test written for an
XMLUtils class of a web services engine. This method takes a parameter that tells it
what type of data you want the document returned as: a String, StringReader, or
ByteArrayInputStream. The test data XML is hard coded into the getInline-
Xml(String gimme) method. An even more flexible approach is to overload the
method to take more parameters, which are then used inside the method to cus-
tomize the XML document before returning it:

/**
 * This is a utility method for creating XML document input sources
 * for this JUnit test class. The returned Object should be cast to
 * the type you request via the gimme (slang for "give me")
 * parameter.
 *
 * @param gimme is a String specifying the underlying type you want the
 * XML input source returned as; one of "string", "reader", or
 * "inputstream."
 */
 public Object getInlineXml(String gimme) {
 String xmlString = "<?xml version='1.0'?>"
 + "<web-app>"
 + "<display-name>My App</display-name>"
 + "<servlet>"
 + "<servlet-name>MyServlet</servlet-name>"
 + "<servlet-class>"
 + "com.foo.bar.MyServlet"
 + "</servlet-class>"
 + "</servlet>"
 + "<servlet-mapping>"
 + "<servlet-name>MyServlet</servlet-name>"
 + "<url-pattern>servlet/MyServlet</url-pattern>"
 + "<url-pattern>*.select</url-pattern>"
 + "</servlet-mapping>"
 + "</web-app>";

 if (gimme.equals("string")) {
 return xmlString;
 } else if (gimme.equals("reader")) {
 return new StringReader(xmlString);
 } else if (gimme.equals("inputstream")) {
 return new ByteArrayInputStream(xmlString.getBytes());
 } else
 return null;
 }

Build an XML
document
as a String

Choose
how to
return XML
document

147Use a properties file
◆ Discussion

This recipe is a JUnit and Java variation of the UNIX shell-scripting concept of a
herefile where an input data file or list of parameters is stored as text in the shell
script file that calls it. The herefile is then read via standard input as if it were
coming from a separate input source.

One of the main uses we have seen for this recipe is that of storing inline file
snippets for XML parsing-related tests. We’ve also seen this recipe used to store
inline XML configuration files in tests of a service management framework. Both
scenarios are well served by this recipe. The question to ask yourself if you are
considering this technique is, “Am I testing file I/O operations, or am I testing the
processing of data that just happens to come from a file?” An inline data file sep-
arates these concerns and allows you to focus on processing the data rather than
being concerned about where it came from.

There is a performance benefit of using this recipe if you have hundreds or
thousands of tests. With inline file operations, no file is created on or read from
the file system. In-memory file operations don’t take up CPU or disk time or disk
space. They are fast and efficient. Speed and efficiency are good attributes in an
organization or project where you may wind up with anywhere from several hun-
dred to thousands of JUnit tests, each with their own special needs for test data. It
is important to trim the fat around tests to keep them fast and easy to run. Getting
rid of input files for test data in certain circumstances lets your tests travel light.

◆ Related

■ 5.4—Use a properties file

■ 5.5—Use ResourceBundles

5.4 Use a properties file

◆ Problem

You need a quick and easy way to retrieve small amounts of simple, variable data
in your tests at runtime, such as a few Strings or numeric values. You have
reached the point where an actual data file is more useful than any of the tech-
niques covered so far.

◆ Background

As your suites of test cases grow, you will probably find that you need a more
sophisticated and scalable technique than just environment variables and system

148 CHAPTER 5

Working with test data
properties to configure parameterized test data. Herefiles, as described in
recipe 5.3, are useful for situations where the trade-off between hard coding test
data and setting up build infrastructure to support test files is better on the side of
hard coding the data inline. But when you have small, numerous miscellaneous
String and numeric test data variables that you need or want to parameterize, you
need a reusable, general-purpose way to externalize and retrieve test data. If you
work on a team, you need an easy, low-tech yet elegant solution, because everyone
on the team should be sharing good practices and establishing common ways to
do things.

◆ Recipe

Store arbitrary, String-based test data in Java properties files. The Java runtime
provides APIs for accessing data in properties files and specifies a standard, simple
syntax for the properties files themselves.

Java properties files have been around for years and were overused for config-
uring Java applications, much as XML can be overused today for the same thing.
They are handy little files, though, with a simple key=value data format and built-in
APIs for reading and writing them and retrieving data from them. An octothorpe,
also known as the pound sign (#), indicates a comment in a Java properties file.
The API for loading and using properties files ignores anything on a line after an
octothorpe. Comments provide an easy way to remove or add properties not by
deleting them but by simply commenting them out with one octothorpe per line.

The java.util.Properties class provides several methods to load, list, save,
and retrieve properties from Java properties files. As an example, assume we have
a properties file called interest.properties with three properties that we parame-
terized out of our test case (please don’t take our loan calculations seriously):

properties for testing InterestCalculator
interest.rate = 5.5
principal.amount=150000.00
loan.duration.years=15

We pass the location of the interest.properties file to the JVM as a system property
when executing the JUnit test runner:

java -Dtest.data.file=$TESTDATA_HOME/interest.properties
-cp .;junit.jar junit.textui.TestRunner
junit.cookbook.testdata.InterestCalculatorTest

We can easily retrieve the property values as doubles and ints from the properties
file in our test’s setUp() method, as shown in listing 5.3:

149Use a properties file
package junit.cookbook.testdata;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.Properties;

import junit.framework.TestCase;

public class InterestCalculatorTest extends TestCase {
 private double interestRate;
 private double loanAmount;
 private int loanDuration;
 String propertiesFile = System.getProperty("test.data.file");

 public void setUp() throws IOException {
 FileInputStream fis = new FileInputStream(propertiesFile);
 Properties p = new Properties();
 p.load(fis);

 interestRate = Double.parseDouble(
 p.getProperty("interest.rate"));
 loanAmount = Double.parseDouble(
 p.getProperty("principal.amount"));
 loanDuration = Integer.parseInt(
 p.getProperty("loan.duration.years"));
 }

 public void testInterestCalculation() {
 // fake interest calculation
 }
}

InterestCalculatorTest, listing 5.3, demonstrates how to read in a properties
file, get property values from it, and assign them to instance variables in the test
case. The setUp() method throws an IOException because we should let the test
fail if the data file can’t be found. The path to the file is provided by the
test.data.file property.

You don’t have to pull files from the file system. Files have the disadvantage of
having to reside on the file system in a directory somewhere. File systems and path-
and file-related conventions are platform specific and require test data directory
and file location information to be externalized and set in a platform-specific way.
Arguing about where to put test data files and how to name them is a common
problem in team development environments, as is sharing code and testing

Listing 5.3 InterestCalculatorTest

Get test.data.file
system property

Load fis into a java.util.Properties object
via load(InputStream inStream)

Use getProperty(String
key) and String parsing
to retrieve properties

150 CHAPTER 5

Working with test data
conventions to eliminate duplication of effort. Instead, we pull files from the class
path using java.lang.Class.getResourceAsStream(), as shown in the setUp()
method in listing 5.4.

package junit.cookbook.testdata;

import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;

import junit.framework.TestCase;

public class LoadPropsFromClasspathTest extends TestCase {

 String name = "/" + System.getProperty("test.data.file",
 "test.properties");

 public void testLoadedProperties() throws IOException {
 InputStream is = this.getClass().getResourceAsStream(name); C

 Properties p = new Properties();
 p.load(is);

 // We do not recommend using System.out and System.err in tests
 // as a general practice, but here we list the properties to
 // System.out just to demonstrate that they have been found and
 // loaded.
 p.list(System.out); E
 }
}

Prepend “/” to the resource name—see Javadoc for java.lang.Class.get-
ResourceAsStream().

Get the Class instance for this object, and get an InputStream from the file in the
classpath.

Load the file into a java.util.Properties instance.

List the properties to System.out to see their names and values.

Let us run LoadPropsFromClasspathTest with the following test.properties file, just
to see what happens:

test.port=8080
test.hostname=localhost
test.jspfile=index.jsp

Listing 5.4 LoadPropsFromClasspathTest

B

D

B

C

D

E

151Use a properties file
Next we add the directory containing test.properties to our runtime class path.
This way we can retrieve the properties file by invoking java.lang.Class.get-
ResourceAsStream(), listing them out to System.out to demonstrate that they
were loaded:

java –cp .\bin;junit.jar;. junit.textui.TestRunner LoadPropsFromClasspathTest
-- listing properties --
test.jspfile=index.jsp
test.hostname=localhost
test.port=8080

◆ Discussion

When you find that you have enough test data to warrant breaking it up into a sep-
arate data file for each test class, you need to formalize where this data is placed
and how it is accessed. One solution is to use ResourceBundles, as described in
recipe 5.5, “Use ResourceBundles.” However, because ResourceBundles are
intended to be used for localization, you might resist the idea of twisting them
into an API for retrieving test data from String-based files as demonstrated in the
next recipe. We understand. All you need to emulate the functionality you want from
ResourceBundle are Java properties files and some conventions to follow when
adding a test data file for a test case.

The conventions to follow in order to emulate the basic functionality of the
ResourceBundle API are as follows:

■ Create one test data properties file for each of your JUnit test cases that
need their own test data.

■ Name the properties file with the same name or basename (basename is the
test case’s class name minus its packages) as its corresponding test case.

■ Put the properties file in the same package and directory as its correspond-
ing test case or in a separate but identical directory tree in your test data
repository (see recipe 5.6, “Use a file-based test data repository”).

■ Create a method in a base TestCase extension, in a utility class, or in a code
template that always looks up the data properties file the same way for all
your tests. Use File and FileInputStream calls to read and load files from a
separate test data repository. Use java.lang.Class.getResource(String
name) or java.lang.Class.getResourceAsStream(String name) if you stored
the properties files in the same package as the Java classes.

These requirements and more are supported by the ResourceBundle class, so we
might just use that. (See recipe 5.5.)

152 CHAPTER 5

Working with test data
Finally, do note that when you extract test data to files, you need to consider
the corresponding drawbacks, which we describe in chapter 17, “Odds and Ends.”

◆ Related

■ 5.1—Use Java system properties

■ 5.2—Use environment variables

■ 5.5—Use ResourceBundles

■ 5.6—Use a file-based test data repository

■ 17.2—Test your file-based application without the file system

5.5 Use ResourceBundles

◆ Problem

You need an easy, accessible API for retrieving variable data in your tests at run-
time, and you have enough tests to warrant breaking up test data into one data file
per test class.

◆ Background

When you have numerous small String and numeric test variables to parameter-
ize, you need a general-purpose way to externalize and retrieve test data. One
solution is to use Java properties files and devise your own means for finding,
reading, and processing them at runtime. A similar but more formalized and
structured solution is to use properties files with the java.util.ResourceBundle
API. ResourceBundle is a class that implements an algorithm for finding localized
*.properties files and loading them.

◆ Recipe

Use the ResourceBundle API for its resource retrieval features, regardless of
whether you use its localization support. Listing 5.5 shows a new version of Inter-
estCalculatorTest from recipe 5.4, “Use a properties file,” modified to use
ResourceBundle to pick up a properties file from the class path.

package junit.cookbook.testdata;

import java.io.IOException;
import java.util.ResourceBundle;

Listing 5.5 InterestCalculatorTest2

153Use ResourceBundles
import junit.framework.TestCase;

public class InterestCalculatorTest2 extends TestCase {

 private double interestRate;
 private double loanAmount;
 private int loanDuration;
 static final String BASE_NAME
 = "junit.cookbook.testdata.InterestCalculatorTest2"; B
 public void setUp() throws IOException {
 // let ResourceBundle search the classpath and automatically
 // load the corresponding properties file
 ResourceBundle rb = ResourceBundle.getBundle(BASE_NAME); C

 // use ResourceBundle.getString(String key) instead of
 // Properties.getProperty(String key)
 interestRate = Double.parseDouble(
 rb.getString("interest.rate")));
 loanAmount = Double.parseDouble(
 rb.getString("principal.amount"));
 loanDuration =Integer.parseInt(
 rb.getString("loan.duration.years"));
 }

 public void testInterestCalculation() {
 // fake interest calculation stuff using interestRate,
 // loanAmount and loanDuration
 }
}

ResourceBundle’s contract is that the BASE_NAME argument must be a fully quali-
fied class name.

Search the class path with getBundle(String baseName) to load a properties file
matching BASE_NAME.

Retrieve data variables with ResourceBundle.getString(String s).

◆ Discussion

Note that using ResourceBundles doesn’t require any file location to be passed as a
system property. Instead it relies on the properties retrieval algorithm of the
ResourceBundle class. The static ResourceBundle.getBundle(String baseName)
method uses the baseName to look up a properties file in the class path by appending
.properties to the baseName and looking for the resource in the class path of the
current class loader at runtime. Because the name and the path to the test data
file are now the same as that of the TestCase class itself (junit/cookbook/testdata),
it is easy to find using ResourceBundle.getBundle(String baseName). It is also easy

D

B

C

D

154 CHAPTER 5

Working with test data
to visually find in an IDE when you are editing a test and need to edit the test data
that goes with it.

For this example to work according to the normal ResourceBundle conventions,
you should rename the interest.properties file to InterestCalculatorTest2.proper-
ties and copy it to the directory in your class path (either on the file system or
packaged inside a JAR file) that matches the package structure of the Interest-
CalculatorTest2. This is merely a convention, and although conventions exist to
make it easier for each of us to understand what others have done, the Java police
will not arrest you if you go against the grain.2 You can put the file anywhere in
the class path as long as the file name ends in .properties and the directory struc-
ture matches the path or package separators specified in the baseName (It makes
no difference whether you use periods or forward slashes as path separators in the
baseName). It is conventional to keep the name of the properties file the same as
the name of the class that uses it, but you can always use the same file with multi-
ple classes, in which case you may prefer to name the file by its functional area or
by the name of a package of related tests that use it.

◆ Related

■ 5.4—Use a properties file

5.6 Use a file-based test data repository

◆ Problem

You have a lot of file-based test data of different types located in different directo-
ries and files because you and your teammates never planned out where things
should go. You need a shared repository for test data that all tests can use for their
test data needs.

◆ Background

Some projects grow, and some projects are just large to begin with. The larger a
project is in terms of people and lines of source code, the more important it
becomes to establish and share conventions for things related to development and
testing. Where to store test data for unit and integration tests is a good thing to estab-
lish so people don’t reinvent the wheel or waste time looking for things they need
when they join the project or transfer to work on a different part of the project.

2 If you want to assert your individuality, then that is your right, but when part of team, work as a team.

155Use a file-based test data repository
◆ Recipe

Designate a directory as a shared test data repository in source control or on the
company network that can be used for all test data for unit tests, as shown at
bottom-left in figure 5.2. Alternatively, designate a data repository directory for
each component, subsystem, or subproject. Pass in the location of the repository
to your unit tests using one of the ways discussed earlier in this chapter: a system
property on the command line, a system property pointing to a variable picked up
from the environment or set by a script, a property in a properties file stored in
user.home, and so forth. If all your tests extend a BaseTestCase of your own cre-
ation, encapsulate the retrieval of the data repository location in the BaseTest-
Case class and make it available to all subclasses through a protected variable or
accessor method.

There are two main decisions to make in creating your test data repository:
where to put it and what kind of structure it should have. Both decisions affect
higher-level concerns such as how to configure development tools and build
scripts to easily find the repository or repositories and locate resources. A shared
network drive, an internal FTP site, or directories in source control are all good
candidates. Keeping test data in source control makes it possible to version test
data with the tests that use it.

Once you have decided where the repository should be located, consider its
structure. How will tests locate their test data with the least amount of coding
effort? Will tests share test data files or be required to maintain their own in a
strict one-to-one mapping? Which format should you use: XML, properties, plain
text, other consumables such as JARs and class files (imagine you are writing a

Figure 5.2
A top-level test-data directory
in a project on Windows XP

156 CHAPTER 5

Working with test data
WAR deployer or a class file parser)? Should test data be organized by its type or
by the subsystem being tested or both? Should the data repository be shared
across multiple subprojects, or should a separate repository be defined relative to
each subproject? These are a few of the questions to consider.

For example, on a medium-sized commercial application server project having
about a dozen major subsystems, we designated a single, top-level test data direc-
tory in source control. Test data files could be any format, and people were good
about keeping the subdirectories clean and organized. The only structural man-
date for its contents was that each subfolder under test-data had to be named the
same name as a subsystem for which the test data was being checked. Beneath that
level, there was little or no formal structure needed, because people writing unit tests
were assigned and dedicated to testing a particular subsystem and used informal
conventions to help maintain the subfolders and files pretty well. On a project in
which people change responsibilities frequently or there are a large number of com-
ponents to test, it may be useful to decide sooner how to organize the test data.

◆ Discussion

The main limitation of this recipe’s approach is that it is file based. Many people
need to retrieve test data from a relational database, in which case recipe 5.12,
“Use DbUnit,” will be helpful. A key advantage to a file-based approach is that
your test data can easily be checked into source control in a repository structure
and versioned along with the tests it supports. You can do the same thing with a
database, but you have to write your own version-tracking and control system on
top of the database.

◆ Related

■ 5.1—Use Java system properties

■ 5.2—Use environment variables

■ 5.5—Use ResourceBundles

5.7 Use XML to describe test data

◆ Problem

You need to use test data already stored in XML documents, or your test data has
evolved to the point where properties files no longer suffice.

157Use Ant’s <sql> task
to work with a database
◆ Background

Needing to read in and use XML in unit testing is common these days. Usually it is
necessary because of service or component descriptors or document-based inter-process
communication (such as Web services). But these aren’t usually data files, per se.

◆ Recipe

There are two ways to approach this problem: either as a test data issue or as a way
to define a test suite. We chose to place this recipe in chapter 4, “Managing Test
Suites,” but we thought you might also look for that recipe here. Consider this a
forwarding address, then: please see recipe 4.9, “Define a test suite in XML.”

◆ Discussion

In our experience, using XML for test data is more complicated than just creating
the corresponding Java objects. It is not necessarily that XML is a poor choice, but
rather that as a community we tend to choose more complex solutions than we
need. For simple data sets, we recommend hard coding the data inside the test
(see recipe 5.3, “Use an inline data file”). If you need to use files, we recommend
simple properties files, as described in recipe 5.4. Only if you are certain that this is
insufficient should you decide to store test data in XML format. Keep in mind that
Object Tests tend to be simpler, smaller, and require less data, so it would be
unusual indeed to store Object Test data as XML.

◆ Related

■ 4.9—Define a test suite in XML

5.8 Use Ant’s <sql> task to work with a database

◆ Problem

You need to test code that retrieves data from a database, so you need to populate
the database with test data at the start of each test run.

◆ Background

At some point in your development and testing, you may want to start using a
database as a repository for test data. Testing with databases can be problematic
for several reasons, including:

■ Database administrators or company policy may prevent you from accessing
(even for reading only) live databases.

158 CHAPTER 5

Working with test data
■ Databases can grow to be large, complex, and time consuming.

■ Restoring data to its initial state between test runs or even test methods can
be time consuming, both in effort and in runtime performance.

◆ Recipe

Ant’s <sql> task is a handy tool for eliminating JDBC code from your tests in an
Ant-based build environment. It enables you to execute SQL and stored proce-
dures from your buildfile, which can be used to set up test data during the build,
prior to executing unit tests.

Here is an example of using the <sql> task to execute SQL in a file named
data.sql:

<sql
 driver="org.database.jdbcDriver"
 url="jdbc:database-url"
 userid="sa"
 password="pass"
 src="data.sql"/>

In the next example, the SQL to execute is specified as the content of the <sql>
element:

<sql
 driver="org.database.jdbcDriver"
 url="jdbc:database-url"
 userid="sa"
 password="pass">
insert into table some_table values(1,2,3,4);
truncate table some_other_table;
</sql>

Just make sure your JDBC driver is in the class path where Ant can find it.

◆ Discussion

The main recommendation here is to refer to some of the related recipes and use
what works for you:

■ Recipe 5.10, “Set up your fixture once for the entire suite”—A useful tech-
nique for avoiding the undesired and sometimes unnecessary overhead of
executing setUp() and tearDown() before and after every test method.

■ Recipe 5.12, “Use DbUnit”—A useful JUnit-based tool for facilitating test
data setUp() and tearDown() with a database.

If you choose to separate test data from the test in this way, then it may make the
test more difficult to read. At the same time, the technique in this recipe is easier

159Use JUnitPP
to write than including the corresponding JDBC code to do it. This is one of those
trade-offs that you just have to judge on a case-by-case basis, as it depends on all
aspects of the project: the product, the tools, and the people. If you are able to
avoid the trade-off entirely, then so much the better: we much prefer testing with-
out live data, as we describe in detail in chapter 10, “Testing and JDBC.”

◆ Discussion

■ 5.10—Set up your fixture once for the entire suite

■ 5.12—Use DbUnit

5.9 Use JUnitPP

◆ Problem

You want to provide a robust solution for Java properties-based test data files.

◆ Background

Whether you are in QA or development, after you’ve dealt with the same set of
unit tests for a while, you begin to wonder what you could do to refactor them.
One thing that is hard to do up front because of the amount of planning involved,
and just as hard later because of the rework involved, is establish a useful base
class for all your tests. The cross-test problems that customized BaseTestCases are
meant to solve are not obvious at the outset of the project. It would be great to
avoid this test data management problem altogether by extending all TestCases
from some well-planned, useful base class that took care of the data management
somewhat transparently.

◆ Recipe

Use JUnitPP’s junit.extensions.ConfigurableTestCase as your base TestCase.
JUnitPP is modeled after features found in a C++ test framework that its author
had written a long time ago and become accustomed to using. JUnitPP popped up
on the radar a couple of years ago in a Doctor Dobbs Journal article (see the “Related”
section) where its author publicly unveiled it under the more C++ sounding
“JUnit++.” JUnitPP provides a JUnit extension called ConfigurableTestCase that
provides a standard mechanism for retrieving test data from properties files.
Download JUnitPP from http://junitpp.sourceforge.net. Listing 5.6 shows how to
extend and use the features of JUnitPP’s ConfigurableTestCase.

160 CHAPTER 5

Working with test data
package junit.cookbook.testdata;

import junit.extensions.ConfigurableTestCase;

public class InterestCalculatorConfigurableTest
 extends ConfigurableTestCase {

 private static double interestRate;
 private static double loanAmount;
 private static int loanDuration;

 public InterestCalculatorConfigurableTest(String name) {
 super(name);
 }

 public void setUp() {
 interestRate = getDouble("interest.rate");
 loanAmount = getDouble("principal.amount");
 loanDuration = getInteger("loan.duration.years");
 }

 public void testInterestCalculation() {
 // fake interest calculation stuff using interestRate,
 // loanAmount and loanDuration
 }
}

There is no file I/O, class path searching, or other silly stuff to load data files in
the TestCase itself. So how does it work? JUnitPP automatically associates each
ConfigurableTestCase with a property file that has the same name as the class but
ends with .ini rather than .properties. So the property file for class InterestCal-
culatorConfigurableTest is named InterestCalculatorConfigurableTest.ini. By
default, ConfigurableTestCases automatically find their data files in the same
directory as the test case class’s package name, relative to the directory from
which the test runner was launched. In addition, ConfigurableTestCases look in a
default list of relative directories: src, src/java, src/test, and src/test/java. The
simplest thing to do is place the configuration file in the same directory as the
built test case class’s *.class file.

The default directory search that JUnitPP provides for properties files can be
augmented in your tests by setting a system property named junit.conf to the
name of a file or of a directory. The value of the junit.conf property is added to
the list of default paths.

Listing 5.6 InterestCalculatorConfigurableTest

Extend ConfigurableTestCase
from JUnitPP

Use ConfigurableTestCase utility methods
to get properties of different types

161Set up your fixture once
for the entire suite
JUnitPP provides an analog to JUnit’s junit.extensions.TestSetup (see
recipe 5.10, “Set up your fixture once for the entire suite”) in its Configurable-
TestSetup class.

◆ Discussion

JUnitPP also includes command-line options and support for running unit tests in
load test or stress test mode, much like JUnitPerf (www.clarkware.com/software/
JUnitPerf.html), but such options are not related to managing test data, so they
are not covered in this chapter.

JUnitPP is a nice, simple, extensible framework for managing test data for tests
that can use the Java properties file format for containing their data. Its only
weakness may be that it is limited to supporting data having the Java properties
file format.

◆ Related

■ 5.4—Use a properties file

■ 5.5—Use ResourceBundles

■ 5.6—Use a file-based test data repository

■ http://junitpp.sourceforge.net

5.10 Set up your fixture once for the entire suite

◆ Problem

You want the setUp() method to execute once for all methods in a TestCase, but the
JUnit framework is designed to run setUp() before every single test method is run.

◆ Background

The setUp() method is JUnit’s primary means for setting up test data fixtures in
preparation for the execution of a test method (tearDown() is for cleaning up fixtures
after a test method completes). Some users are surprised to realize that setUp() is
called before every test method. Many users find that while they need setUp() and
tearDown() before and after every test method, they also want a meta setUp() that
can run once and only once for the whole suite of tests in their TestCase subclass.
Most often this is because they need setUp() to establish a fixture that is expensive
to initialize, such as a database connection, a J2EE or JDBC transaction, or an appli-
cation deployment.

162 CHAPTER 5

Working with test data
On one project, we were looking for ways to optimize one of our large JUnit-
based test harnesses and make it run faster. After a code review in which we exam-
ined several test cases, we found a great deal of database initialization code in the
setUp() and tearDown() methods of test cases that were contributing to overhead
in terms of additional minutes spent negotiating with the database.

Some application servers provide a deployment API that you can call to have
your application deployed programmatically. Many J2EE application servers sup-
port hot deployment and redeployment of applications just by copying deploy-
able files to certain directories (which is easy enough to do programmatically
from within a JUnit test). If your JUnit test is a kind of integration test where it
needs to call out to an EJB or a servlet in a J2EE server automatically at test time, it
is nice to control the deployment of the application containing the EJB or servlet
from within your test. But deploying an application usually takes several seconds
and isn’t usually designed for high performance, so deploying and undeploying
between every test method becomes slow and may uncover stress-related bugs in
the application server’s hot deployment feature. Database connections are rela-
tively expensive to acquire, especially if you are not using a DataSource or connec-
tion pool but are reloading the database driver and getting a new connection
between every single test method call.

To understand this recipe, you should first know what a Decorator is. A Decora-
tor “wraps” itself around another object that implements the same interface it
does. The Decorator effectively intercepts method invocations to the “wrappee,”
adding some extra behavior as desired. It is one of the structural patterns in the
Design Patterns book, and is also known as Wrapper.

◆ Recipe

Use junit.extensions.TestSetup to do one-time setUp() in your TestCase so that
setUp() and tearDown() in TestSetup get called once per test class rather than
once before and after each test method.

The typical way to use this is as follows:

1 Implement a custom suite() method in your TestCase.

2 Create an anonymous class that extends TestSetup.

3 Implement setUp() and tearDown() inside the anonymous class.

4 Return an instance of your subclass of TestSetup at the end of the suite()
method.

163Set up your fixture once
for the entire suite
Listing 5.7 is a code example of our ongoing InterestCalculatorTest class, now
modified to load its properties data file once by using a TestSetup Decorator in
the suite() method.

package junit.cookbook.testdata;

import java.io.IOException;
import java.util.ResourceBundle;

import junit.extensions.TestSetup;
import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class InterestCalculatorTestWithTestSetup extends TestCase {

 private static double interestRate;
 private static double loanAmount;
 private static int loanDuration;
 static final String baseName
 = "junit.cookbook.testdata.InterestCalculatorTestWithTestSetup";

 public static Test suite() {
 TestSuite testSuite = new TestSuite(
 InterestCalculatorTestWithTestSetup.class);

 TestSetup wrapper = new TestSetup(testSuite) {
 public void setUp() throws IOException {
 ResourceBundle rb =
 ResourceBundle.getBundle(baseName);

 interestRate =
 Double.parseDouble(rb.getString("interest.rate"));

 loanAmount = Double.parseDouble(
 rb.getString("principal.amount"));

 loanDuration = Integer.parseInt(
 rb.getString("loan.duration.years"));
 }
 };
 return wrapper;
 }

 public void testInterestCalculation() {
 // fake interest calculation
 }
}

Listing 5.7 InterestCalculatorTestWithTestSetup

Create the TestSuite

Invoked once for
the entire suite

Wrap a
TestSetup
around the
TestSuite

164 CHAPTER 5

Working with test data
Note that this code uses a ResourceBundle (see recipe 5.5) for the data that is to
be loaded. You rename the properties file from that recipe’s example to Inter-
estCalculatorTestWithTestSetup.properties and then copy it to the directory in
your class path that matches the package structure of the InterestCalculator-
TestWithTestSetup (that is, junit/cookbook/testdata within your source tree).

◆ Discussion

One small disadvantage to this technique is that any variables you need to share
between TestSetup in the suite() method and the rest of the TestCase have to be
declared static because suite() is static.

Finally, we should mention one flaw in JUnit’s implementation of TestSetup.
When the wrapped test suite fails, TestSetup.tearDown() is not invoked, meaning
that the shared fixture is not properly cleaned up. Much of the time this is not a
grave concern; however, if you need ensure that the shared fixture is cleaned up
properly at the end of the test suite, see recipe 16.5, “Ensure your shared test fix-
ture tears itself down,” which explains how to use an alternate implementation of
TestSetup, found in JUnit-addons.

◆ Related

■ 5.6—Use a file-based test data repository

■ 16.5—Ensure your shared test fixture tears itself down

5.11 Perform environment setup once for multiple test runs

◆ Problem

Your testing environment is expensive and complex to set up. You need to do it
once before you can run tests, but you do not need to (or cannot afford to) set it up
before each test run. You would like to perform this environment setup only once.

◆ Background

Rakesh Madhwani provided the motivation for the recipe in the JUnit Yahoo!
group. His problem was simple: he wanted to be able to execute a large test suite
against a graphical user interface, but he did not want to start up and shut down
the GUI for each test. He did not want to even start it up and shut it down for each
test suite run. He wanted to launch the GUI once, execute the tests as many times
as he liked, however he liked, and then shut the GUI down once when he had fin-
ished. His first try was using the TestSetup Decorator, but the TestSetup Decorator

165Perform environment setup once
for multiple test runs
only provides support for one-time setup before and one-time teardown after
each test suite run. What he wanted was one step further back: one-time setup
before launching the test runner and one-time teardown when he finished using
the test runner. This recipe provides various solutions to this problem, depending
on which of the test runners you use and what kind of setup you need.

◆ Recipe

The approach you take to implement this one-time setup depends on any con-
straints you may have on how you execute tests, in general. Different tools admit
different solutions to this problem. The solution also depends on the nature of
your environment setup tasks. First, we present a summary of the various approaches
in table 5.1, and then we describe each approach in turn.

Initializing data or services outside the Java Virtual Machine
You may need to start services outside your Java application, such as database serv-
ers, web servers, and so on. These kinds of tasks fall outside the purview of your
tests, so it is best to configure your operating system, when possible, to start these
services automatically. If you are unable to do this, then we recommend writing
either shell scripts or an Ant target that starts all the various services you need
before executing your tests. If you can configure the operating system to execute
this script on startup, that would be great; otherwise, you really do have to simply
depend on yourself to remember to perform these steps before executing your
tests. The bad news is that you are not the only person who will ever need to run
your tests, so what about educating others?

If you treat your test execution environment like a large tool (such as your IDE or
a web browser), then it is logical to tell people, “Here is how you start the test envi-
ronment. Make sure you do this before trying to execute any tests.” It may be most
effective to provide this information in the form of online or hard copy documenta-
tion. We hope your environment is not so complex that you need a user’s guide just
to execute tests, but we recognize that it happens, having seen it ourselves. It is

Table 5.1 Summary of approaches to performing one-time environment setup

Setup tasks / Tool Text-based test runner Swing-based test runner

Initialize data or services
outside the Java Virtual
Machine.

Perform the one-time setup and tear-
down tasks manually as needed, or
use a shell script.

Override the terminate()
method to invoke your teardown
code. Invoke your setup code
before launching the test runner.Initialize objects inside

the Java Virtual Machine.
Nothing you can do: each test suite
run occurs in a separate JVM.

166 CHAPTER 5

Working with test data
generally impossible to remove the complexity altogether, but it is usually possible
to reduce the complexity to “pushing a single button” with some clever automation.

NOTE A one-button test environment—If you think your test environment is too
complex to automate, consider this story from our experience. J. B. worked
in an organization that used VisualAge for Java as its development envi-
ronment. The product we were building was made up of over 40 different
projects on the workspace at once. Despite varying degrees of effort to
reduce dependency among these projects, it was generally impossible to
remove anything from the workspace and expect the overall product to
work. In addition to this code complexity, the product required a data-
base of some 200 tables and thousands of rows of startup data and test
data. This was a complex environment.

After some time, a group decided to build a standard set of instruc-
tions to help a programmer install and set up this environment on her
workstation. The instructions ran several pages and included close to 50
manual instructions. Although workable, it generally took over 30 min-
utes of attentive effort to set up the test environment, and it did not
always work. Sometimes a programmer would go days without being able
to write code. Finally, one programmer took matters into his own hands
and used Microsoft’s ScriptIt (which Microsoft has since retired) to auto-
mate VisualAge for Java. He crafted a series of scripts and worked with
the organization’s build team to automate the entire process of down-
loading code, importing it into VisualAge for Java, creating the database,
and importing all the necessary data. The result was literally a single push
of a button, resulting in a working test environment in approximately
25 minutes, every time. Although it was not much faster than the manual
process, it could run unattended...and it worked!

Remember this story the next time someone complains that there is
“no way” to automate your test environment.

Initializing Java objects within the Java Virtual Machine
You may need to set up some global data for your tests: data that is rather expen-
sive to set up. So expensive, in fact, that you cannot afford to set it up per test—or
even per test run! We highly recommend looking into changing this situation,
because it appears to indicate some fairly serious design problems, but if you have
to get something running now, then what you do depends on how you run your tests.

If you use the text-based test runner on its own, then we are sorry to say that
you are out of luck. The text-based test runner executes each test suite in its own
JVM, so you have to perform the one-time setup and teardown each time you exe-
cute a test suite. The good news is that you can automate this by creating your own

167Perform environment setup once
for multiple test runs
simple custom test runner. The following code simply invokes its own setUp()
before invoking the text-based test runner, and then invokes tearDown() afterward:

package junit.cookbook.running.test;

import junit.framework.*;
import junit.textui.TestRunner;

public class TextBasedOneTimeEnvironmentSetupTestRunner {
 public static Test suite() {
 TestSuite suite = new TestSuite();
 // Create your test suite...
 return suite;
 }

 private static void oneTimeEnvironmentSetUp() {
 System.out.println("Setup");
 }

 private static void oneTimeEnvironmentTearDown() {
 System.out.println("Teardown");
 }

 public static void main(String[] args) throws Exception {
 oneTimeEnvironmentSetUp();
 TestRunner.run(suite());
 oneTimeEnvironmentTearDown();
 }
}

In order to execute test suites many times in the same JVM, you need to use one of
the graphical test runners, such as the Swing-based test runner. You could customize
its behavior in a manner similar to how we added one-time setup and teardown to
the text-based test runner, but as you will see, it is not quite so simple. If you try to
copy the code from the previous example (changing junit.textui.TestRunner to
junit.swingui.TestRunner), then your setup code executes as expected, but your
teardown code executes before you close the test runner. In particular, this is
what happens:

1 The JVM executes your setup code.

2 The JVM launches the test runner and executes the test suite.

3 The JVM executes your teardown code, leaving the test runner open and
waiting for you to press Run again.

At this point, if you execute another test suite (possibly the same one), it may execute
while your custom teardown code is also executing, which can only create a big mess.

168 CHAPTER 5

Working with test data
You need a way for the test runner to wait until you press Exit before executing
your teardown code. Fortunately, that is not difficult at all.

The Swing-based test runner declares the method terminate(), which it
invokes when you press Exit or close the Test Runner window. This is the hook
you need to execute your teardown code. Simply override terminate() and have it
invoke your teardown code before invoking its superclass’s implementation. Here
is the complete code:

package junit.cookbook.running.test;

import junit.swingui.TestRunner;

public class SwingBasedOneTimeEnvironmentSetupTestRunner {
 private static void oneTimeEnvironmentTearDown() {
 System.out.println("Teardown");
 }

 private static void oneTimeEnvironmentSetUp() {
 System.out.println("Setup");
 }

 public static void main(String[] args) throws Exception {
 oneTimeEnvironmentSetUp();

 TestRunner testRunner = new TestRunner() {
 public void terminate() {
 oneTimeEnvironmentTearDown();
 super.terminate();
 }
 };

 testRunner.start(new String[] { "com.mycom.MyTestSuiteClass" });
 }
}

We bring one difference to your attention between this class and the one that uses
the text-based test runner: the Swing-based test runner does not provide the same
run() method that the text-based test runner provides, so it is necessary to pass in
the fully qualified name of the test case class to execute. This is a minor annoy-
ance, but not a serious roadblock.

◆ Discussion

One-time environment setup is a serious smell in any application, particularly if it
is necessary to initialize data within the JVM before executing your first test. This is
a sign that objects are relying on global data, which is not only bad for testing, but

169Perform environment setup once
for multiple test runs
makes for a rigid, inflexible design. This is the kind of practice that drives up the
cost of change. We strongly recommend that you take steps to reduce an object’s
dependence on global data, preferring instead to have that data provided to the
object through its constructor. A particular case of this design problem deals with
Singletons, which cause all manner of testing difficulties and which we discuss in
more detail in chapter 14, “Testing Design Patterns.”

Not long after we wrote this recipe, Rakesh grafted a solution onto the text-
based test runner that addresses the more specific problem of running the same
test multiple times with one-time setup. We include that solution here as a viable
alternative for that problem. Create your own subclass of junit.textui.TestRun-
ner and override this method:

protected TestResult start(String args[]) throws Exception {
 while(true) {
 result = doRun(getTest(testCase), wait);
 }
 return result;
}

This executes the test suite repeatedly until you stop the test runner by pressing
the “break” button (CTRL+C, for example). Although this is one way to solve the
problem, it has some drawbacks that we recommend you take into account before
using it yourself:

■ The tests run in an infinite loop, which means that you can never use this
test runner as part of an automatic build-and-test process. Because that is
not its purpose, there is little cause for concern.

■ This solution duplicates some of the logic in the superclass, meaning that
changes to the superclass (JUnit’s text-based test runner) could affect the
correctness of this solution. You need to remember this if you upgrade
JUnit.

If none of these problems worry you, then this solution might just be simple
enough to work!

◆ Related

■ Chapter 6—Running JUnit Tests

■ Chapter 14—Testing Design Patterns

170 CHAPTER 5

Working with test data
5.12 Use DbUnit

◆ Problem

You need to reset your test database state between test runs, or you want utilities
to help you manage test data coming from a database.

◆ Background

Anyone who has used JUnit to test code that accesses a database knows that
JUnit’s design to run setUp() before and tearDown() after every test method is
suboptimal when setting up and tearing down heavy resources such as database
connections. The setUp() method is the perfect place to obtain a database con-
nection, if only it didn’t get called before every single test method. Even if you
work around the constant connection creation and destruction using a Singleton
connection pool or a TestSetup Decorator (see recipe 5.10) to ensure one-time
setup of connections and/or transactions, you still need a utility to facilitate
refreshing the database state between test runs. DbUnit not only enables efficient
connection management3 but also comes with a standard API and set of utilities
for resetting the state of the data in the database between test methods.

◆ Recipe

Extend org.dbunit.DatabaseTestCase or use DbUnit utility calls from a regular
TestCase class to configure your test data. DbUnit includes an extension of Test-
Case for database testing, as well as a set of APIs and utilities for managing and
restoring the state of test data in a database between test runs. It is maintained
and developed by Manuel Laflamme and licensed under the Lesser GPL.

The main feature of DbUnit is that it does what it calls a CLEAN_INSERT opera-
tion before executing each test. CLEAN_INSERT performs a DELETE_ALL operation
followed by an INSERT operation. The data to insert is provided by one of several
implementations of org.dbunit.dataset.IDataSet, which may be XML-based,
retrieved from another database call, or built programmatically in memory.

Here is an example from the DbUnit documentation, using it as a utility rather
than extending DatabaseTestCase:

3 DBUnit is not set this way “out of the box.” See http://dbunit.sourceforge.net/bestpractices.html#
connections.

171Use DbUnit
public class SampleTest extends TestCase {
 public SampleTest(String name) {
 super(name);
 }

 protected void setUp() throws Exception {
 super.setUp();

 // initialize your database connection here
 IDatabaseConnection connection = null;
 // ...

 // initialize your dataset here
 IDataSet dataSet = null;
 // ...

 try {
 DatabaseOperation.CLEAN_INSERT.execute(connection, dataSet);
 }
 finally {
 connection.close();
 }
 }
 // . . .
}

◆ Discussion

Another technique for restoring the database’s initial state between runs that we
have used successfully with very large (30,000 to 100,000 employees’ worth of data)
databases is to back up the database instance files (such as the control files and
data files in an Oracle instance) after you populate them with an initial set of data.
Then you can shut down the database when you are done testing and do a cold
copy restore of the database from the backup set of files. You can ask your local
database administrator for help with this. Restoring databases from backup files is
very useful in situations where you have a database that takes many minutes to an
hour to restore or reload, but which only takes a few seconds to restore from a file
system backup. If you compress the backup files with any zip utility on Windows or
UNIX, you can often squeeze a multi-GB file down to a few dozen or hundred MB.

The principal alternative to managing test data for unit testing in a database is
not to use one. This is not as silly as it might sound: are you testing code that uses
a database or just code that needs data? Most of the time it is the latter—the code
does not depend on how the data is stored. In that case, you can use mock objects
instead to fake your tests into thinking they are getting data from a database. We
use this technique extensively throughout part 2, “Testing J2EE.” Of course, if you

172 CHAPTER 5

Working with test data
want to verify that your code uses the database properly, you need a database…or
do you? See chapter 10, “Testing and JDBC,” and decide for yourself.

◆ Related

■ 5.10—Set up your fixture once for the entire suite

■ http://dbunit.sourceforge.net/

■ http://dbunit.sourceforge.net/bestpractices.html,
Database testing best practices from the author of DbUnit

■ www.agiledata.org/, Scott Ambler‘s excellent site for agile development
and databases

■ www.dallaway.com/acad/dbunit.html, Richard Dallaway’s well-reasoned
article on testing database code in Java

Running JUnit tests
This chapter covers
■ Monitoring JUnit tests as they execute
■ Executing individual tests
■ Executing tests that need to reload classes
■ Ignoring tests
■ Using the JUnit-addons test runner
173

174 CHAPTER 6

Running JUnit tests
There are a number of ways to execute your tests, including a large variety of test
runners, not all of which have the same set of features. JUnit provides three test
runners: a text-based one, an AWT-based one, and a Swing-based one. We will
describe each in turn. In addition to the ones that JUnit provides, a number of
people have built their own test runners that include special features not found
in the originals. The JUnit test runners were not built to be easily extended, and
so whenever someone has wanted to add features, it has been shown to be easier
to build a new test runner from the ground up. A person builds a custom test
runner because he is either having a problem running tests in the current
project or environment, or because a particular feature is needed that isn’t avail-
able. You might find yourself in either of these same situations. The recipes in
this chapter focus not only on solving such problems with your test runner, but
also on finding the special features you might need in a test runner. For basic
tutorials on the various test runners, refer to their web sites. Now, let’s take a tour
through the various test runners.

The basic test runners

JUnit provides one text-based and two graphical test runners. For most purposes,
the AWT-based test runner has been entirely superseded by the Swing-based test
runner; so we ignore the AWT-based test runner in this discussion, leaving us the
text-based test runner and the Swing-based runner.

The text-based runner is implemented by the class junit.textui.TestRunner.
It reports test progress and test results in text format to the console. In chapter 1
we used the text-based test runner to run JUnit’s own tests as a way to verify the
JUnit installation. The text-based runner is a candidate to be integrated with an
automated build process such as Ant, Cruise Control,or Anthill.

The Swing-based runner is implemented by the class junit.swingui.TestRun-
ner. It reports test progress graphically using a progress bar. The progress bar
starts out green and turns red only when a test fails or an error occurs. This is
the genesis of the slang “green bar” for “the tests pass 100%” and “red bar”for
“some test fails.” Figure 6.1 shows the Swing-based test runner with both success
and failure.

When you launch either the text-based or Swing-based test runner, you pass the
fully qualified name (package name and all) of the test suite you would like to
execute as a command-line parameter. This can either be a test case class or any
class that provides the suite() method. As an example, to launch the Swing-based
runner in a Windows environment, issue the following command:

175Running JUnit tests
java -classpath <your classes>;%JUNIT_HOME%/junit.jar

➾ junit.swingui.TestRunner <your test suite name>

Here we assume that you have an environment variable named JUNIT_HOME that
points to the directory containing junit.jar. You do not need to use an environ-
ment variable—you could just hard code the path to JUnit in your command. If
you plan to invoke JUnit test runners from a script you intend to use on multiple
machines, we recommend referring to the location of JUnit through an environ-
ment variable; otherwise, you would either have to install JUnit to the same loca-
tion on every machine or change the script on every machine to point to the
location where JUnit is installed.

Using Ant

To execute your tests with Ant (http://ant.apache.org), you have two options: use
the <junit> task or use the <java> task passing the class name of a test runner,
such as junit.textui.TestRunner. Refer to the Ant manual (http://ant.apache.org/
manual) for details on configuring and using the <junit> task.

The <junit> task allows you to use the <batchtest> task to create a test suite
from tests on the file system. If you do not like the way Ant provides this feature,
you can always launch the text-based test runner with <java> and use either
GSBase’s RecursiveTestSuite or JUnit-addons’s DirectorySuiteBuilder to do the
same thing, so neither approach can claim an advantage here. See chapter 4,
“Managing Test Suites” for a discussion of these two test suite-building utilities.

Figure 6.1 Swing-based test runner; left: one test error with a red bar; right: all tests pass with a green bar

176 CHAPTER 6

Running JUnit tests
The <junit> task does not report test progress to the console in the same manner
that the JUnit text-based test runner does, and we feel that seeing that progress is
very comforting, so we prefer it. This causes us to lean in the direction of using
the <java> task to launch a text-based test runner.

If you want to publish build results to a web site, or if you simply like to see your
test results in a format similar to Javadoc, then you want to use the <junitreport>
task in conjunction with the <junit> task. JUnitReport takes XML output from
the <junit> XML-based results formatter then applies an XSL stylesheet to it,
yielding a summary much like Javadoc. You can see sample output in figure 6.2.
Once again, refer to the Ant manual for details on using <junitreport>.

As with any trade-off, your best bet is to try both approaches and measure the
difference. We tend to use the text-based test runner until we decide we want
something more sophisticated, then we change.

JUnit-addons Test Runner

The JUnit-addons project (http://junit-addons.sourceforge.net) provides a test
runner built with an open architecture designed to replace the JUnit text-based
test runner. Although there are more command-line parameters than with the
JUnit test runner, it is not necessary to specify them all when you use it. When you
execute this test runner without any parameters you receive this message:

JUnit-addons Runner 1.0-alpha2 by Vladimir Ritz Bossicard
Usage: junitx.runner.TestRunner [-verbose]
 -runner.properties={filepath}
 -test.properties={filepath}
 -class classname

Figure 6.2 A sample test execution report created by Ant’s <junitreport> task.

177See the name of each test
as it executes
The -class option corresponds to the single parameter you pass to the JUnit test
runner: the name of the test suite class to execute.

The “runner properties” direct the JUnit-addons test runner to configure itself
with monitors (which can pause and resume the execution of tests) and listeners
(which can obtain information about each test as it executes). You can use moni-
tors and listeners to implement simple extensions such as custom test report for-
mats. We describe the JUnit-addons test listener in detail in chapter 16, “JUnit-
addons,” but in the meantime, we describe a simple reporting extension in recipe 6.2.
(In particular, see recipe 16.6, “Report the name of each test as it executes,”
which describes a minor defect in the JUnit-addons test runner documentation.)

The “test properties” help you specify test data paths, tool paths, and other
environment settings on which your tests might depend. We do not discuss test
properties in detail in this chapter, but do describe the general concept of using
test properties in chapter 5, “Working with Test Data.” The JUnit-addons test run-
ner provides a small framework for organizing these files.

We provide recipes throughout this book that describe how to leverage the fea-
tures in JUnit-addons. The JUnit-addons recipe in this chapter describes how to
disable tests without removing test code (see recipe 6.6, “Ignore a test”).

6.1 See the name of each test as it executes

◆ Problem

You would like to see the progress of the test run while it executes, including the
name of the currently executing test.

◆ Background

If you introduce an infinite loop or deadlock into your code then the tests will
eventually stop making progress. No failure message, nothing. If this happens you
need to work “outside the system” to isolate the test (and therefore the produc-
tion code) causing the problem. One easy way to get this information is to print
out the name of each test as it starts. If there are no project or environmental
constraints regarding the test runner you use to execute your tests, we have a sim-
ple solution for you.

◆ Recipe

If you need this feature, then we recommend simply executing the tests using a
graphical test runner, such as the JUnit Swing-based test runner. The test runner’s
status bar displays the name of the currently executing test, so you can simply look

178 CHAPTER 6

Running JUnit tests
at the point where the tests stop progressing and read the name of the offending
test. Now you know where to look for the cause of the problem.

◆ Discussion

If, for some reason, you cannot or prefer not to use a Swing-based test runner, you
can achieve the desired result with a little extra work. We describe our recom-
mended technique in recipe 6.2.

◆ Related

■ 6.2—See the name of each test as it executes with a text-based test runner

■ 16.6—Report the name of each test as it executes

6.2 See the name of each test as it executes
with a text-based test runner

◆ Problem

You would like to monitor the progress of your tests, including the name of the
currently executing test, but you need or want to use a text-based test runner.

◆ Background

If you introduce an infinite loop or deadlock into your code then the tests will
eventually stop making progress. No failure message, nothing. If this happens you
need to work “outside the system” to isolate the test (and therefore the produc-
tion code) causing the problem. One easy way to get this information is to print
out the name of each test as it starts. This turns out to be easy to do if you can use
a graphical test runner, but if your test environment assumes a text-based test run-
ner then you have to solve this problem another way.

◆ Recipe

Because you’re debugging, you probably have a short-term need for this feature. In
this case, the easiest way to achieve this is to add a line of code to the setUp()
method of your test case class that prints out the name of each test during execution.

public class MyNameIsTest extends TestCase {
 protected void setUp() {
 System.out.println(getName());
 }
 // ... your tests ...
}

179See the name of each test as it executes
with a text-based test runner
If you would prefer to see the class name and the test name, then call toString(),
rather than getName(). It depends on whether you need the additional context;
toString() returns something like MyNameIsTest(testNumberOne), whereas get-
Name() returns just testNumberOne.

◆ Discussion

If you need a more permanent solution, the next step is to override the method
TestCase.runTest() to print the name of the test just prior to executing the test.
You could easily add “entry and exit” messages in this way.

public class MyNameIsTest extends TestCase {
 protected void runTest() throws Throwable {
 System.out.println("Starting test " + toString());
 super.runTest();
 System.out.println("Ending test " + toString());
 }
}

Remember to invoke super.runTest(); otherwise, your test will not execute! It is
remarkably easy to forget to invoke the superclass’s implementation when over-
riding a method, making this a slightly dangerous way to implement this feature.
The good news is that you only need to do this once: push this method all the way
up in your test case class hierarchy so that all your classes can use it (see recipe
3.6, “Introduce a Base Test Case”). The bad news is that by implementing this
through inheritance, you constrain your design, as Java is a single-inheritance lan-
guage. It would be nice to implement this either as a Decorator or as a runtime-
configurable parameter—a feature you can easily add or remove as needed. The
runtime-configurable parameter is likely the simpler solution and we describe
how to add these to your tests in recipe 5.1, “Using Java system properties” as well
as throughout chapter 5, “Working with Test Data.”

If you do not mind changing test runners, you can use the JUnit-addons test
runner as an alternative to this recipe. See recipe 16.6, “Report the name of each
test as it executes.”

◆ Related

■ 3.6—Introduce a Base Test Case

■ 5.1—Using Java system properties

■ 6.1—See the name of each test as it executes

■ 16.6—Report the name of each test as it executes

180 CHAPTER 6

Running JUnit tests
6.3 Execute a single test

◆ Problem

You would like to execute a single test, rather than all the tests in the current test
case class.

◆ Background

You will most likely want to execute a single test right after it fails, especially if it is
the only test in the suite that fails. Rather than extract the test into its own suite or
build a Singleton suite with code, you would like your tools to handle the job.

◆ Recipe

As you might expect, the ability to execute a single test varies from IDE to IDE, but
they all solve the problem the same way: they invoke their test runner’s run()
method with a single TestCase object. If your IDE does not support the ability to
execute a single test then you might be able to add it, as with Eclipse or jEdit by
changing either of their JUnit plug-ins.

One IDE that supports this “out of the box” is IDEA from IntelliJ. Place the
insertion point inside a method definition or select a test from the Structure view,
right-click, then select “Run test name.” IDEA opens the test runner of your choice
(text-based or Swing-based) and executes just the one test.

The Swing-based test runner also supports this feature (to a certain extent)
through its Test Hierarchy tab. After executing the tests once, you can select indi-
vidual tests and execute them again by switching to the Test Hierarchy tab, select-
ing a test and pressing the associated Run button. This solution has one major
disadvantage: it requires executing the entire test suite at least once, which defeats
in part the point of executing a single test.

◆ Discussion

Eclipse, the open source workbench for programmers, does not directly support
executing a single test, but its open plug-in API makes it possible to add that fea-
ture, then assign it to a keystroke. JEdit, a well-known open source text editor,
comes with a JUnit plug-in, but it does not yet support executing a single test.
Given that it is at version 0.0.2 as we write these words, we can hardly expect such
a relatively advanced feature to be there already.

One final note: executing a single test from a Parameterized Test Case (see rec-
ipe 4.8, “Build a data-driven test suite”) is, in general, not possible. Given the way
that JUnit creates a test suite, there is no way to select a test method and a single

181Execute each test in its own JVM
row of fixture data to be executed. From JUnit’s point of view, a test is a test, even
if it executes 100 times with 100 different fixture states. JUnit differentiates tests
by their implementation (as different methods), rather than their runtime behav-
ior (with different inputs).

◆ Related

■ IntelliJ’s web site (www.intellij.com)

6.4 Execute each test in its own JVM

◆ Problem

You have tests whose fixture includes global data such as caches and Singletons.
You want to be able to set up each test separately without making Singletons writ-
able or adding reset methods to the caches.

◆ Background

Robert DiFalco wanted to know how to do this, so he asked the JUnit Yahoo!
group about it:

“I have a lot of code that has to reset [global] state such as caches each time a
test is run, code that is only needed for unit testing. If each test method ran in
its own JVM, my testing code would not require me to make changes in the
code I am testing.”

If you need to test code that relies on global data, you might find it useful to exe-
cute tests in separate JVMs. The question you will have to consider after reading
this recipe is the trade-off between applying this technique and performing the
refactoring that we think such code needs.

◆ Recipe

You can execute each test in its own JVM if you run your tests from Ant. Use the
<junit> and <batchtest> tasks to execute test suites in their own JVMs. This is
what your buildfile should look like:

<target name="eachSuiteInSeparateJvm">
 <junit>
 <formatter type="plain" />
 <classpath>
 <pathelement location="test/classes" />
 <pathelement location="d:/junit3.8.1/junit.jar" />
 </classpath>

182 CHAPTER 6

Running JUnit tests
 <batchtest fork="yes" todir="logs">
 <fileset dir="test/source">
 <include name="junit/cookbook/running/**/*.java" />
 <exclude name="**/GlobalData.java" />
 </fileset>
 </batchtest>
 </junit>
</target>

Pay particular attention to the use of the fork attribute in the <batchtest> task. By
specifying fork="yes" you are telling the <batchtest> task to execute each test
suite matching the include pattern in the <fileset> in a separate JVM. (See the
Ant manual for details on the various attributes of the <batchtest> task.) Once
you can execute each test suite in its own JVM, move each test method into its own
test suite (in its own Java source file). Then each test, being in a separate file
matching the include pattern, will execute in a separate JVM. Having each test in
its own source file might not be a nice solution, but it is a solution.

◆ Discussion

This is another one of those techniques that is important to know when you need it,
but that you wish you never had to use. Heavy use of global data signals a weakness
in a system’s design, as it leads to “come back” defects: you think you have fixed it,
but eventually the defect comes back. If you have aspirations of refactoring the code
away from heavy use of global data then this technique can help you establish the
safety net you need to perform that refactoring. Implementing this recipe is just
annoying enough that you will wish you did not have to do it, and feeling this pain just
might motivate you not to rely so heavily on global data in the future.

◆ Related

■ 6.5—Reload classes before each test

6.5 Reload classes before each test

◆ Problem

You want to execute each test with freshly loaded classes as a way to cope with pro-
duction code that sets global data at startup.

◆ Background

In recipe 6.4, “Execute each test in its own JVM,” we described the general prob-
lem: some of the classes involved in a test use global state and provide no direct way

183Reload classes before each test
to reset that state. One approach is to expose that state so that we can reset it as
needed; however, that involves changing the code before we begin to test it. We
would rather install some tests before we change the code so that we have some con-
fidence that we have not changed the code’s behavior in some unexpected way. In
the previous recipe we described using Ant to execute each test in its own JVM, but
that is quite a heavyweight solution that can cause the tests to execute quite slowly.
We would like a solution that has the benefits of executing each test in its own JVM
(freshly loaded classes) without resorting to starting and stopping so many JVMs.

◆ Recipe

After involving himself in a mailing list discussion on the topic, Neil Swingler
decided to build a simple solution to this problem: a ReloadedTestCaseDecorator
that reloads classes before each test. You wrap each test in this decorator then exe-
cute the resulting test suite. Each test in the suite executes with freshly loaded
classes. To illustrate this technique, let us try to test an object cache. Suppose you
have an object directory that retrieves objects from a database or a network con-
nection—each time you look up the same object, you incur unnecessary over-
head, because the objects you retrieve never change. You want to add a cache
onto the directory to avoid invoking the expensive object lookup() method more
than once for each differently named object. Because you only need one cache,
you decide to implement it as global methods and data. To be sure that your
ObjectCache is actually caching the result, you want to verify whether cache hits
occur when you expect them to. You start with the following tests:

package junit.cookbook.running.test;

import junit.cookbook.running.*;
import junit.framework.TestCase;

public class ObjectCacheHitTest extends TestCase implements Directory {
 protected void setUp() throws Exception {
 ObjectCache.directory = this;
 }

 public void testFirstLookup() throws Exception {
 assertEquals("there", ObjectCache.lookup("hello"));
 assertEquals(0, ObjectCache.countCacheHits());
 }

 public void testExpectingCacheHit() throws Exception {
 assertEquals("there", ObjectCache.lookup("hello"));
 assertEquals("there", ObjectCache.lookup("hello"));
 assertEquals(1, ObjectCache.countCacheHits());
 }

184 CHAPTER 6

Running JUnit tests
 // Self-Shunt method
 public Object get(String name) {
 return "there";
 }
}

Here we use the Self-Shunt pattern and let the test case class itself be the Direc-
tory. Even though its implementation of get() does not perform some expensive
lookup operation, the production Directory will, but this particular implementa-
tion detail does not concern us right now. We have two tests, one that expects no
cache hit on the first request to retrieve an object, and another test that retrieves
the same object twice, expecting only one cache hit. The problem is that when
you execute these tests, the second fails.

junit.framework.AssertionFailedError: expected:<1> but was:<2>

It seems that in the second test both invocations of get() resulted in cache hits, and
not just the second one. This is the problem with Singletons: you need to reset the
ObjectCache’s state before executing the second test; otherwise, it “inherits” what-
ever state the previous test left behind. Fortunately for us, ReloadedTestCase-
Decorator comes to the rescue. To use this utility, you need to create a test suite
“by hand” for your test case class (see recipe 4.2, “Collect a specific set of tests”),
wrapping each test in the ReloadedTestCaseDecorator. We can approximate this
well enough for most purposes by adding this suite() method to our test case
class.1

public static TestSuite suite() {
 TestSuite suite = new TestSuite();

 Method[] methods = ObjectCacheHitTest.class.getMethods();
 for (int i = 0; i < methods.length; i++) {
 Method method = methods[i];
 String methodName = method.getName();
 if (methodName.startsWith("test")) {
 suite.addTest(
 new ReloadedTestCaseDecorator(
 ObjectCacheHitTest.class,
 methodName));
 }
 }

 return suite;
}

1 Strictly speaking, this suite() method will include methods that may not be valid tests, but it is good
enough for most purposes.

185Ignore a test
When we add this suite() method to our test case class, all the tests now pass!
Each test executes against a freshly loaded ObjectCache with an empty cache. You
can now add more tests without worrying about the state of the ObjectCache at the
end of the previous test, just as if you instantiated a new one each time. This sim-
plifies the tests considerably and does not require changing the class under test.

◆ Discussion

Neil’s solution uses a bytecode manipulation library called Javassist2, part of the
JBoss application server project. The ReloadedTestCaseDecorator instantiates each
test after first reloading the test class. You can find a current version of Neil’s code
in the files section of the JUnit Yahoo! group.3 The only real downside to this
approach is that you need to decorate any test that needs to reload its fixture
classes. We called this a downside only because it involves work; otherwise, we
think it is a good thing: if your tests are going to do something as drastic as reload
classes, then you want to know that it is happening—you want to intend to do it,
and not just have it happen as a matter of course. The suite() method we provide
in the example is essentially a universal one: simply put it in a utility class and use
it wherever you need it.

◆ Related

■ 4.2—Collect a specific set of tests

■ 6.4—Execute each test in its own JVM

■ The Javassist project (www.jboss.org/developers/projects/javassist.html)

6.6 Ignore a test

◆ Problem

You have a test that you would like to disable without removing its code. In other
words, you would like to ignore it.

◆ Background

Test-Driven Development purists argue that a test lives in only one of two states:
passing or failing. There are times, though, when it is useful to have a third state:
ignored. Vladimir Bossicard’s weblog at artima.com contains an article in which he

2 www.csg.is.titech.ac.jp/~chiba/javassist/
3 http://groups.yahoo.com/group/junit/files/

186 CHAPTER 6

Running JUnit tests
describes the need to ignore tests. The most compelling need arises from two
opposing forces: the desire to have all tests pass 100% and the desire to capture all
your knowledge about how your objects should behave in the tests. In other words,
you do not want to remove a test, even though you cannot make it pass right now.

Vladimir describes a few scenarios in which you would want to ignore a test. You
might have identified a defect in an external library that you cannot fix. In this case,
you would like to ignore the corresponding failing test until you deploy a new ver-
sion of that library. You might also have identified a low-priority defect that you
either do not know how to fix or do not have the time to fix. Although we would like
to release defect-free code, there are times—especially times very close to an inflexi-
ble release date—when we are forced to let code go that we know is not defect free.
It makes us feel bad when we do it, but sometimes we have little choice.4

Whether you want to ignore tests temporarily or for a longer period of time, we
present an easy way to do each.

◆ Recipe

If you only need to ignore a test for a few seconds—that is, long enough to execute
your tests once or twice—and you plan to reenable the test, then just add a few char-
acters to the beginning of the test name. For example, to temporarily ignore a test
named testHappyPath(), rename the method to DISABLED_testHappyPath(). JUnit
will not identify the method as a test, because its name does not start with “test.” We
use DISABLED here, because it says what we’re doing: disabling the test. While this
approach works, it is not useful for ignoring tests for a longer period of time. You
might want support for reporting how many tests are currently being ignored. In
that case, you need something more than an arbitrary “disabled” marker.

JUnit-addons provides direct support for “ignoring” tests. To ignore a test,
change its name so that it ends in _ignored. When you execute the tests with the
JUnit-addons test runner, you receive the following report:

Elapsed time: 0 sec (3 tests + 1 ignored)

IGNORED

1) testDefaultInitializationParameters_ignored
(junit.cookbook.common.test.ConstructorTest)

4 We originally wrote “no choice,” but we believe firmly that there is always a choice. It is generally a ques-
tion of whether we have the courage to make the unpopular choice. We do not always have that courage.

187Ignore a test
To reenable the test, remove _ignored from the end of its name. That is all there
is to it.

◆ Discussion

If you execute an ignored test using a plain-vanilla JUnit test runner, the test exe-
cutes normally: the test runner does not recognize anything special about the test
from its name. For this reason we recommend that when you mark a test as
“ignored,” make sure that the test fails. How could it pass? It could be empty, like
this.

public void testDefectInThirdPartySoftware_ignored() {
}

The JUnit-addons test runner reports this test as “ignored,” while the plain-vanilla
JUnit test runner reports this test as passed because it does not contain a failing
assertion! Executing this test with the plain-vanilla test runner gives you a false
sense of security: your system appears to pass tests that you have not even imple-
mented! You should only ignore tests that you have written but cannot make pass.
If you have ideas for the next five tests you want to implement, write them on a list
rather than in code. If you are not ready to code them, then code them later. You
will save yourself some confusion.

If you find your collection of ignored tests growing then we recommend you
move those tests into their own test suite (such as in a separate source tree). Exe-
cute them only when you think they have a chance of passing; that is, when you
experience a change in the conditions that led you to ignore those tests in the
first place. Many projects collect test metrics to indicate progress, so the more
ignored tests your project carries, the more misleading your measurement of
progress becomes. Also, if you are ignoring tests for a third-party library, you
might find it useful to execute just those tests whenever you upgrade to a new ver-
sion of the library. This would give you immediate feedback as to whether the new
library is “any better” than the previous version, at least in terms of supporting
your particular needs.

◆ Related

■ Chapter 16—JUnit-addons

■ The JUnit-addons web site (http://junit-addons.sourceforge.net)

■ Vladimir Bossicard, “The Third State of your Binary JUnit Tests.”
(www.artima.com/weblogs/viewpost.jsp?thread=4603)

■ Vladimir Bossicard’s weblog
(www.artima.com/weblogs/index.jsp?blogger=vladimir)

Reporting JUnit results
This chapter covers
■ Logging from a Base Test Case
■ Logging with Log4Unit
■ Reporting results with Ant,

including <junitreport>
■ Customizing Ant’s test run reports
■ Using a custom TestListener
■ Counting assertions
188

189Reporting JUnit results
This chapter covers various tools and techniques available for reporting JUnit test
results, including extending JUnit to write your own custom reporting mecha-
nisms. JUnit by itself provides two simple mechanisms for reporting test results:
simple text output to System.out and its famous Swing and AWT “green bar” GUIs
(the AWT GUI being a vestige of JUnit’s Java 1.1 support). The results reporting
that JUnit provides out of the box is useful for developers at their desktops, but
that is about it. You need to extend JUnit or use it with another tool if you want
automated test reports in formats such as XML or HTML.

There are a slew of JUnit extensions out there, many of which revolve around
subclassing TestCase. These extensions usually can be executed with the built-in
JUnit test runners or with Ant’s <junit> task with no extra work. Ideally you want
reporting solutions that are reusable across any of these extensions; therefore,
you should extend JUnit reporting by implementing or extending standard APIs
in Ant or JUnit.

JUnit is most often executed in one of three contexts, each of which provides
different reporting features and opportunities for extension:

■ IDE

■ Command line

■ Ant build script (or, increasingly, Maven target)

NOTE Maven is a build tool that grew out of many people’s collective experi-
ence using Ant to build, test, and manage Java-based projects. Maven pro-
motes the concept of a project object model, which it creates through a
standardized project deployment descriptor. Maven is firmly based on
Ant and Jelly, an XML-based scripting language. For more information
about Maven, visit maven.apache.org.

Some IDEs launch one of JUnit’s built-in GUI test runners, while others have their
own GUI test runner implementations with added features. Command-line test
runners output results to a console, which can be redirected to a file. Ant’s <junit>
and <junitreport> suite of tasks together provide XML results files transformed to
HTML reports.

Different report styles and formats serve different purposes and users. Manag-
ers like to see reports in their browsers or maybe on paper printouts in bug triage
meetings. Developers and QA engineers like results displayed graphically in their
IDEs so they don’t have to “shell out” to the command line to run JUnit in a sepa-
rate window.

190 CHAPTER 7

Reporting JUnit results
7.1 Using a Base Test Case with a logger

◆ Problem

You want to perform logging from within your test cases.

◆ Background

JUnit automates evaluating assertions so that developers don’t waste time rou-
tinely verifying the output of test methods. Logging from test cases should not be
used as a way to verify that tests have passed. Let the JUnit framework handle that.
But there are several situations where logging messages or even test results to a
file, console, or other device is useful in JUnit testing. For example:

■ Temporary debugging, which can be turned on or off by configuration

■ Auditing and storage of test results

■ Auditing of the test environment or data used during a test run

■ Tracking the progress of tests that take a long time to run

■ Trapping customized test results for import into a test management system

You can always configure and instantiate a logger from within any test case as you
would from any other Java class. But if you are going to write many tests (especially
if you are in a team environment, sharing common test infrastructure such as base
test classes), it is practical to write a base test case class that provides the logging
configuration and instantiation, and then subclass the log-providing class as desired.
If you have a common base class that everyone uses for a particular subsystem or
project, you can include the logging configuration as part of that class.

◆ Recipe

Create a base test case class that extends junit.framework.TestCase and provides
a configured logger to its subclasses.

You have several options for finding and using a logger:

■ Write your own logging mechanism

■ Use a logger written by someone on your staff

■ Use a logging library from a third party, such as Log4J, Avalon’s LogKit,
Jakarta Commons Logging

■ Use the java.util.logging package in JDK 1.4

191Using a Base Test Case with a logger
The pattern for setting up a logger in a base test class is the same, regardless of
which logger you choose:

■ Extend TestCase with a class named similarly to BaseTestCase, which might
include other commonly used testing utilities (perhaps a JNDI lookup() util-
ity, or some other custom logic about where to find, that finds test data).

■ Set up a default configuration for the logger and initialize it in the BaseTest-
Case, and make the preconfigured logger accessible to subclasses through a
protected variable, an accessor to retrieve the logger instance, or through
inherited log methods.

■ Make your test cases extend BaseTestCase so they can use the logger as needed.

Listing 7.1 shows a BaseTestCase class that configures two logger instances, one
for static contexts, such as static initializer blocks and suite() methods, and one
for non-static contexts, such as setUp(), tearDown(), and test methods. Two sep-
arate loggers for static and non-static might be overkill, but this allows the
example to show two different approaches for setting up the logger. The example
uses Apache Avalon’s LogKit (any version of 1.x can compile and run with this
example). In terms of features and ease of use, LogKit is a full-featured, flexible
logging kit somewhere in between JDK 1.4’s java.util.logging package and
Jakarta’s premier logger, Log4J. You can read more about LogKit and download
the library at avalon.apache.org/logkit/.

NOTE Avalon is a Java platform for component-oriented programming includ-
ing a core framework, utilities, tools, components, and containers hosted
at Apache.

package junit.cookbook.tests.reporting;

import junit.framework.TestCase;

import org.apache.log.Hierarchy;
import org.apache.log.LogTarget;
import org.apache.log.Logger;
import org.apache.log.Priority;
import org.apache.log.format.ExtendedPatternFormatter;
import org.apache.log.output.io.StreamTarget;

public class BaseTestCase extends TestCase {

 /**
 * Sets the default log level for both embedded loggers.

Listing 7.1 BaseTestCase configured with Avalon LogKit

192 CHAPTER 7

Reporting JUnit results
 * The default log level setting can be overridden via
 * -Dlog.level=... on the command line or with a
 * <sysproperty key="log.level" value="${value}"/>
 * in an Ant <java/> task running this test.
 * Valid values, in ascending order or severity, are
 * DEBUG, INFO, WARN, ERROR, FATAL_ERROR.
 */
 protected static String logLevel = "INFO";

 /**
 * Embedded staticLogger. This reference is static
 * and should be used for messages logged from static
 * code, such as static initializers and TestCase.suite()
 * methods.
 */
 protected static Logger staticLogger =
 Hierarchy.getDefaultHierarchy().getLoggerFor("static.");

 /**
 * logger is not static and should be used
 * everywhere except in places where a statically
 * configured logger is necessary.
 */
 protected Logger logger =
 Hierarchy.getDefaultHierarchy().getLoggerFor("test.");

 /** Logkit Logger output string format for
 * non-static logger */
 protected String pattern =
 "%{priority}: %{message} in %{method}\n %{throwable}";

 /** Logkit Logger output string format for staticLogger */
 protected static String staticPattern =
 "%{priority}: %{message} in %{method}\n %{throwable}";

 /**
 * Logkit extended formatter class, provides method
 * and thread info. This one is for the non-static
 * logger
 */
 protected ExtendedPatternFormatter formatter =
 new ExtendedPatternFormatter(pattern);

 /**
 * Logkit extended formatter class, provides method
 * and thread info. This one is for the staticLogger
 */
 protected static ExtendedPatternFormatter staticFormatter =
 new ExtendedPatternFormatter(staticPattern);

193Using a Base Test Case with a logger
 static {
 setLogLevelFromSystemProperty();
 // log everything to System.out target for now
 StreamTarget target =
 new StreamTarget(System.out, staticFormatter);
 staticLogger.setLogTargets(new LogTarget[] { target });
 Priority priority = Priority.getPriorityForName(logLevel);
 staticLogger.setPriority(priority);
 }

 public BaseTestCase() {
 setLogLevelFromSystemProperty();
 // log everything to System.out target for now
 StreamTarget target =
 new StreamTarget(System.out, formatter);
 logger.setLogTargets(new LogTarget[] { target });
 Priority priority = Priority.getPriorityForName(logLevel);
 logger.setPriority(priority);
 }

 private static final void setLogLevelFromSystemProperty() {
 String log_level = System.getProperty("log.level");
 if (null != log_level) {
 logLevel = log_level;
 }
 }
}

The most important thing about the code example in listing 7.1 is the general
technique of embedding a shared logger instance in a base test case class, not the
specifics of using any particular logging implementation.

◆ Discussion

Loggers such as LogKit, Log4J, and the Java 1.4 logging API allow you to config-
ure logging on a per-class or per-package basis, by log level or by named catego-
ries. Such configurability is useful for enabling logging for a particular subsystem
or class hierarchy and helping isolate log messages from a particular set of tests or
type of log message.

The advantage to extending a BaseTestCase (for logging and other utilities it
might offer) is that subclasses can access the logger with no extra work. The draw-
back to any subclassing strategy is that it ties the subclasses to the parent class
through inheritance. An alternative to subclassing is to write a logging utility class
that configures and instantiates a shared logger, and then use that utility class
from within your tests. This tack decouples your test case classes from a common

static initializer
for configuring

staticLogger

Constructor,
where default log

level is set and
base logger is

configured

194 CHAPTER 7

Reporting JUnit results
base class added just for logging. But it is so common in practice to evolve a use-
ful, in-house Base Test Case of some kind, that it is a good recipe to have in your
personal cookbook.

◆ Related

■ 7.2—Using Log4Unit

7.2 Using Log4Unit

◆ Problem

You want a ready-made solution for logging messages from within your test cases.

◆ Background

Log4Unit is an extension of JUnit’s TestCase class that gives you Log4J-based logging
functionality with the least amount of effort. It provides the following features:

■ Log4Unit derived test cases default to logging to System.out if the Log4J
library is not present in the class path at runtime.

■ Log4Unit configures and instantiates a Log4J logger instance and imple-
ments utility logging methods such as info(Object message) and debug
(Object message, Throwable t) for you.

■ Log4Unit comes with a customized Swing-based test runner that shows log
statements and test summary information in a dialog box that pops up with
the push of a button.

◆ Recipe

Use Log4Unit (www.openfuture.de/Log4Unit/) to integrate your tests with the
Log4J logger. Log4Unit is free, open source, and licensed under the Lesser GPL.
The latest version as of this writing is v0.2.0. Download the .zip or .gzip file and
unpack it into a new directory, such as log4unit-020.

You also need Log4J (http://logging.apache.org/log4j) to see the features of
Log4Unit. The latest release of Log4J as of this writing is v1.2.8.

To use Log4Unit:

■ Extend your TestCases from junit.log4j.LoggedTestCase.

■ Write a Log4J configuration file (it can be in Java properties or XML format—
see the Log4J documentation for details), or place the directory containing

195Using Log4Unit
Log4Unit’s provided log4j.properties in your class path (probably the src/
directory where you unzipped Log4Unit).

■ Add log4j-1.2.8.jar and log4unit-0.2.0.jar to your usual test class path.

■ As another option, you can use junit.logswingui.TestRunner as your GUI
test runner if you want to have access to the test summary: java junit.
logswingui.TestRunner [-noloading] [TestCase].

Listing 7.2 demonstrates some basic features of Log4Unit by showing you the sim-
plest type of test you can write with Log4Unit. Note that we import and extend
junit.log4j.LoggedTestCase. The LoggedTestCase superclass configures and
instantiates a Log4J logger instance and implements utility logging methods such
as info(Object message) and debug(Object message, Throwable t) for you. All we
do in this example apart from extending the base class is call the inherited
info(Object message) log method twice and debug(Object message) once to dem-
onstrate the basic functionality and default logging configuration.

package junit.cookbook.reporting.log4unit;

import junit.log4j.LoggedTestCase;

public class Log4UnitExample extends LoggedTestCase {
 public void setUp() {
 debug("** SETUP ENTERED **");
 }

 public void testConnection() {
 info("> entered " + this);
 boolean connected = false;
 info("Initiating connection to server now");
 // create Connection and set connected
 // to true if successful . . .
 connected = true;
 assertTrue(connected);
 }
}

First let’s run Log4UnitExample from the command line using JUnit’s built-in text-
based test runner and see the resulting output.

NOTE The Log4J jar is needed to run, but not to compile this example; and
some of these messages are generated at the DEBUG log level, so change
your log4j.properties file from the INFO to DEBUG level to see them all.

Listing 7.2 Log4UnitExample.java

Extending
LoggedTestCase

Example info
messages

Example debug
message

196 CHAPTER 7

Reporting JUnit results
java -cp lib\junit.jar;lib\log4j-1.2.8.jar;lib\log4unit-0.2.0.jar;classes

➾ junit.textui.TestRunner junit.cookbook.reporting.log4unit.Log4UnitExample

30 Jun 2003 22:01:42,663 - Log4J successfully instantiated.
.30 Jun 2003 22:01:42,693 - ** SETUP ENTERED **
30 Jun 2003 22:01:42,713 - > entered

testConnection(junit.cookbook.reporting.log4unit.Log4UnitExample)
30 Jun 2003 22:01:42,733 - Initiating connection to server now
30 Jun 2003 22:01:42,753 - Tear down finished.

Time: 0.08

OK (1 test)

You can see that the default logging configuration prints out date and time (to the
millisecond) to the console, followed by a successful start-up message and default
log messages for setUp() and tearDown(). We overrode setUp() with our own log
message and let tearDown() print its default message. The two INFO messages we
logged show up in the middle, displaying the test being executed and a message.

If you look in the directory from where you executed this command, you see a
file named bugbase-test.log. Log4Unit produces this log and the console output
because it uses Log4J to handle the calls to the various logging priorities (DEBUG,
INFO, WARN, ERROR, and FATAL). In the default configuration the console and
the log contain the same information, but you can configure Log4J to customize
the output for each location.

Figure 7.1
junit.logswingui.TestRunner
showing the Protocol button on the right

197Using Log4Unit
Log4J supports a plethora of possibilities for increasing log output and custom-
izing the logging configuration. Some of it is useful for tests, such as source line
numbers and elapsed time recording. But because these are features of Log4J and
not Log4Unit, we won’t delve into them here. Please refer to the Log4J web site
for more information (http://logging.apache.org/log4j).

Another feature of Log4Unit is its customized Swing-based test runner with its
test protocol feature. Running the same example with the junit.logswingui.Test-
Runner, we see a dialog box with a new Protocol button as shown in figure 7.1.

When you press the Protocol button a dialog box pops up with log statements
and test summary information, as shown in figure 7.2.

◆ Discussion

A helpful feature of Log4Unit is that test cases default to logging to System.out if
the Log4J library is not present in the class path at runtime. If you are wondering
how it does this, LoggedTestCase’s constructor discovers whether Log4J is avail-
able and sets a boolean flag accordingly. There is an if statement in each log
method that passes the log message and level to System.out when the flag is
false.

When running the junit.logswingui.TestRunner, you might see a large num-
ber of Log4J errors on the console display. These errors describe class loading
problems caused by trying to reload Log4J classes that prefer not to be reloaded,1

so if you see these messages the first time you use the Log4J test runner, you have
two options:

Figure 7.2
The Log4Unit Test Protocol
dialog box, showing log
statements and test
summary information

1 There are similar problems when trying to reload some JDBC driver classes within tests, an issue we deal
with in more detail in chapter 10, “Testing and JDBC.”

198 CHAPTER 7

Reporting JUnit results
■ Use the -noloading option, or

■ Add the Log4J package (org.apache.log4j.*) to the “excluded classes” list
as we describe in recipe 8.6, “The graphical test runner does not load your
classes properly”.2

You should be aware of the limitations to using Log4Unit:

■ Log4Unit only supports Log4J. Log4J is a very flexible and powerful logging
API, but sometimes you need to use another logging implementation.
Log4Unit is open source and small, so you could pretty easily customize it to
support the logging implementation of your choice, or abstract the logging
implementation using a bridge such as Jakarta Commons Logging, found at
http://jakarta.apache.org/commons/logging.html.

■ Log4Unit requires your TestCases to extend LoggedTestCase. It is one thing
to willingly extract a Base Test Case; it is another to be forced into it. That
said, there’s nothing about Log4Unit that prevents subclasses of
LoggedTestCase from running in any other JUnit test runner. As we said,
even if Log4J is not in the class path, the tests run as normal TestCases
minus the logging features. Nevertheless, if you plan to write hundreds or
thousands of tests, we recommend that you extend a base TestCase of your
own from LoggedTestCase and extend all your other tests from your own
base TestCase. That way, if you ever decide you need to remove or replace
Log4Unit, you only have to change your base TestCase and not hundreds
of TestCases.

◆ Related

■ 7.1—Using a Base Test Case with a logger

7.3 Getting plain text results with Ant

◆ Problem

You want to output JUnit test reports in plain text.

2 If you run your tests from Ant’s <junit> tasks, then this option doesn’t exist, but that is no problem
because Ant uses its own test runner.

199Getting plain text results with Ant
◆ Background

Plain text reports are useful in contexts such as Telnet terminals, UNIX and DOS
command shells, and inline in email messages. Ant has the built-in capability to
produce two types of plain text JUnit test reports: brief and plain, which are useful
in these contexts.

◆ Recipe

Use the brief or plain formatter type to output plain text reports to a file or to the
console. The <junit>, <test>, and <batchtest> tasks all support the use of the
nested <formatter> element. Table 7.1 describes the attributes of the <formatter>
element:

Table 7.1 Attributes of the <formatter> element of Ant’s <junit>, <test>, and
<batchtest> tasks for executing JUnit tests

The two formatting options we are concerned with in this recipe are the brief and
plain types.

Listing 7.3 shows an Ant target for running a set of JUnit tests with the brief
results formatter. You typically use this target in a complete Ant build script, of
course. See recipe 7.4, “Reporting results in HTML with Ant’s <junitreport> task”
for a more complete build.xml example.

<!--property declarations, clean, compile and other build
targets omitted to save page space -->

<target name="junit-run"
 description="=> run JUnit tests">
 <junit haltonfailure="no" fork="yes" printsummary="no"> B
 <classpath>

Attribute Description

classname Lets you specify your own custom formatter implementation class instead of using xml,
plain, or brief (see recipe 7.6, “Extending Ant's JUnit results format” for use of this
extension feature).

extension Extension to append to files output by the formatter. Required if using a custom format-
ter, but defaults to .txt for plain and brief, and .xml when using xml.

type Choice of xml, plain, or brief (unless using your own formatter implementation with the
classname attribute).

usefile Whether to output formatted results to a file. Defaults to true.

Listing 7.3 junit-run Ant target using brief results formatter

200 CHAPTER 7

Reporting JUnit results
 <pathelement location="${classes.dir}"/>
 <pathelement path="${java.class.path}"/>
 </classpath>
 <batchtest fork="yes">
 <formatter type="brief" C
 usefile="no"/> D
 <fileset dir="${src.dir}">
 <include name="${junit.includes}"/>
 <exclude name="${junit.excludes}"/>
 </fileset>
 </batchtest>
 </junit>
</target>

Eliminate duplicate summary information—The brief text formatter already includes
a summary at the end of a test run, so we set printsummary to no to avoid duplicat-
ing that information.

Use brief formatter—This is how to specify the brief formatting type. As we have
mentioned previously, the other available values are plain and xml.

Display results to console—We have decided to display test results to the console,
rather than to a file, so we set usefile to no.

The brief format type output looks like this on the console (we ran this Ant build
target with the -emacs flag to reduce logging adornments):

junit-run:
Testsuite: junit.cookbook.tests.extensions.ReloadableTestClassLoaderTest
Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 0.02 sec

Testsuite: junit.cookbook.tests.reporting.CookbookTestListenerTest
Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 0.591 sec

Change the formatter to type="plain" and run it again. You can see the plain
type output prints the name and elapsed time of each test method:

junit-run:
Testsuite: junit.cookbook.tests.extensions.ReloadableTestClassLoaderTest
Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 0.03 sec

Testcase: testGetResourceString took 0.01 sec
Testcase: testGetResourceAsStreamString took 0 sec
Testcase: testLoadClassString took 0.02 sec
Testcase: testIsJar took 0 sec

Testsuite: junit.cookbook.tests.reporting.CookbookTestListenerTest
Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 0.591 sec

B

C

D

201Getting plain text results with Ant
Testcase: testStartTest took 0.561 sec
Testcase: testEndTest took 0.01 sec
Testcase: testAddError took 0.01 sec
Testcase: testAddFailure took 0 sec

We set printsummary="no" when using these formatters because the summary out-
put just repeats some of the same information output by these formatters.

Both of these formatters will output one text file per test case class if you run
your tests using the <batchtest> task, since the <batchtest> task dynamically
picks up tests to run based on pattern matching for file names. We have our
includes/excludes pattern match the source files here, but you could use classes
(we use source file names because it saves time in pattern matching a mix of outer
and inner class file names). If you want to automatically send the output of the
results as text in the body of an e-mail message (since attaching dozens or hun-
dreds of text files would be unusable to recipients of the e-mail), you can use the
Ant <concat> and <mail> tasks to do so with a target like this:

<target name="mail-report">
 <property name="junit.report.file" value="junit-results.txt"/>
 <concat destfile="${junit.report.file}">
 <fileset dir="${junit.reports.dir}" includes="TEST-*.txt"/>
 </concat>
 <mail mailhost="mail.manning.net"
 mailport="25"
 subject="JUnit test results"
 tolist="jb@manning.com,ss@manning.com"
 messagefile="${junit.results.file}">
 <from address="autobuild@manning.com"/>
 </mail>
</target>

Each test result file is automatically named by the formatters as TEST-class-
name.txt, so it’s easy to include them all in a <fileset>. The <concat> task concat-
enates all these files into one new file named by the destfile attribute, which is
set by a property in our example to ensure that the same file is picked up and
used below in the <mail> task. The messagefile attribute of the <mail> task will
use the file specified by ${junit.results.file} as the body of the email message
that is sent. You could easily spruce up the target as shown to make it more
dynamic, such as by using the <tstamp> task to create a time stamp property,
which you could use to append to the email subject.

◆ Discussion

The easiest way to get off the ground with automated JUnit test results is by run-
ning JUnit tests in Ant, and running the outputs into automated emails or HTML

202 CHAPTER 7

Reporting JUnit results
reports. Test results can be output in XML by the <junit> task and transformed to
HTML using the <junitreport> task.

◆ Related

■ 7.4—Reporting results in HTML with Ant’s <junitreport> task

■ 7.5—Customizing <junit> XML reports with XSLT

7.4 Reporting results in HTML with Ant’s <junitreport> task

◆ Problem

You need to easily and automatically report JUnit test results in a presentable
HTML format.

◆ Background

You often need to make JUnit test results available as a report to a wider audience
than the individual developer or QA engineer. The way to do this is with profes-
sional looking file-based reports, which can be emailed as attachments or posted
online in HTML format. Tabular, cross-linked HTML reports are useful for their
hyperlinked navigability, especially if you need to navigate around hundreds or
thousands of test results.

◆ Recipe

Use Ant’s <formatter> element to tell Ant to save the JUnit results in XML files.
You can specify <formatter> under either <junit> or <batchtest>, depending on
how you set up your target to run JUnit tests. In the same target you use to run the
JUnit tests, or in a separate target if you prefer, use the <junitreport> task with a
nested <report> element to transform the XML result files’ output by the previous
test run into a professional looking HTML report.

Listing 7.4 shows a simplified but functional Ant build script with one target for
running a set of JUnit tests using <batchtest> and another for transforming the
XML test results into HTML using the <junitreport> task.

<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="junit-run" name="myproject">

 <property name="src.dir" location="${basedir}/src"/>
 <property name="classes.dir" location="${basedir}/classes"/>
 <property name="junit.reports.dir" location="${basedir}/junit"/>

Listing 7.4 build.xml using the <junitreport> task

203Reporting results in HTML
with Ant’s <junitreport> task
 <property name="junit.includes"
 value="junit/cookbook/tests/**/*Test.java"/>
 <property name="junit.excludes" value="**/AllTests.java"/>

 <!-- clean, compile and other build targets
 omitted for brevity -->

 <target name="junit-run"
 description="=> run JUnit tests">
 <mkdir dir="${junit.reports.dir}/xml"/>
 <junit haltonfailure="no" fork="yes"
 printsummary="withOutAndErr">
 <classpath>
 <pathelement location="${classes.dir}"/>
 <pathelement path="${java.class.path}"/>
 </classpath>
 <batchtest fork="yes" todir="${junit.reports.dir}/xml"> B
 <formatter type="xml"/> C
 <fileset dir="${src.dir}">
 <include name="${junit.includes}"/>
 <exclude name="${junit.excludes}"/>
 </fileset>
 </batchtest>
 </junit>
 </target>

 <target name="junit-report" depends="junit-run"
 description="=> generate JUnit HTML report">
 <junitreport todir="${junit.reports.dir}/xml">
 <fileset dir="${junit.reports.dir}/xml">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" E
 todir="${junit.reports.dir}"/> f
 </junitreport>
 </target>
</project>

The <batchtest> attribute todir specifies an output directory for individual test
suite result files. For each test suite (test case class), batchtest generates a sepa-
rate results file.

Select the xml formatter.

The <junitreport> attribute todir specifies an output directory for one merged
XML file, containing the results of all the tests executed by <batchtest>. The
<fileset> specifies which test result files to include in the final report.

Choose the frames format to produce an HTML report that looks like Javadoc.

Specify the output directly for the final HTML report.

D

B

C

D

E

F

204 CHAPTER 7

Reporting JUnit results
Ant’s <junitreport> task comes with two embedded XSL stylesheets for generat-
ing HTML reports: one with HTML frames and one without. The HTML frames
report is organized similarly to standard Javadoc output with a three-paned, inter-
linked frameset that facilitates navigation.

The noframes report comes out as one long HTML page, which is definitely
harder to navigate than the frames version if you have more than a few unit tests.

To choose which style of report to generate, you specify either frames or no-
frames to the format attribute of the <report> element. Internally, Ant maps these
values to one of its two XSL stylesheets to produce the appropriate report format.
For more discussion of the reporting options, including non-HTML options and ways
to customize the default capabilities, see the remaining recipes in this chapter.

◆ Discussion

Other than some dependency checking for whether to run certain batches of
tests and some extra system properties (such as ${test.data.dir}) which one
may want to declare, the targets shown in listing 7.4 are nearly identical to targets
we have used on commercial projects to run and report JUnit tests in a team envi-
ronment. We separate the running and reporting into two targets because this
allows a developer to run just the tests without creating the HTML report. The
printsummary="withOutAndErr" attribute setting of the <junit> task is used to
output a summary of the test results to the console, so that a developer can see a
summary of the test run without running the junit-report target to generate the
HTML report. The report generation only takes a few seconds to execute, but it
adds up over time if you are repeatedly running tests with Ant while working. We
make the junit-report target depend on the junit-run target so that the release
engineers can just call the junit-report target without having to call the junit-
run target separately.

Using <junitreport> and its <report> element is the easiest way to produce
professional looking JUnit HTML reports. If the default report formats provided
by <report> are lacking or not to your taste, you can customize them or design
your own reporting format, as discussed in recipe 7.5, “Customizing <junit> XML
reports with XSLT” and recipe 7.6, “Extending Ant’s JUnit results format.”

◆ Related

■ 7.5—Customizing <junit> XML reports with XSLT

■ 7.6—Extending Ant’s JUnit results format

205Customizing <junit> XML
reports with XSLT
7.5 Customizing <junit> XML reports with XSLT

◆ Problem

You are running JUnit with Ant and you need to customize the reports produced
by the <junitreport> task.

◆ Background

If the two types of HTML reports that can be produced by Ant out of the box are
not to your liking, you can define your own custom HTML output by customizing
the existing XSL templates or by writing new ones from scratch.

Perhaps, instead of HTML output, you need a custom XML report format to
facilitate importing test results into a test management system or a publishing
engine (such as a PDF generator expecting a particular XML format). In these
cases, you need a way to tell Ant to transform its default XML output into another
XML format.

◆ Recipe

First, output test results in XML using the <formatter type="xml"> (see recipe 7.3,
“Getting plain text results with Ant”). Next, merge the results with the <junit-
report> task. This creates one large XML results document. You have two main
options for transforming this document using XSL stylesheets:

■ Customize one of the <junitreport> XSL stylesheets that comes with Ant.

■ Make <junitreport> use a custom XSL stylesheet of your own.

Customizing one of the existing XSL sheets is useful only if you want to mildly cus-
tomize the format that Ant provides by default, such as embedding an image or
changing the background color or fonts. This is because of some quirks and limi-
tations of the <report> element (see the Discussion section for details).

For transforming XML formatted JUnit test results into HTML reports, Ant
(since at least Ant 1.3) provides two XSL stylesheets in $ANT_HOME/etc: junit-

frames.xsl and junit-noframes.xsl. Make a copy of either one for customiza-
tion and keep your modified copy in a directory in your project. Then use your
modified stylesheet to override the built-in default of the same name (either
junit-frames.xsl or junit-noframes.xsl) by using the styledir attribute of the
<report> element.

206 CHAPTER 7

Reporting JUnit results
A simple but effective change to one of these stylesheets is to skip outputting
into the HTML the listings of Java system property names and values recorded dur-
ing the execution of each JUnit test. These properties listings are seldom useful,
and they add many kilobytes of additional report file content, which can be an
issue if trim, lightweight HTML reports are desired. Just comment out or delete
the following elements (meaning everything between and including the opening
and closing of the following named elements in the XSL) in junit-noframes.xsl
(line numbers correspond to the line numbers in the actual junit-noframes.xsl
file shipped with Ant 1.6.0):

1 Both <script> elements (lines 123–158)

2 The <div class="Properties"> element (lines 271–276)

3 The <xsl:template match="properties"> element (lines 334–340)

Then you can point Ant to your modified stylesheet’s directory location (repre-
sented by the property variable modified.xsl.dir below) in a target utilizing the
<junitreport> task and <report> element as shown in listing 7.5.

<target name="junit-custom-report"
 description="=> generate XML and custom HTML reports">
 <junitreport todir="${junit.reports.dir}/xml">
 <fileset dir="${junit.reports.dir}/xml">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="noframes" styledir="${modified.xsl.dir}"/>
 </junitreport>
</target>

For more extreme transformations, we recommend using the <style>/<xslt>
task (this task has two names, which can be used interchangeably in Ant scripts,
but we prefer <style>) as you normally would, using the merged XML file output
by the <junitreport> task as the input file to the transformation.

To use the <style> task with Ant’s JUnit reporting, assume you have an XSL
custom stylesheet written to transform <junitreport> XML results into another
form of XML. Call it custom-junitreport.xsl. First, we usually want to merge
together the individual XML results files output by the <batchtest> XML format-
ter during a test run. The <junitreport> task can merge all those files, and do
nothing else, if you just leave out the <report> element, as shown in listing 7.6:

Listing 7.5 Ant script snippet using <report> element with custom stylesheet

207Customizing <junit> XML
reports with XSLT
<target name="junit-report"
 description="=> generate JUnit merged XML report">
 <junitreport todir="${junit.reports.dir}/xml">
 <fileset dir="${junit.reports.dir}/xml">
 <include name="TEST-*.xml"/>
 </fileset>
 </junitreport>
</target>

In the target shown in listing 7.6, the <junitreport> task merges together all the
files matching the name pattern TEST-*.xml (which is the default output file nam-
ing pattern of the XML formatter) in the ${junit.reports.dir}. By default, the
resulting merged XML file is named TESTS-TestSuites.xml. The file TESTS-Test-
Suites.xml is then passed as input to the <style> task, where your custom
stylesheet guides the transformation, as shown in listing 7.7:

<target name="transform" description="=> create custom JUnit report">
 <style in="${junit.reports.dir}/xml/TESTS-TestSuites.xml" B
 out="TESTS-TestSuites.html"
 extension=".html"
 style="custom-junitreport.xsl"/> C
</target>

Test results to transform—The in attribute specifies the XML-based test results file to
transform into a report. This file is a merged version of all the individual test suite
result files.

XSL stylesheet for transformation—The style attribute specifies your custom XSL
stylesheet for transforming the XML-based test results. The stylesheet could trans-
form XML into HTML, a PDF, plain text or any other format. In our example, the
target is an HTML report.

◆ Discussion

When using the <junitreport> task with a custom stylesheet, you must place the
custom stylesheet in the directory specified by the styledir attribute of the
<report> element. You must name the stylesheet either junit-frames.xsl or
junit-noframes.xsl. This is a quirk (arguably a defect) in the <report> element,
which should be fixed so that it can take any file name for a stylesheet rather than
demanding one of the two predefined file names to exist in a directory.

Listing 7.6 Ant script snippet using <junitreport> task to merge XML result files into one

Listing 7.7 Ant script snippet using <style> task just to transform XML results

B

C

208 CHAPTER 7

Reporting JUnit results
Another quirk is that the format attribute depends on the values frames or
noframes (note that the default is frames, if format is left unspecified) even for
custom stylesheets. Outside the context of HTML, specifying frames or noframes
doesn’t make much sense. What if your stylesheet outputs XML or PDF? A work-
around is to always name your custom XSL sheet as junit-frames.xsl and leave
format unspecified. Because the format attribute defaults to frames, you can
leverage that fact and tolerate not having descriptive filenames. Of course, if you
have multiple custom stylesheets, separate them by descriptive directory names.

Also note that the frames-based report includes test output captured from the
System.out stream, whereas the noframes report does not.

It seems that the advantage of the <junitreport> task for this set of problems is
primarily in its XML-merging capabilities. Once the XML results files have been
merged into a single large XML file, it would seem to be as easy, if not easier, to
use a custom XSL sheet with the regular Ant <style> task as it would be to config-
ure the <report> element to use a custom stylesheet.

So the answer is probably this: if you need minor tweaks to the format, use the
<report> task with one of the existing stylesheets and customize it. But if you need
major changes to the output format, such as transforming the output to another
XML structure, then use the <junitreport> task to merge the results into one file,
and then use the <style> task to transform it with your custom stylesheet. The lat-
ter option gives you all the features and options of the <style> task without the
quirky limitations of the <report> task (which requires Xalan 2 and doesn’t sup-
port nearly as many options as style/xslt).3

◆ Related

■ 7.4—Reporting results in HTML with Ant’s <junitreport> task

■ 7.6—Extending Ant’s JUnit results format

7.6 Extending Ant’s JUnit results format

◆ Problem

You are running JUnit with Ant and you need to customize the results format to
add more information or adhere to a specialized format.

3 In fact, why don’t the Ant folks ditch the <report> task and just use the <style> task, at least under
the covers?

209Extending Ant’s JUnit results format
◆ Background

We have seen a situation in which a legacy test results management system, origi-
nally developed without support for Ant or JUnit, needed to be outfitted with sup-
port for test results produced from JUnit, which was being run by Ant. One of the
requirements was to make Ant’s XML output of JUnit results conform to the input
file format of the repository. The XML files could then be analyzed and reported
on by the results management system without knowing their origin. The results
repository took an XML input file that looked similar to the XML formatted results
which Ant’s <junit> task can output when using a nested <formatter type="xml">
element. A good solution to the problem was to extend and customize the XML
results format of Ant’s XML formatter.

Another situation in which you might want to customize Ant’s JUnit results for-
mat would be if you wanted your results to be in PostScript, PDF, or HTML format.
You can output the desired format directly without producing intermediate XML
results files that need to be processed by XSL.

◆ Recipe

1 Implement the interface JunitResultFormatter found in the package org.
apache.tools.ant.taskdefs.optional.junit.

2 Specify the name of the custom formatter class in the classname attribute
of the <junitreport> task in your build script.

Listing 7.8 shows one way to implement these steps in a custom results formatter
that outputs reports in HTML format. Note that this class depends on Ant tools, so
you need ant.jar and ant-junit.jar, which are both part of the Ant distribution,
to compile it.

package junit.cookbook.reporting.ant;

import java.io.*;
import java.text.NumberFormat;
import java.util.Hashtable;
import junit.framework.*;
import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.taskdefs.optional.junit.*;

public class HtmlJUnitResultFormatter implements JUnitResultFormatter {

 /** Formatter for timings. */
 private NumberFormat nf = NumberFormat.getInstance();

Listing 7.8 HtmlJUnitResultFormatter

210 CHAPTER 7

Reporting JUnit results
 /** Timing helper. */
 private Hashtable testStarts = new Hashtable();

 /** Where to write the log to. */
 private OutputStream out;

 /** Helper to store intermediate output. */
 private StringWriter middle;

 /** Convenience layer on top of {@link #middle middle}. */
 private PrintWriter wri;

 /** Suppress endTest if testcase failed. */
 private Hashtable failed = new Hashtable();
 private String systemOutput = null;
 private String systemError = null;

 public void setOutput(OutputStream out) {
 this.out = out;
 }

 public void setSystemOutput(String out) {
 systemOutput = out;
 }

 public void setSystemError(String err) {
 systemError = err;
 }

 public HtmlJUnitResultFormatter() {
 middle = new StringWriter();
 wri = new PrintWriter(middle);
 }

 /**
 * The whole testsuite ended.
 */
 public void endTestSuite(JUnitTest suite) throws BuildException {
 String nl = System.getProperty("line.separator");
 StringBuffer header = new StringBuffer(
 "<html>"
 + nl
 + "<head><title>JUnit Results</title></head>"
 + nl
 + "<body>"
 + nl + "<table border=\"1\">" + nl);
 header.append(
 "<tr><th>Suite: "
 + suite.getName()
 + "</th><th>Time</th></tr>" + nl);

 StringBuffer footer = new StringBuffer();
 footer.append(nl + "<tr><td>");
 footer.append("Tests run:");
 footer.append("</td><td>");

211Extending Ant’s JUnit results format
 footer.append(suite.runCount());
 footer.append("</td></tr>" + nl + "<tr><td>");
 footer.append("Failures:");
 footer.append("</td><td>");
 footer.append(suite.failureCount());
 footer.append("</td></tr>" + nl + "<tr><td>");
 footer.append("Errors:");
 footer.append("</td><td>");
 footer.append(suite.errorCount());
 footer.append("</td></tr>" + nl + "<tr><td>");
 footer.append("Time elapsed:");
 footer.append("</td><td>");
 footer.append(nf.format(suite.getRunTime() / 1000.0));
 footer.append(" sec");
 footer.append("</td></tr>");
 footer.append(nl);

 // append both the output and error streams to the log
 if (systemOutput != null && systemOutput.length() > 0) {
 footer
 .append("<tr><td>Standard Output</td><td>")
 .append("<pre>")
 .append(systemOutput)
 .append("</pre></td></tr>");
 }

 if (systemError != null && systemError.length() > 0) {
 footer
 .append("<tr><td>Standard Error</td><td>")
 .append("<pre>")
 .append(systemError)
 .append("</pre></td></tr>");
 }

 footer.append("</table>" + nl + "</body>" + nl + "</html>");

 if (out != null) {
 try {
 out.write(header.toString().getBytes());
 out.write(middle.toString().getBytes());
 out.write(footer.toString().getBytes());
 wri.close();
 out.flush();
 } catch (IOException ioe) {
 throw new BuildException("Unable to write output", ioe);
 } finally {
 if (out != System.out && out != System.err) {
 try {
 out.close();
 } catch (IOException e) {
 }
 }

212 CHAPTER 7

Reporting JUnit results
 }
 }
 }

 /**
 * From interface TestListener.
 * <p>A new Test is started.
 */
 public void startTest(Test test) {
 testStarts.put(test, new Long(System.currentTimeMillis()));
 failed.put(test, Boolean.FALSE);
 wri.print("<tr><td>");
 wri.print(JUnitVersionHelper.getTestCaseName(test));
 wri.print("</td>");
 }

 /**
 * From interface TestListener.
 * <p>A Test is finished.
 */
 public void endTest(Test test) {
 synchronized (wri) {
 if (Boolean.TRUE.equals(failed.get(test))) {
 return;
 }
 Long secondsAsLong = (Long) testStarts.get(test);
 double seconds = 0;
 // can be null if an error occured in setUp
 if (secondsAsLong != null) {
 seconds = (System.currentTimeMillis()
 - secondsAsLong.longValue()) / 1000.0;
 }

 wri.print("<td>");
 wri.print(nf.format(seconds));
 wri.print(" sec</td></tr>");
 }
 }

 /**
 * Interface TestListener for JUnit > 3.4.
 *
 * <p>A Test failed.
 */
 public void addFailure(Test test, AssertionFailedError t) {
 formatThrowable("failure", test, (Throwable) t);
 }

 /**
 * Interface TestListener.
 *
 * <p>An error occured while running the test.
 */

213Extending Ant’s JUnit results format
 public void addError(Test test, Throwable t) {
 formatThrowable("error", test, t);
 }

 private void formatThrowable(String type, Test test, Throwable t) {
 synchronized (wri) {
 if (test != null) {
 failed.put(test, Boolean.TRUE);
 endTest(test);
 }

 wri.println("<td><pre>");
 wri.println(t.getMessage());
 // filter the stack trace to squelch Ant and JUnit stack
 // frames in the report
 String strace = JUnitTestRunner.getFilteredTrace(t);
 wri.print(strace);
 wri.println("</pre></td></tr>");
 }
 }

 /**
 * From interface JUnitResultFormatter. We do nothing with this
 * method, but we have to implement all the interface’s methods.

 */
 public void startTestSuite(JUnitTest suite) throws BuildException {
 }
}

Although this looks like an awful lot of code, the general idea is straightforward.
At each stage of executing the test suite, Ant generates various events: one when
the test suite starts executing, one when it ends, one for each test, and one for
each test failure or error. For each of these events, we have provided an event han-
dler that outputs HTML corresponding to each event.

For the “start test suite” event, there is nothing to do. If we wanted to add some
kind of test suite header, we would have added that here. For the “start test” event,
we start an HTML table row and write out the name of the test. What we write out
next depends on how the test ends. If the test fails, we treat the assertion failure as
a Throwable object (it is an AssertionFailedError, after all) and print the stack
trace as preformatted text in a <pre> tag. This is the same behavior we use when
the test ends with an error, due to throwing an unexpected exception. Finally, for
the “end test suite” event, we write out a summary of the test run, with failure and
error counts as well as any text written to the standard output and error streams.
This is a pretty comprehensive report!

214 CHAPTER 7

Reporting JUnit results
Here is an Ant target that can be used in an Ant build file for running tests and
reporting results using our custom formatter:

<target name="ant-custom-formatter"
 description="-> demos custom Ant results formatter">
 <mkdir dir="${custom.reports.dir}"/>
 <junit printsummary="yes" haltonfailure="no">
 <classpath>
 <pathelement location="${classes.dir}"/>
 <pathelement path="${java.class.path}"/>
 </classpath>

 <batchtest fork="yes" todir="${custom.reports.dir}">
 <formatter classname=
 "junit.cookbook.reporting.ant.HtmlJUnitResultFormatter"
 extension=".html"
 usefile="true"/>
 <fileset dir="${src.dir}">
 <include name="**/tests/runner/AllTests.java"/>
 </fileset>
 </batchtest>
 </junit>
</target>

◆ Discussion

One limitation of our HtmlJUnitResultFormatter example is that it outputs one
HTML file per test case class that executes. So while it is fine for reporting results
for a few medium to large test suites, which will produce a few short- to medium-
length HTML reports files, it becomes unusable when dealing with dozens or hun-
dreds of test case classes.

This recipe could be enhanced to produce HTML frames documents to orga-
nize and link the individual HTML reports together. You should also be able to
easily see how to write your own custom XML output formatter from this exam-
ple—just use XML tags instead of HTML. Also, see Ant’s own XMLJUnitResult-
Formatter for inspiration.

Generally, implementing custom reports formats comes down to a choice
between writing Java extensions of Ant’s JUnit APIs, as we do in this recipe, or writ-
ing new or customized XSL stylesheets for the <junitreport> task. The approach you
choose often depends on which technology better suits your reporting require-
ments and the skill set of your team.

◆ Related

■ 7.3—Getting plain text results with Ant

■ 7.5—Customizing <junit> XML reports with XSLT

215Implementing TestListener
and extending TestRunner
7.7 Implementing TestListener and extending TestRunner

◆ Problem

You want total control of the format of JUnit’s test results reporting.

◆ Background

A common question on the JUnit Yahoo! group is how to customize JUnit’s test
results reporting. The default reporting of the text-based test runner is pretty bare
bones (“.” for pass, “E” for error, “F” for failure). The Swing-based and AWT-based
runners display similar results in an interactive GUI.

For getting HTML or XML results files out of your JUnit test runs, the most com-
mon practice is to use Ant’s <junit> and <junitreport> tasks to execute the tests
and report the results. But we have come across cases where Ant is not or cannot
be used or where Ant might be more of a hassle to work with than simply extend-
ing the JUnit framework. (If your only problem with Ant is that it does not sup-
port your target XML or HTML reporting format, first see recipe 7.6, and see if
that’s enough to solve your problem). In cases such as these, you can extend JUnit
to format and output results any way you want by using APIs in the JUnit framework.

◆ Recipe

Implement junit.framework.TestListener to define the results format and
output mechanism, and then extend junit.runner.TestRunner to “register” the
listener with the test runner. We’ll go through the process in steps.

NOTE Observer/Observable—In this context a Listener, as in TestListener, is
one of the participants of an implementation of the Observer pattern as
captured in the so-called “Gang of Four” (Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides) book Design Patterns.

In short, a listener, also known as an observer or subscriber, is an object
that attaches or registers itself with another object (the “observable”) in
order to receive updates or notifications when the observable changes state.
The observable is also known as the “subject” or “publisher.” Each publisher
can have many subscribers. In our recipe here, the CookbookTestRunner is
the publisher for the CookbookTestListener. But TestRunners can also
be listeners (and implement the TestListener interface), registering
themselves with test results in order to handle the display or routing of test
events themselves. To see some source code examples of runners that are
listeners, see junit.awtui.TestRunner.runSuite() and junit.swin-
gui.TestRunner.doRunTest(Test testSuite).

216 CHAPTER 7

Reporting JUnit results
First, implement the TestListener interface to define the output format for
results. Listing 7.9 shows the interface to implement in order to control results
output for a test runner. Note that all the methods accept an object implementing
junit.framework.Test (either a TestCase or a TestSuite) as a parameter.

package junit.framework;

/**
 * A Listener for test progress
 */
public interface TestListener {

 /**
 * An error occurred.
 */
 public void addError(Test test, Throwable t);

 /**
 * A failure occurred.
 */
 public void addFailure(Test test, AssertionFailedError t);

 /**
 * A test started.
 */
 public void startTest(Test test);

 /**
 * A test ended.
 */
 public void endTest(Test test);
}

Each test has the potential to produce one or more failures or errors as JUnit exe-
cutes it. The TestListener is notified by a failure or error event if a test fails or has
an error. The TestListener is not notified of successes so we can assume that any
tests that start and end without an error or failure succeeded. Note that the lis-
tener also receives notification of start and end events. These events give us a
good place to decorate and format each test and its results as it executes and noti-
fies the test listener. Something that some people find strangely absent are start-
Suite() and endSuite() events and methods, since the API seems incomplete
without them. But we can add these methods to our TestListeners and could
even extend the TestListener interface with our own interface that required

Listing 7.9 junit.framework.TestListener

t is the unexpected
Throwable causing
the error

t is the AssertionFailedError
representing the failure

Notification of
a test starting

Notification of
a test ending

217Implementing TestListener
and extending TestRunner
extra methods. In fact, this is what the Ant JUnit reporting tasks do, as we see else-
where in this chapter.

For demonstration purposes we just need a simple test listener implementation
that does something interesting. So we will write a listener that is capable of writ-
ing out test results in a simple XML format. The test listener is responsible for for-
matting the results of each test. The results are stored in XML as we build the
document in memory using the org.w3c.dom API, and provide a print() method
that serializes the XML to an output stream, and a getXmlAsString() method that
returns the XML as a String. Listing 7.10 shows CookbookTestListener, our Test-
Listener implementation.

package junit.cookbook.reporting;

import java.io.PrintStream;
import java.io.StringWriter;
import java.text.NumberFormat;

import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import junit.framework.*;
import junit.runner.BaseTestRunner;

import org.w3c.dom.*;

public class CookbookTestListener implements TestListener {

 PrintStream printStream;
 Document xmlOutput;
 Element xmlRoot;
 Element testCase;

 int errorCount = 0;
 int failureCount = 0;
 int testCaseCount = 0;

 /**
 * Default constructor creates a CookbookTestListener that streams
 * results to System.out.
 *
 * @throws ParserConfigurationException
 */
 public CookbookTestListener() throws ParserConfigurationException {
 this(System.out);
 }

 /**

Listing 7.10 CookbookTestListener

218 CHAPTER 7

Reporting JUnit results
 * Creates a new CookbookTestListener that captures results in an XML
 * Document and serializes the XML to the specified
 * <code>printStream</code>

 *
 * @param printStream to use for serializing XML results
 * @throws ParserConfigurationException
 */
 public CookbookTestListener(PrintStream printStream)
 throws ParserConfigurationException {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = factory.newDocumentBuilder();
 xmlOutput = builder.newDocument();
 this.printStream = printStream;
 }

 public void startSuite(Test suite) {
 xmlRoot = (Element) xmlOutput.createElement("testsuite");
 xmlRoot.setAttribute("class",suite.toString());
 xmlOutput.appendChild(xmlRoot);
 }

 public void addError(Test test, Throwable t) {
 errorCount++;
 Element error = (Element) xmlOutput.createElement("error");
 addThrowable(t, error);
 }

 public void addFailure(Test test, AssertionFailedError t) {
 failureCount++;
 Element failure = (Element) xmlOutput.createElement("failure");
 addThrowable(t, failure);
 }

 public void startTest(Test test) {
 testCase = (Element) xmlOutput.createElement("test");
 String methodStr = ((TestCase) test).getName();
 testCase.setAttribute("name", methodStr);
 xmlRoot.appendChild(testCase);
 }

 public void endTest(Test test) {
 testCaseCount = testCaseCount + test.countTestCases();
 }

 public void print() throws TransformerException {
 Transformer transformer = getTransformer();
 DOMSource source = new DOMSource(xmlOutput);
 StreamResult streamResult = new StreamResult(printStream);
 transformer.transform(source, streamResult);
 }

 /**
 * @return output of the test results as a String
 */

B

C

D

E

F

G

219Implementing TestListener
and extending TestRunner
 public String getXmlAsString() throws TransformerException {
 Transformer transformer = getTransformer();
 DOMSource source = new DOMSource(xmlOutput);
 StringWriter xmlString = new StringWriter();
 StreamResult streamResult = new StreamResult(xmlString);
 transformer.transform(source, streamResult);
 return xmlString.toString();
 }

 public void endSuite(TestResult testResult, long runTime) {
 Element summary = (Element) xmlOutput.createElement("summary");
 Element tests = (Element) xmlOutput.createElement("tests");
 Element errors = (Element) xmlOutput.createElement("errors");
 Element failures = (Element) xmlOutput.createElement("failures");
 Element runtime = (Element) xmlOutput.createElement("runtime");

 String testCount = String.valueOf(testResult.runCount());
 String errCount = String.valueOf(testResult.errorCount());
 String failCount = String.valueOf(testResult.failureCount());
 String runTimeStr =
 NumberFormat.getInstance().format((double) runTime / 1000);

 tests.appendChild(xmlOutput.createTextNode(testCount));
 errors.appendChild(xmlOutput.createTextNode(errCount));
 failures.appendChild(xmlOutput.createTextNode(failCount));
 runtime.appendChild(xmlOutput.createTextNode(runTimeStr));

 xmlRoot.appendChild(summary);
 summary.appendChild(tests);
 summary.appendChild(errors);
 summary.appendChild(failures);
 summary.appendChild(runtime);
 }

 private void addThrowable(Throwable t, Element elem) {
 String trace = BaseTestRunner.getFilteredTrace(t);
 elem.setAttribute("message", t.getMessage());
 elem.appendChild(xmlOutput.createCDATASection(trace));
 testCase.appendChild(elem);
 }

 private Transformer getTransformer() throws TransformerException {
 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();
 transformer.setOutputProperty(
 javax.xml.transform.OutputKeys.INDENT, "yes");
 transformer.setOutputProperty(
 javax.xml.transform.OutputKeys.STANDALONE, "yes");
 return transformer;
 }
}

H

I

220 CHAPTER 7

Reporting JUnit results
Report that a new test suite is executing. This creates an XML element that looks
like <testsuite class="com.mycom.test.MyTestSuite">.

Report an error, complete with its message and a stack trace of the corresponding
unexpected exception.

Report a failure, complete with its message and a stack trace of the corresponding
AssertionFailedError.

Report that an individual test is starting to execute. This creates an XML element
that looks like <test name="testMyTestName">.

Note that an individual test has completed, incrementing the running total of
executed tests. For a TestCase object, countTestCases() always returns 1.

Write the XML document we are creating to the TestListener’s PrintStream
using the identity transform.4

This method is useful during testing, or whenever you might want to see the XML
document we are creating as a String.

Report the end of a test suite, including a summary of the test results.

Now we have implemented the listener methods that will receive callbacks from
the test runner as tests are executed and test methods start, end, or have an error
of failure. In each callback method we used DOM APIs to format the test class, test
method names, failures, errors, and results as XML. The second thing we must do
is to extend TestRunner so we can tell it to use our TestListener implementation
for reporting results. To do that, we have to implement three methods: main() for
executing the runner on the command line, processArgs() for handling com-
mand-line arguments, and doRun() to register our listener with the test runner. Then
we can kick off the test run, and call the listener’s print() method. Listing 7.11
shows our custom test runner.

package junit.cookbook.reporting;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.PrintStream;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.TransformerException;

4 The identity transform is an XSL transformation that applies an identity template to each XML ele-
ment. The result is output identical to the input: a copy of the input XML document.

Listing 7.11 CookbookTestRunner, an extension of TestRunner

B

C

D

E

F

G

H

I

221Implementing TestListener
and extending TestRunner
import junit.framework.Test;
import junit.framework.TestResult;
import junit.textui.TestRunner;

public class CookbookTestRunner extends TestRunner {

 private static CookbookTestListener testListener;
 TestResult results = null;

 /**
 * Constructor for use with an output file.
 *
 * @param testCase name of Test to run
 * @param fileName
 */
 public CookbookTestRunner(String fileName, String testClassName)
 throws FileNotFoundException, ParserConfigurationException {

 if (fileName != null) {
 FileOutputStream fos = new FileOutputStream(fileName);
 PrintStream printStream = new PrintStream(fos);
 testListener = new CookbookTestListener(printStream);
 } else {
 testListener = new CookbookTestListener();
 }
 Test test = super.getTest(testClassName);
 results = this.doRun(test);
 }

 /**
 * Constructor for use without an output file.
 *
 * @param testCase name of Test to run
 * @throws ParserConfigurationException
 */
 public CookbookTestRunner(String testClassName)
 throws ParserConfigurationException {
 testListener = new CookbookTestListener();
 Test test = super.getTest(testClassName);
 results = this.doRun(test);
 }

 /**
 * The default implementation of TestRunner.start() calls this
 * method, so we need to override it or else we don't get a
 * chance to register the TestListener for the TestRunner.
 * Otherwise, override start(), which you might want to do if
 * extending the TestRunner's supported command-line arguments.
 *
 * @param test test case to execute, time and collect results from.
 */
 public TestResult doRun(Test test) {
 TestResult testEventDriver = createTestResult();

222 CHAPTER 7

Reporting JUnit results
 testEventDriver.addListener(testListener);

 testListener.startSuite(test);

 long startTime = System.currentTimeMillis();
 test.run(testEventDriver);
 long endTime = System.currentTimeMillis();
 long runTime = endTime - startTime;
 testListener.endSuite(testEventDriver, runTime);

 try {
 testListener.print();
 } catch (TransformerException e) {
 e.printStackTrace();
 }
 return testEventDriver;
 }

 public static void main(String args[]) {

 TestResult results = null;
 CookbookTestRunner runner = null;

 if (args.length == 3 && args[0].equals("-o")) {
 try {
 runner = new CookbookTestRunner(args[1], args[2]);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 }
 } else if (args.length == 1) {
 try {
 runner = new CookbookTestRunner(args[0]);
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 }
 } else {
 throw new RuntimeException(
 "Usage: java TestRunner [-o outputFile] Test "
 + System.getProperty("line.separator")
 + "where Test is the fully qualified name of "
 + "a TestCase or TestSuite");
 }
 }

 /**
 * The CookbookTestRunner constructor runs a test class
 * and collects the results in a TestResult. This accessor
 * makes the TestResult accessible to clients.
 *
 * @return TestResult of test run executed by CookbookTestRunner
 */

Register our custom
TestListener

Signal the test
has finished

Write the test result

Execute the Test

Signal the test is about to execute

223Implementing TestListener
and extending TestRunner
 public TestResult getResults() {
 return this.results;
 }
}

That’s it! Now we can run our test runner and see test results in XML. If we pass a
filename with the -o flag we added, the results are saved to the specified file. If we
do not specify a file with -o, the results are streamed to standard output (the con-
sole) by default. The CookbookTestListener compiles as is with JDK 1.4 or higher.
With JDK 1.3 or earlier you need a JAXP-compliant XML parser implementation
such as Xerces (xml.apache.org) and the org.w3c.dom classes. Once we’ve com-
piled our test listener and runner and added them to the class path along with
junit.jar, we run them:

java –cp %CP% junit.cookbook.reporting.CookbookTestRunner –o junit-

➾ results.xml junit.tests.framework.AllTests

The following XML is the output of a test run with an intentional error and an
intentional failure to demonstrate how they appear in the results. Note that passing
test methods are just listed with their name. The test listener could be enhanced
to print out more information such as timing information for each test method.
Counts of one error and one failure appear in the results summary at the bottom,
along with a tally of the number of seconds all the tests took to run.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<testsuite class="junit.cookbook.tests.reporting.CookbookTestListenerTest">
<test name="testStartTest"/>
<test name="testEndTest"/>
<test name="testAddError">
<error message="Thrown on purpose!"><![CDATA[java.lang.Error: Thrown on purpose!
at junit.cookbook.tests.reporting.CookbookTestListenerTest.testAddError

➾ (CookbookTestListenerTest.java:38)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 // several stack frames
]]></error>
</test>
<test name="testAddFailure">
<failure message="Intentional

failure"><![CDATA[junit.framework.AssertionFailedError: Intentional failure

at junit.cookbook.tests.reporting.CookbookTestListenerTest.testAddFailure

➾ (CookbookTestListenerTest.java:52)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 // several stack frames

224 CHAPTER 7

Reporting JUnit results
]]></failure>
</test>
<summary>
<tests>4</tests>
<errors>1</errors>
<failures>1</failures>
<runtime>0.161</runtime>
</summary>
</testsuite>

◆ Discussion

Extending the test runner framework and implementing your own test listener
might seem daunting, but there is not that much to it. If you need fast, efficient,
and highly customized JUnit results output and you have the team and expertise
to do it, extending JUnit to do exactly what you want is a great recipe.

ANT TIP Be sure to consider using Ant to achieve your custom results formatting
goals before spending time on extending JUnit yourself. If you don’t
know about Ant’s JUnit reporting capabilities, we strongly suggest look-
ing into them. The <junit> task has a <formatter> subelement (dis-
cussed in recipe 7.5) that can output results as XML (as one option),
which you can customize by implementing an interface (see recipe 7.6).
The <junitreport> task provides HTML formatting of the XML-format-
ted results by default, but can be used with any XSL stylesheet to produce
customized reports.

◆ Related

■ 7.5—Customizing <junit> XML reports with XSLT

■ 7.6—Extending Ant’s JUnit results format

7.8 Reporting a count of assertions

◆ Problem

You need a report of the number of assertions in your test cases.

◆ Background

You might want to measure your testing productivity or progress in quantity of
assertions rather than quantity of test case classes or test methods. You might also
want to check whether tests have assertions, in case you want to flag them in a test
run log or build report.

225Reporting a count of assertions
◆ Recipe

Extend junit.framework.Assert with the capability to count the number of assert
methods invoked during a test run. Use your assert methods in your test cases
instead of the usual assert methods (which TestCase inherits from Assert). The
CountingAssert class, as shown in listing 7.12 is mostly a copy and paste of the
original Assert class, minus some Javadoc comments. The Javadoc comments that
we left in (except for the getAssertCount() method) document only the methods
we’ve altered by including statements to increment the assertion count total.
These methods are important: we only need to instrument these few with calls to
increase the counter because all the other assert methods are variations that dele-
gate calls back to these few.

Be warned: this listing is quite long!

package junit.cookbook.reporting;

import junit.framework.Assert;
import junit.framework.AssertionFailedError;
import junit.framework.ComparisonFailure;

public class CountingAssert extends Assert {
 private static int assertCount = 0;

 /**
 * getAssertCount() should be called by a TestRunner or
 * TestListener at the end of a test suite execution.
 * It returns a count of how many assertions were executed
 * during the run.
 *
 * @return assertionCounter count of assertions executed
 * during a run.
 */
 public static int getAssertCount() {
 return assertCount;
 }

 protected CountingAssert() {
 }

 /**
 * Asserts that a condition is true. If it isn't, it throws
 * an AssertionFailedError with the given message. Most of
 * the other assert*() methods delegate to this one.
 */
 static public void assertTrue(String message, boolean condition) {
 assertCount++;
 if (!condition)

Listing 7.12 CountingAssert, an extension of Assert

226 CHAPTER 7

Reporting JUnit results
 fail(message);
 }

 static public void assertTrue(boolean condition) {
 assertTrue(null, condition);
 }

 static public void assertFalse(String message, boolean condition) {
 assertTrue(message, !condition);
 }

 static public void assertFalse(boolean condition) {
 assertFalse(null, condition);
 }

 /**
 * Fails a test with the given message.
 */
 static public void fail(String message) {
 throw new AssertionFailedError(message);
 }

 static public void fail() {
 fail(null);
 }
 /**
 * Asserts that two objects are equal. If they are not,
 * an AssertionFailedError is thrown with the given message.
 */
 static public void assertEquals(
 String message,
 Object expected,
 Object actual) {
 assertCount++;
 if (expected == null && actual == null)
 return;
 if (expected != null && expected.equals(actual))
 return;
 failNotEquals(message, expected, actual);
 }

 static public void assertEquals(Object expected, Object actual) {
 assertEquals(null, expected, actual);
 }
 /**
 * Asserts that two Strings are equal.
 */
 static public void assertEquals(
 String message,
 String expected,
 String actual) {
 assertCount++;
 if (expected == null && actual == null)
 return;

227Reporting a count of assertions
 if (expected != null && expected.equals(actual))
 return;
 throw new ComparisonFailure(message, expected, actual);
 }

 static public void assertEquals(String expected, String actual) {
 assertEquals(null, expected, actual);
 }
 /**
 * Asserts that two doubles are equal concerning a delta.
 * If they are not, an AssertionFailedError is thrown with
 * the given message. If the expected value is infinity
 * then the delta value is ignored.
 */
 static public void assertEquals(
 String message,
 double expected,
 double actual,
 double delta) {
 assertCount++;
 // handle infinity specially since subtracting
 // to infinite values gives NaN and the
 // the following test fails
 if (Double.isInfinite(expected)) {
 if (!(expected == actual))
 failNotEquals(
 message,
 new Double(expected),
 new Double(actual));
 } else if (!(Math.abs(expected - actual) <= delta))
 // Because comparison with NaN always returns false
 failNotEquals(message, new Double(expected), new Double(actual));
 }

 static public void assertEquals(
 double expected,
 double actual,
 double delta) {
 assertEquals(null, expected, actual, delta);
 }
 /**
 * Asserts that two floats are equal concerning a delta.
 * If they are not, an AssertionFailedError is thrown with
 * the given message. If the expected value is infinity
 * then the delta value is ignored.
 */
 static public void assertEquals(
 String message,
 float expected,
 float actual,
 float delta) {
 assertCount++;

228 CHAPTER 7

Reporting JUnit results
 if (Float.isInfinite(expected)) {
 if (!(expected == actual))
 failNotEquals(
 message,
 new Float(expected),
 new Float(actual));
 } else if (!(Math.abs(expected - actual) <= delta))
 failNotEquals(message, new Float(expected), new Float(actual));
 }

 static public void assertEquals(
 float expected,
 float actual,
 float delta) {
 assertEquals(null, expected, actual, delta);
 }

 static public void assertEquals(
 String message,
 long expected,
 long actual) {
 assertEquals(message, new Long(expected), new Long(actual));
 }

 static public void assertEquals(long expected, long actual) {
 assertEquals(null, expected, actual);
 }

 static public void assertEquals(
 String message,
 boolean expected,
 boolean actual) {
 assertEquals(message, new Boolean(expected), new Boolean(actual));
 }

 static public void assertEquals(boolean expected, boolean actual) {
 assertEquals(null, expected, actual);
 }

 static public void assertEquals(
 String message,
 byte expected,
 byte actual) {
 assertEquals(message, new Byte(expected), new Byte(actual));
 }

 static public void assertEquals(byte expected, byte actual) {
 assertEquals(null, expected, actual);
 }

 static public void assertEquals(
 String message,
 char expected,
 char actual) {

229Reporting a count of assertions
 assertEquals(message, new Character(expected), new Character(actual));
 }

 static public void assertEquals(char expected, char actual) {
 assertEquals(null, expected, actual);
 }

 static public void assertEquals(
 String message,
 short expected,
 short actual) {
 assertEquals(message, new Short(expected), new Short(actual));
 }

 static public void assertEquals(short expected, short actual) {
 assertEquals(null, expected, actual);
 }

 static public void assertEquals(
 String message,
 int expected,
 int actual) {
 assertEquals(message, new Integer(expected), new Integer(actual));
 }

 static public void assertEquals(int expected, int actual) {
 assertEquals(null, expected, actual);
 }

 static public void assertNotNull(Object object) {
 assertNotNull(null, object);
 }

 static public void assertNotNull(String message, Object object) {
 assertTrue(message, object != null);
 }

 static public void assertNull(Object object) {
 assertNull(null, object);
 }

 static public void assertNull(String message, Object object) {
 assertTrue(message, object == null);
 }
 /**
 * Asserts that two objects refer to the same object. If they are not,
 * an AssertionFailedError is thrown with the given message.
 */
 static public void assertSame(
 String message,
 Object expected,
 Object actual) {
 assertCount++;
 if (expected == actual)
 return;

230 CHAPTER 7

Reporting JUnit results
 failNotSame(message, expected, actual);
 }

 static public void assertSame(Object expected, Object actual) {
 assertSame(null, expected, actual);
 }
 /**
 * Asserts that two objects refer to the same object. If they are not,
 * an AssertionFailedError is thrown with the given message.
 */
 static public void assertNotSame(
 String message,
 Object expected,
 Object actual) {
 assertCount++;
 if (expected == actual)
 failSame(message);
 }

 static public void assertNotSame(Object expected, Object actual) {
 assertNotSame(null, expected, actual);
 }

 static private void failSame(String message) {
 String formatted = "";
 if (message != null)
 formatted = message + " ";
 fail(formatted + "expected not same");
 }

 static private void failNotSame(
 String message,
 Object expected,
 Object actual) {
 String formatted = "";
 if (message != null)
 formatted = message + " ";
 fail(
 formatted
 + "expected same:<"
 + expected
 + "> was not:<"
 + actual
 + ">");
 }

 static private void failNotEquals(
 String message,
 Object expected,
 Object actual) {
 String formatted = "";
 if (message != null)
 formatted = message + " ";

231Reporting a count of assertions
 fail(
 formatted + "expected:<" + expected
 + "> but was:<" + actual + ">");
 }
}

Now use CountingAssert’s assert methods in your test cases instead of the usual
assert methods (which TestCase inherits from Assert). For a simple example,
here is a test method with five assertions that CountingAssert will count.

 public void testFoo() {
 CountingAssert.assertNotNull(this);
 CountingAssert.assertSame("hello",this,this);
 CountingAssert.assertEquals(1,1);
 CountingAssert.assertEquals(true,true);
 CountingAssert.assertTrue(true);
}

Finally, you need to use something similar to the CookbookTestRunner to retrieve
the assertion total from the CountingAssert class. Listing 7.13 shows a slightly
modified CookbookTestRunner (see recipe 7.7), which obtains the assertion count
total from CountingAssert after completing a test run, and then simply prints the
total to the console. For brevity, we show only the main() method. For the rest of
the class, see listing 7.11.

 public static void main(String args[]) {
 TestResult results = null;
 CookbookTestRunner runner = null;

 if (args.length == 3 && args[0].equals("-o")) {
 try {
 runner = new CookbookTestRunner(args[1], args[2]);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 }
 } else if (args.length == 1) {
 try {
 runner = new CookbookTestRunner(args[0]);
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 }
 } else {
 throw new RuntimeException(
 "Usage: java TestRunner [-o outputFile] Test "

Listing 7.13 CookbookTestRunner.main() displaying the assertion count

232 CHAPTER 7

Reporting JUnit results
 + System.getProperty("line.separator")
 + "where Test is the fully qualified name of "
 + "a TestCase or TestSuite");
 }

 System.out.println("assertion count = "
 + CountingAssert.getAssertCount());
 }

◆ Discussion

This recipe describes using CountingAssert’s method in your tests in place of the
methods that TestCase inherits from JUnit’s Assert class. One alternative to this
would be to write your own TestCase extension class (a Base Test Case) which
extends CountingAssert. The alternative is convenient in that you would be able
to use CountingAssert’s methods without having to refer explicitly to the class
name, but forces all your test case classes to extend your Base Test Case, rather
than JUnit’s TestCase. Whether you follow the technique in this recipe, try this
alternative, or do something else, you will end up reimplementing most of
Assert.5 We also prefer to reuse, rather than reimplement, but as you would only
need to do it once, it might be worth the effort. It depends on how much you
need to be able to count assertions.6

A limitation with this recipe is that it won’t work transparently with Ant’s JUnit
test runner. Because our solution depends on a custom test runner (Cookbook-
TestRunner) to retrieve and print out the assertion count total after all the tests
are run, you have to extend or modify the Ant JUnit test runner class to imple-
ment support for retrieving and displaying the assertions total from the Counting-
Assert class. So an alternative worth considering for both the standalone test
runner and the Ant test runner context is to write a custom TestListener that
retrieves the assertion count total from CountingAssert and displays it. Either way,
you need separate implementations for Ant and for standalone JUnit because Ant
uses its own TestListener and report-formatting API.

◆ Related

■ 7.7—Implementing TestListener and extending TestRunner

5 Worse than that, you might end up copying and pasting a large amount of code, which we frown upon.
6 J. B. has never wanted nor needed to count assertions, because he sees it as a meaningless metric that is easy

to fool. If you measure assertion count, then all you get is more assertions, and not necessarily better tests.

Troubleshooting JUnit
This chapter covers
■ Problems finding your tests
■ Problems executing your custom test suite and test setup
■ Problems executing your test after the first assertion fails
■ Problems reloading classes between tests
■ Problems reloading XML-related classes
■ Problems narrowing EJB references in your tests
233

234 CHAPTER 8

Troubleshooting JUnit
Wouldn’t it be nice if everything worked exactly the way you expected it to work?
Come to think of it, if that were so then you wouldn’t be reading this book—or
maybe because you’re reading this book, the software you build will work exactly
the way you expect. At least, that’s the idea.

This chapter is about how to handle those situations in which JUnit doesn’t do
what you expect. Although JUnit is simple, it is a framework, and when you use a
framework you always have a learning curve. More than that, the JUnit commu-
nity pushes the boundaries of what JUnit can do every day. Someone, somewhere
is using JUnit to do something it has never done before. Putting software through
stress can unearth all sorts of problems, and given the number of people using
JUnit these days, it is under considerable stress.

There are two main classes of problems that JUnit users encounter. Beginning
JUnit users often have problems implementing their tests according to “the
rules.” We offer some helpful recipes if you just can’t seem to get JUnit to execute
your tests the way you expect. It could be that JUnit cannot find your tests, builds
the wrong test suite, or fails to set up your test fixture the way you expect. This
chapter contains solutions to these problems.

Once you are more comfortable with the fundamentals of writing JUnit tests,
you might run into more complex problems with JUnit, many of which center
around a class loading problem within JUnit itself. Beyond that, if you override
runTest() in your tests you should be aware of the problems that can cause.

The goal with this chapter is to address the most common problems we have
seen in our years of working with JUnit. We cannot cover them all, and someone
seems to have a different problem every week or so. If you cannot find a solution
to your problem in this chapter, we recommend joining us at the Yahoo! group
for JUnit (http://groups.yahoo.com/group/junit). We will do our best to answer
your questions.

The most common problem

Here is the most elementary problem you might encounter with JUnit: when you
run your tests, JUnit dies, reporting NoClassDefFoundError. The problem here is
straightforward: there is something missing on your runtime class path. Simply
verify that you have the following items on your runtime class path:

■ JUnit’s classes, found in junit.jar.

■ Your test classes, usually as a directory full of loose classes, but alternatively
packaged in a *.jar file.

235JUnit cannot find your tests
■ Your production classes. (You’d be surprised how many times someone for-
gets those!)

■ Any third-party software on which your production and test classes depend.

Managing your class path depends on your environment. Whether you are using
the Java Build Path in Eclipse, the <classpath> tag in Ant, or the -classpath
option to the Java interpreter, you can consult your environment’s documenta-
tion for more details on managing your class path.

A problem with the CLASSPATH environment variable
We recommend against the general practice of using the CLASSPATH environment
variable because it is global data across an entire system. As a result, anyone can
change it at any time, which might cause an application somewhere to begin to
fail with class-loading problems. Another reason to avoid using this environment
variable is that if you accidentally leave a trailing space in it, then the graphical
test runners cannot load classes from the last (far right) location. To summarize
the symptom: when you run tests, the graphical test runner (both Swing-based
and AWT-based behave the same way) reports “class not found” for a class that
you expect to load from the CLASSPATH environment variable. Check the environ-
ment variable for trailing spaces, and remove them if there are any. The text-
based test runner does not exhibit the same problem.1

Once you get to the point where the Java Virtual Machine can load all the
classes it needs to execute your tests, you should be off and running; but if you
continue to have trouble, we hope this chapter has all the solutions you need.

8.1 JUnit cannot find your tests

◆ Problem

When you execute your tests, JUnit either warns you that it cannot find any tests in
your test case class, or it tells you that it cannot find one of your test methods.

◆ Background

These are common problems for people new to JUnit. You might be following our
recommendation to let JUnit build a default test suite for you, but you forgot to
follow one of the rules for coding your test methods. We enumerate those rules in

1 Thanks to George Latkiewicz for reporting the problem to us, as we had never seen it before.

236 CHAPTER 8

Troubleshooting JUnit
recipe 4.1, “Let JUnit build your test suite.” You might be building a custom test
suite, but have made a minor mistake along the way. You’re still getting your bear-
ings with JUnit; these kinds of problems should be expected.

◆ Recipe

First, we will assume that you are letting JUnit build the default test suite for you.
In that case, follow this checklist.

✔ Does your test method’s name start with test? If not, rename the test.
✔ Does your test method have any parameters? If so, move the parameters

into the test fixture and remove the method parameters. See recipe 3.4,
“Factor out a test fixture,” for details on creating a test fixture.

✔ Does your test method return a value? If so, eliminate the return value.
JUnit doesn’t use it, anyway.

✔ Is your test method declared as public? If not, make it public.
✔ Is your test method declared as final? If so, remove the declaration.
✔ Is your test method declared as static? If so, remove the declaration.

By the end of this checklist, JUnit should be able to find your test method. If it
can’t, then frankly we don’t know what the problem might be. We recommend you
post your test case class to the JUnit Yahoo! group and we’ll see what we can do.2

Next, if you are building your own custom test suite, then there is no way to see
the warning “No test cases found in your test case class name.” Instead, you see
“Method “your test name” not found.” If you see this problem, use this checklist to
identify the cause:

✔ Did you implement the test at all? We do occasionally forget, you know.
✔ Did you mistype the name of the test method? Check that it matches the

test name you specified in your custom test suite.
✔ Does your test method have any parameters? If so, follow the advice we gave

earlier in this recipe.
✔ Does your test method return a value?
✔ Did you declare your method as public? If not, do that now.

2 We both hang out there: http://groups.yahoo.com/group/junit.

237JUnit does not execute
your custom test suite
That should be all. If by this point you have addressed all these problems and
JUnit still does not find your test method, then post your code to the JUnit Yahoo!
group, because it might be a problem we’ve never seen.

◆ Discussion

There are some cases in which JUnit (at least version 3.8.1) is more tolerant of
your mistakes than our guidelines here would seem to indicate. These guidelines
describe an ideal implementation of the xUnit framework, and JUnit happens to
have a few defects in this regard. In particular, JUnit’s degree of tolerance
changes depending on how it builds the test suite: it tolerates returning a value
from a test when you use the suite() method (see recipe 4.2, “Collect a specific
set of tests”), but ignores methods that return a value when it builds the default
test suite (see recipe 4.1, “Let JUnit build your test suite”). With these defects, it is
certainly safest to follow all the above guidelines, as defective behavior is always a
good candidate to be changed (fixed) in a future release.

The preceding problems have to do with the way JUnit looks for test methods
in your test case class and the way it executes those tests. We discuss these issues in
detail in chapter 4, “Managing Test Suites,” including how to let JUnit automatically
extract the tests from your test case class and how to build a custom test suite.

◆ Related

■ 3.4—Factor out a test fixture

■ 4.1—Let JUnit build your test suite

8.2 JUnit does not execute your custom test suite

◆ Problem

You have written a custom test suite method in your test case, but JUnit ignores
your custom suite and builds the default test suite instead.

◆ Background

Usually this problem occurs when you build a suite of suites following our recom-
mendations in recipe 4.3, “Collect all the tests in a package.” When you coded the
larger suite’s custom suite method, you used addTestSuite() to add the smaller
suite, rather than invoking the smaller suite’s own custom suite method. Con-
fused? Here is a simple way to verify that this is the cause of the problem.

238 CHAPTER 8

Troubleshooting JUnit
Execute the smaller suite on its own. If JUnit executes your custom test suite
the way you expect, then you can be sure that this recipe solves your problem.

◆ Recipe

Fortunately this is an easy one. Look for any place in your code where you are
invoking TestSuite.addTestSuite() on the test suite with which you’re having
trouble. The most common place for this is in any AllTests classes you are main-
taining. Look for a line of code that appears similar to this:

public static Test suite() {
 ...
 suite.addTestSuite(TestListenerTest.class);
 ...
}

Change this line of code so that it explicitly invokes the corresponding custom
suite() method.

public static Test suite() {
 ...
 suite.addTestSuite(TestListenerTest.suite());
 ...
}

Track down and change any lines of code like this and your problem will disappear.

◆ Discussion

This problem occurs because two parts of JUnit behave slightly differently, and
frankly it is something that we are surprised has not been fixed by now. It certainly
doesn’t feel like intentional behavior.

When you use a test runner to execute a test suite on its own, the test runner
performs these two tasks:

1 It looks for a custom suite method called suite(). If found, it invokes this
method to obtain the test suite to execute.

2 If there is no custom suite method, it collects all the test methods and
builds a test suite from them. These methods have names that start with
test, are public, they occur at the instance level, have no parameters, and
return to value.

By contrast, the method TestSuite.addTestSuite() does not look for a custom
suite method. Instead, it simply performs the usual automatic test extraction. This
explains why you can execute your test suite correctly on its own, but not when
you make it part of a larger test suite. Now you know.

239JUnit does not set up your test fixture
◆ Related

■ 4.3—Collect all the tests in a package

8.3 JUnit does not set up your test fixture

◆ Problem

You are trying to use JUnit’s test fixture support to create the objects you want to
test, but when you execute your test, the fixture is not set up correctly.

◆ Background

This problem is typical for someone still getting acquainted with JUnit. When we
started using JUnit, we often had trouble knowing what to do because we were
memorizing rules rather than relying on our understanding of how JUnit works.
Do not feel bad, as this is the usual learning process for any framework. Early on,
you plug your classes into the framework as though it were magic—you don’t
know how it works, but it does work, and that’s good enough for now. Over time,
you begin to have problems; you ask questions and learn more about the inner
workings of your framework. You become more comfortable with your virtual sur-
roundings. This is as it should be. For now, read this recipe.

◆ Recipe

JUnit invokes the methods setUp() and tearDown() to create and destroy your test
fixture, respectively. A common mistake is to mistype the names of these methods
in your test case class. Follow this checklist to see whether you have overridden
these methods correctly.

■ Are your test fixture methods really named setUp() and tearDown()? Be partic-
ularly careful of the uppercase U in setUp and the uppercase D in tearDown.

■ Do your test fixture methods take no parameters and return no value? If
you have added method parameters, then you are creating a new method
rather than overriding an existing method. JUnit will not invoke your over-
loaded version of setUp() or tearDown().

■ If you have a test fixture hierarchy (see recipe 3.5, “Factor out a test fixture
hierarchy”), do your test fixture methods invoke their superclass implemen-
tations? If part of your fixture is set up, but the rest is not, then you might
have forgotten to invoke super.setUp(). If you have, then be sure also to
call super.tearDown().

240 CHAPTER 8

Troubleshooting JUnit
These are the most common mistakes we have seen—and made ourselves.

◆ Discussion

JUnit provides the test fixture methods setUp() and tearDown() in the class
junit.framework.TestCase. That class implements these methods, but the meth-
ods have empty bodies—they do nothing. When you subclass TestCase, if you type
setup() rather than setUp() the compiler does not notice anything wrong: you
have simply written a method that is never invoked. JUnit could perhaps have
declared setUp() and tearDown() as abstract methods, but that would have
forced you to implement these methods even if your tests had no common fix-
ture. Rather than burden you with something you might not need, JUnit provides
you with an empty fixture by default, so it is up to you to implement your custom
fixture correctly.

If you want to detect this kind of mistake automatically, you can use style-check-
ing software for which you can create a rule saying, “If you see a method named
setup, that is probably a mistake. Let me know.”3 You know that it should be
setUp(), so you ask your style checker to detect the common mistakes you have
made in the past. The benefits you gain from this technique depend on your
experience with the tool and your propensity to make the same mistake many
times. If you find it easy to write such a rule using your favorite style-checking tool,
then it can be effective for you; but if not, there is another solution at your dis-
posal: call in a second set of eyes.

If you have access to other JUnit practitioners, don’t hesitate to call one over
and ask her to look at your code. We speak from experience when we say that this
is the most effective way to detect “silly little mistakes” such as mistyping the name
of a framework method. The key to making this technique effective is calling in
the other person as soon as you realize that you don’t see the source of the prob-
lem. We programmers have a tendency to want to solve every problem on our
own, and while that is commendable, it is not terribly cost efficient. It’s not even
necessarily effective. We recommend you save your energy for solving such prob-
lems4 as understanding system requirements and writing good tests. When it
comes to such little things as, “Why isn’t JUnit setting up my test fixture?” the
sooner you call in another expert, the sooner you can get on with your real work.

3 We discuss one such tool in recipe 17.3, “Verify your test case class syntax.”
4 Silly things that get in the way of progress are difficulties, not problems. A problem is something worth solv-

ing in its own right.

241Test setup fails
after overriding runTest()
If you think that you’ll learn better by solving the problem yourself, then believe
us when we say that the minor embarrassment of having someone else see the
problem in ten seconds helps you remember not to make the same mistake again.

And of course, if you also practice Pair Programming (www.pairprogram-
ming.com) then you already have the expert with you, ready to catch your error as
soon as you make it; but that’s a topic for someone else’s book.5

◆ Related

■ 17.3—Verify your test case class syntax

■ PMD (http://pmd.sourceforge.net)

8.4 Test setup fails after overriding runTest()

◆ Problem

You have written a test by overriding the method runTest(), rather than letting
JUnit identify your test methods. Now JUnit sets up your test fixture only once
before all the tests, rather than once before each test.

◆ Background

There are a number of reasons to override runTest(), not the least of which is
implementing a Parameterized Test Case. We described this technique in recipe 4.8,
“Build a data-driven test suite.” There we suggested overriding runTest() so that
you could give each of your parameterized tests a meaningful name rather than
accepting the default convention of naming the test after the method that imple-
ments it.6 Here you have delved into the inner workings of the framework, with
intent to solve a particular problem. We understand that not all forays into the
bowels of a framework are done with intent. Sometimes they are done out of des-
peration, or even just because you didn’t quite know what you were doing.

Don’t feel bad: we celebrate our ignorance. That might sound strange; good
programmers know their limitations and don’t feel bad asking for help when they
find themselves in over their heads. This is what keeps a programmer from being

5 In particular, Laurie Williams and Robert Kessler, Pair Programming Illuminated (Boston: Addison-Wesley
Professional, 2003)

6 In a Parameterized Test Case, each test invokes the same method, but with different parameters. If you used
the default naming convention, then it would be difficult to differentiate these tests from one another.

242 CHAPTER 8

Troubleshooting JUnit
holed up in a room for days, “going dark;” that is, silently making no progress
because he doesn’t understand some aspect of what he’s doing. Faced with an
unfamiliar task, we think it’s important to put all our energy into finding a good
solution, even if it is not our own solution. Don’t hide what you don’t know: get it
out in the open, find someone who does know, then learn from that person. In the
long run, you’ll feel better.

Now what does this have to do with your problem?
It is common for a novice JUnit practitioner to expect the setUp() method to

be invoked once for the entire test suite, rather than once for each test. She has
the same expectation for tearDown(). This misunderstanding generally comes
from confusing the TestCase class with an instance of the test case class. Although
you include many test methods on the TestCase class, JUnit executes each
method in a separate instance of the test case class, invoking setUp(), the test
method, then tearDown(), in that order. If no one has explained this to you,
though, then in your quest to get a test to run—any test—you may poke around in
the dark a little, stumble upon overriding runTest(), get that to work, and claim
victory. After all, the “Test Infected” article shows overriding runTest() to write a
test, so that must be the proper technique!

Once you have one test working, you don’t see how to add the second test, so
you write two methods, invoke them both from runTest() and it continues to
work. Your tests execute and that’s all that matters. Unfortunately, as soon as you
try to factor out a common fixture, you will find yourself in trouble, and that is
what might have led you here. We think this recipe can help you.

◆ Recipe

When you decide to override runTest() it is important that you understand that
JUnit treats whatever is in runTest() as a single test. This means that if you invoke
multiple methods from inside runTest(), expecting each to be its own test, you’re
in for a surprise, because JUnit treats them all as a single test. Because JUnit
invokes setUp() and tearDown() once per test, it only invokes them once each, and
not once for each method you invoke from within runTest().

Most of the time—including the case in which you are just trying to execute
many tests in a single fixture (test case class)—you do not need to override run-
Test(), so we recommend you do three things:

1 Create a separate test method for each test you wish to execute.

2 Use the standard JUnit naming rules for your test methods.

3 Do not override runTest().

243Test setup fails
after overriding runTest()
JUnit will create the default test suite from your test methods, executing setUp()
before each test and tearDown() after each test, just as you were hoping it would
do. If you want to execute multiple tests in a single fixture, then you certainly do
not want to override runTest(). Instead, implement each test as a method follow-
ing the usual JUnit guidelines, which we describe in recipe 8.1, “JUnit cannot find
your tests.”

◆ Discussion

Here is the method junit.framework.TestResult.runBare(), which executes
your test:

public void runBare() throws Throwable {
 setUp();
 try {
 runTest();
 }
 finally {
 tearDown();
 }
}

As you can see, when JUnit executes your test, it first invokes setUp(), then your
test method, then tearDown(). As we wrote previously, JUnit treats whatever code
you write inside runTest() as a single test. By default, runTest() uses reflection to
invoke one of your test methods.7 JUnit expects runTest() to execute a single test.

Now that you’ve seen how JUnit invokes runTest(), you can see the effects of
overriding it in your test case class. You will not need to do it often, but when you
do, you’ll know how it fits into the rest of the JUnit framework.

NOTE There are times when it is necessary to override runTest(), such as when
implementing a Parameterized Test Case (see recipe 4.8, “Build a data-
driven test suite”). Typically such a test strategy involves executing a sin-
gle test for multiple fixtures, rather than multiple tests for a single fix-
ture, which is JUnit’s normal mode of operation. If you are building a
Parameterized Test Case, then it is unlikely that you will run into the
problem this recipe is meant to solve.

◆ Related

■ 4.8—Build a data-driven test suite

■ 8.3—JUnit does not set up your test fixture

7 In other words, that is how TestCase implements runTest().

244 CHAPTER 8

Troubleshooting JUnit
8.5 Your test stops after the first assertion fails

◆ Problem

You have written a test with multiple assertions, and JUnit stops executing your
test after the first assertion fails. You want to execute all the assertions, even if the
first one fails.

◆ Background

This is not so much a problem with JUnit as it is a general misunderstanding of
the way JUnit works or a misunderstanding of the philosophy behind JUnit’s
design. Either way, you might have a fundamentally different notion of how JUnit
ought to work when compared to the way it does work. JUnit was designed to fail a
test at any point that an assertion fails.

◆ Recipe

You have written a test in such a way that you want to execute the entire test even
after an assertion has failed. Seeing this, many JUnit practitioners would say,
“What you really have is multiple tests, so move each assertion into its own test.”
The issue is not having multiple assertions in one test, but rather wanting to con-
tinue execution even after an assertion has failed. If the assertions are “different
enough” that the failure of one does not render the others meaningless (for that
test run), then we believe they belong in different tests. In this case, we recom-
mend moving them to separate tests.

Follow these instructions to perform the required change:

1 Factor out your multiassertion test’s fixture into the appropriate instance-
level fields and setUp() code.

2 Move each assertion into its own test method.

3 Remove the old multiassertion method.

We claim that your multiassertion “test” was really a series of tests that share a
common fixture. The usual way to implement this in JUnit is to factor out the
common fixture into the test case class as we have recommended here. You
might find yourself extracting the newly formed tests in a separate test case class,
particularly if your test case class contains more tests than just the one you have
refactored. See recipe 3.4, “Factor out a test fixture,” for further discussion about
this technique.

245Your test stops after
the first assertion fails
If you really want to allow multiple assertions to fail in a single test, you need to
modify a considerable amount of code, so be prepared to dig in and “get a little
dirty” with the JUnit source. We outline one approach here:

1 Change junit.framework.TestResult.run(TestCase test) so that when it
invokes TestCase.runBare(), it passes a reference to itself (this) to the
TestCase object.

2 Due to the previous change, you need to add the method TestCase.run-
Bare(TestResult testResult). This method needs to pass the TestResult
object along when it invokes TestCase.runTest(). (Still with us?)

3 Due to the previous change, you need to add the method TestCase.run-
Test(TestResult testResult). This method does essentially the same
thing as TestCase.runTest(), but its InvocationTargetException handler
adds a failure to the TestResult object rather than rethrow the originat-
ing exception.

This should do the trick. Notice that we say should because we have never tried it.
We have never tried it because we have never wanted this feature. Such is the
nature of open source.8

◆ Discussion

First, let us explain our recommendation, because you might feel that it is a com-
paratively large amount of work for not much gain. For this, remember that
JUnit was created to support fine-grained, object-level testing in the style of Test-
Driven Development. As such, the goal is to focus each test on a single, predict-
able behavior. This leads to a larger number of shorter tests with (at times) a con-
siderable amount of common test fixture.9 This kind of test is desirable because
it promotes orthogonality: being able to determine the problem by identifying the
specific failing test. If each test verifies a single aspect of the system’s behavior
then it ought to be easier—and it generally is—to pinpoint the problem behind a
failing test. In addition, the TDD style of programming naturally lends itself to
many tests, each adding features incrementally, so the tendency is for a TDD

8 Open source is built on the notion that he who has an itch ought to be the one to scratch it. Karl Fogel, Open
Source Development with CVS (freeware document) 9. http://cvsbook.red-bean.com/OpenSourceDev
WithCVS_2E. tar.gz

9 We mean the same fixture as the starting point for each test, and not the case where the second test
relies on the results of the first test. Total test isolation is still important!

246 CHAPTER 8

Troubleshooting JUnit
practitioner to have many small tests, just as a matter of course. We understand
that not everyone is a TDD practitioner, but by the same token you need to
remember that the people who created JUnit are TDD practitioners. It is simply
human nature for a person to build software that solves her problems according
to her preferences, even if that goes against what others might do.

There are common situations in which you might want to write some code
according to the techniques of TDD but still have multiple assertions fail in a test.
We will discuss one such situation here and describe an alternate approach that
works with JUnit rather than against it. You might be able to find similar solutions
to other, similar problems. Consider the case of building a web application. The
server handles an HTTP request, passing it to the Controller, which selects the cor-
responding business logic to execute. As the Controller executes this business
logic, it collects any messages that the system decides it should display to the end
user. After it has finished this, the Controller bundles these messages into an object.
It places that message collection on a web page template (such as a JSP or a Veloc-
ity template) and the web page template processor generates the final web page
to send to the end user as a response. This pattern is so commonplace in web
applications that the Struts (http://jakarta.apache.org/struts) web application
framework provides direct support for this. The test you want to write verifies the
collection of messages for a particularly complex bit of business logic. Suppose
the user of an e-commerce system attempts to check out, that is, submits his order
for processing. In so doing, the following is true for this user:

■ He qualifies for a 10% discount if he purchases another $25 worth of
merchandise.

■ He has an item in his shopping cart that might need to be back-ordered.

■ He has provided an invalid credit card number.

There are three messages to display to the end user, in addition to the other pro-
cessing taking place. Your test focuses on those three messages. Your first thought
is to verify these messages like so:

public void testMessagesForComplexCheckout() {
 // Set up shopcart...
 // Submit order...
 assertEquals("volume.discount", messages.getMessage(0).getKey());
 assertEquals("maybe.backorder", messages.getMessage(1).getKey());
 assertEquals(
 "invalid.credit.card.number",
 messages.getMessage(2).getKey());
}

247Your test stops after
the first assertion fails
Here you are comparing the message keys you expect to the ones in the corre-
sponding position in the list of messages. After you write this test you decide that
perhaps it is not a good idea to make an assumption about the order in which the
messages appear. This is a brittle test, as it stands: if the messages come out in a
different order, the test fails, even though the behavior is as expected. This is a
case where your expectations are too specific. All that matters is that each message
show up once and that there be three messages. If both those things are correct,
then the test should pass. You rewrite the test to look like the following:

public void testMessagesForComplexCheckout() {
 // Set up shopcart
 // Submit order
 Collection messageKeys = messages.getKeys();
 assertTrue(messageKeys.contains("volume.discount"));
 assertTrue(messageKeys.contains("maybe.backorder"));
 assertTrue(messageKeys.contains("invalid.credit.card.number"));
 assertEquals(3, messageKeys.size());
}

This is clearly better: now the messages can come in any order and the test will
pass. When you execute this test, it fails, because the volume discount message
does not show up. Once you add the production code to make that pass, the test
continues to fail because the credit card number message does not show up. You
add the production code to fix that problem then the test still fails because you are
adding each message twice.10 Finally you fix this last problem and the test passes.
You look back and think, if I could have seen all those failures at once, I could have fixed
all those problems at once. That would have been better. We happen to think it is better
to concentrate on one problem at a time, but apart from that, there is an even bet-
ter way to write this test that shows all the problems at once and does not require
multiple failures for a single test. Use the technique we recommend in recipe 2.9,
“Let collections compare themselves”. Rather than verify each item in a collection
for correctness, we build the collection we expect, then compare that to the col-
lection we get. The key here is the kind of collection you build: because you don’t
care about the order of the messages and you don’t want any duplicate messages,
you want to use a Set rather than a List. We rewrite the test as follows:

public void testMessagesForComplexCheckout() {
 // Set up shopcart
 // Submit order
 Set expectedMessageKeys = new HashSet(Arrays.asList(new Object[] {
 "volume.discount",

10 If you wondered why we checked the number of messages, that’s why.

248 CHAPTER 8

Troubleshooting JUnit
 "maybe.backorder",
 "invalid.credit.card.number"
 }));
 Set actualMessageKeys = new HashSet(messages.getKeys());
 assertEquals(expectedMessageKeys, actualMessageKeys);
}

The way we have constructed our set of expected message keys might look odd, so
here is an explanation. First, we want a Set, so we build a HashSet, the “default”
implementation of Set. Next, we want a simple way to define the list of message
keys we expect, and the only way to do that in one line of code is by building an
array. To build a Set requires invoking add() multiple times, which is a consider-
able amount of duplication. Java does not provide a built-in way to get from an
array to a Set, but it does provide a way to build a List from an array:
Arrays.asList(). Java also provides a way to go from virtually any collection class
to another: in this case, making a Set from a List. So at last we build a HashSet
from a List from an array. This is the only way we know to do this without the
unwieldy duplication of invoking add() multiple times.11

Now it is easy: two Sets are equal if they contain the same entries. We use
assertEquals() to verify the contents of the checkout messages collection, and, if
there are any differences, the failure message shows us a string representation of
each collection. This allows us to see that we are missing two messages, and the one
that is there is there twice. We can now take the necessary steps to fix each problem.

The recommendation here is to find ways to implement your tests that go along
with JUnit’s design, rather than fight against its design. You might think that this is
unfair: “My way or the highway,” you might call it. Far from it. If you want multiple
assertion failures per test, you have a few choices: you can build the feature your-
self12 or you can find an existing JUnit extension package that already does what
you need. JUnitX (www.extreme-java.de/junitx) is one such project. We under-
stand that sometimes you really do want multiple assertion failures per test. Shane
Celis has this to say on the subject:

Having multiple failures per test allows me to provide much more detailed
reports. In my environment, running each test is very expensive, so I want to
get the most out of it as possible. If the assertion failure means the rest of my
assertions aren’t run, I’m missing a lot of information. Initially, I broke them
all up into separate tests, but that proved to be clumsy, so I modified the code

11 Of course, we should hide this nonsense behind a creation method called makeSet() that takes an
array. Once we get the test to pass, we can refactor it.

12 Remember, this is open source.

249Your test stops after
the first assertion fails
to allow for multiple failures (basically, a failed assertion wouldn’t throw an
exception, it would simply be added to the TestResult’s failures), and writing
the tests proved much easier and provided much more information than previ-
ously available.

We have seen this before and it has always boiled down to the following: someone
has a series of tests that are difficult or annoying to implement as separate test
methods, that use some expensive external resource (such as a database), and
which often fail because of frequent changes in the application’s environment
(such as continual changes in the data in that database). These people reason
that adding multiple assertion failures per test is the way to solve the problem. Let
us offer another recommendation.

In this particular case, there are a number of tests that share a test fixture and
are order dependent. We recommend:

1 Factoring out the test fixture (see recipe 3.4, “Factor out a test fixture”)

2 Building a custom test suite (see recipe 4.2, “Collect a specific set of tests”)
that executes those tests in the required order

3 Using one-time setup (see recipe 5.10, “Set up your fixture once for the
entire suite”) to put the shared fixture into the correct state before the
test suite executes

4 Moving each assertion (or block of assertions) into its own test method

We can derive all the benefits that Shane derives from adding the “multiple asser-
tion failures per test” feature to JUnit. The difference? Our approach uses fea-
tures that JUnit already provides, rather than adding to it. We can implement this
kind of test using a smaller framework than Shane.13 All other things being equal,
we prefer to use less code, because that way less can go wrong. Still, if you feel you
need this feature, we recommend you try both and measure the difference. If you
decide that multiple assertion failures per test is worth the cost, then implement it
and share it with the community. If you do, please make it configurable so we can
turn it off. Thanks.

◆ Related

■ 3.4—Factor out a test fixture

■ 4.2—Collect a specific set of tests

■ 5.10—Set up your fixture once for the entire suite

13 This is not a knock on Shane. We like Shane, really.

250 CHAPTER 8

Troubleshooting JUnit
8.6 The graphical test runner does not load your classes properly

◆ Problem

When you execute your tests with the graphical test runners, the test fails with
either a ClassCastException or a LinkageError. The text-based test runner does
not show the same problem.

◆ Background

There are times when it is particularly convenient to use a text-based test runner,
but most people prefer to use a graphical test runner, especially during a Test-
Driven Development programming session. The red bar/green bar signal pro-
vides a better quality of feedback, though the effect might be purely psychologi-
cal.14 Using a graphical test runner, you might have encountered this problem,
especially if your tests involve third-party software packages. Some of those pack-
ages are designed (if you can call it that) in a way that makes it impossible to
reload one of its classes within a Java Virtual Machine.15 This is incompatible with
the graphical test runner, the point of which is to keep the runner open while you
are changing your code so you can change your classes, recompile your code, and
rerun your tests without having to restart the test runner. This explains why your
test executes as expected with the text runner: each test run executes in its own
JVM. Not so for the graphical runners. Yes, you could switch to the text runner,
but your test should work—after all, it works on one test runner, so why not on the
other?

◆ Recipe

Identify the class or classes that should not be reloaded within a JVM. Add these
classes or packages to the file excluded.properties that JUnit provides in its distri-
bution. You will find this file inside junit.jar. Your options are either to change
the version in your JUnit distribution or create your own version of the file and
place it on your class path before junit.jar. We recommend the second option, as
it is easier to maintain, although it results in a more complex build environment.

The standard version of this file as distributed with JUnit resembles the follow-
ing, although the actual entries in the file depend on the version you are using.
(Later versions generally have more entries.)

14 We do not claim to know anything on the subject; we simply make this observation and move on.
15 We do not want to name names, but a certain large corporation’s JDBC provider is on this list. I believe

this is a case of competing priorities, but it’s still an annoyance.

251The graphical test runner
does not load your classes properly
The list of excluded package paths for the TestCaseClassLoader
#
excluded.0=sun.*
excluded.1=com.sun.*
excluded.2=org.omg.*
excluded.3=javax.*
excluded.4=sunw.*
excluded.5=java.*

Simply add another package filter for the classes you need to exclude from being
reloaded. Call the next entry excluded.6, and so on, for as many entries as you
need. Remember either to put this file back into junit.jar or place it on your
class path in front of junit.jar.

◆ Discussion

Each entry in excluded.properties is a filter that specifies a set of classes—or pack-
ages if you use the wildcard character (*) to mean all the classes in this package).
When JUnit needs to decide whether to reload a class, it first consults the entries
in this list. If the class is in a package that matches any of these filters, then JUnit
does not attempt to reload it; otherwise, JUnit reloads it. By default, JUnit does
not attempt to reload any classes in any package starting with sun, com.sun,
org.omg, javax, sunw, or java. These are standard Java classes, standard Java exten-
sions, other Java extensions from Sun Microsystems, and libraries from the Object
Management Group (OMG).16

If you keep a separate version of excluded.properties file outside junit.jar,
then you need to know how JUnit loads the file. JUnit expects this file to be in the
directory junit/runner on the class path, so if you put the file in directory /home/
jbrains/junit/runner, then be sure to add /home/jbrains to the front of your
runtime class path when you execute your tests.

If you follow the recommendations in this recipe and you continue to have the
class loading problem, it might be your IDE. Eclipse’s Java Development Toolkit,
for example, bundles JUnit. This means that you need to be aware of exactly
which copy of excluded.properties you are fixing. Be sure to check your runtime
class path for unexpected copies of JUnit, then make sure that your edited copy of
excluded.properties comes before any version of JUnit on your class path.

◆ Related

■ The JUnit FAQ, item 8, under “Running Tests”
(http://junit.sourceforge.net/doc/faq/faq.htm)

16 Among these are early implementations of the Java collections framework and the CORBA libraries.

252 CHAPTER 8

Troubleshooting JUnit
8.7 JUnit fails when your test case uses JAXP

◆ Problem

You are writing a test that uses the standard Java API for XML, but in spite of what
you think is correct code, JUnit fails with a LinkageError when it executes your
test. The test works when you use the text-based test runner, but fails when you
use a graphical test runner.

◆ Background

The Java API for XML includes classes in the package hierarchies javax.xml.*,
org.xml.sax.*, and org.w3c.dom.*. These are the standard XML interfaces, the
SAX parser interfaces, and the DOM parser interfaces, respectively. Virtually any
XML-based testing uses these classes, even if you are not testing XML parsing
behavior directly. There might even be cases in which you are not aware that you
are using XML parsing. Third-party software with which you might be integrating
could use XML for configuration. This has become increasingly common as XML
has become the standard, universal data format for text files.17 Rest assured that
the problem is with JUnit’s customized class loader and not your tests.

◆ Recipe

The simplest solution is to upgrade to JUnit 3.8.1, which already contains the fix
we are about to recommend. If you are not in a position to do that, then read on.

The solution here is the same as in recipe 8.6, “The graphical test runner does
not load your classes properly.” Add the three package hierarchies we mentioned
previously to the file excluded.properties: javax.xml.*, org.xml.sax.*, and
org.w3c.dom.*. Actually, because javax.* is already on the “excluded” list, you
only need to add the last two.

Here is an example of adding these two packages to the list of exclusions:

The list of excluded package paths for the TestCaseClassLoader
#
excluded.0=sun.*
excluded.1=com.sun.*
excluded.2=org.omg.*
excluded.3=javax.*
excluded.4=sunw.*

17 We feel that people are using XML in cases where something less complex would work equally well, but
that’s another issue altogether.

253JUnit fails when narrowing
an EJB reference
excluded.5=java.*
excluded.6=org.w3c.dom.*
excluded.7=org.xml.sax.*

Although this kind of fix gets your hands pretty dirty from playing with the inner
workings of JUnit, it’s an easy change to make once you become used to it. We
recommend keeping your changes in version control somewhere, in case you for-
get exactly which packages you have added to the list.

◆ Discussion

Because this problem seems to materialize a number of times in slightly different
settings, there is a detailed description of the problem and its resolution in the
JUnit FAQ (junit.sourceforge.net/doc/faq/faq.htm).

◆ Related

■ 8.6—The graphical test runner does not load your classes properly

■ JUnit FAQ (http://junit.sourceforge.net/doc/faq/faq.htm)

8.8 JUnit fails when narrowing an EJB reference

◆ Problem

You have written a test involving an Enterprise Java Bean (EJB) that fails with a
ClassCastException. The offending line of code is the one that “narrows” your
EJB reference just after a JNDI lookup. The test works when you use the text-based
test runner, but fails when you a graphical test runner.

◆ Background

It is heartwarming to see that more and more J2EE programmers are looking to
JUnit to help test their software. This does present new challenges though, as
these programmers find new and interesting ways to use JUnit to do their testing.
You are among the programmers that are pushing the envelope, writing JUnit
tests that no one else has written before, and in the process you are helping to
find problems that no one else has had the opportunity to find yet.

In this case, though, we’ve seen it before and we know how to help you.
To understand the problem further, consider that when you invoke Initial-

Context.lookup(), this method returns an object loaded and defined by the Java
Virtual Machine’s standard system class loader,18 but it was JUnit’s TestCaseClass-

JAXP packages

18 The class sun.misc.Launcher$AppClassLoader, to be precise.

254 CHAPTER 8

Troubleshooting JUnit
Loader that loaded your EJB interface’s type. When you invoke narrow(), the two
fully qualified class names are the same, but the defining class loaders for the two
are different. The JVM qualifies a class’s runtime type by the identity of the object
that loaded the class, so the JVM treats the EJB interface types loaded by the differ-
ent class loaders as different types, even though you know they are the same. The
result is a ClassCastException.

◆ Recipe

The short version of the story is this: prevent the JUnit custom class loader from
loading your EJB interfaces by adding them to excluded.properties. We described
this solution in recipe 8.6. Although those examples showed adding entire package
hierarchies to the “excluded” list, you can specify individual classes and interfaces
by their fully qualified name. For example, if you have an EJB called Account in
package com.mycom.model.ejb, then add the following lines to the excluded list.

We have omitted the preceding lines, for brevity
excluded.10 = com.mycom.model.ejb.Account
excluded.11 = com.mycom.model.ejb.AccountHome
excluded.12 = com.mycom.model.ejb.AccountLocal
excluded.13 = com.mycom.model.ejb.AccountLocalHome

◆ Discussion

This solution assumes that your EJB interfaces are in an easily isolated package
hierarchy, which is commonly the case: many programmers create a subpackage
called ejb somewhere in their package hierarchy for EJBs. The good news is that
this additional requirement is likely not an issue for you.

The bad news is that if you are testing your EJB implementation, then you can-
not add the entire EJB package to the “excluded” list; otherwise, JUnit does not
reload your implementation either, and that might be the one part of the package
on which you’re actually working. There’s not much point in using the graphical
test runner to help you implement your EJB if the test runner doesn’t reload your
EJB implementation class! This is why you need to specify the individual interfaces
in excluded.properties, unless, of course, you want to place your EJB implemen-
tation class in a package different from the one containing your interfaces.19 You
might find it necessary to automatically generate excluded.properties when you
build your application to ensure that it is up to date as you add more EJBs.

Remote interfaces

Local interfaces,
EJB 2.x only

19 Nothing in the EJB specification stops you from doing this, and it may not be so bad, but it seems pretty
drastic.

255JUnit fails when narrowing
an EJB reference
Because this problem seems to materialize a number of times in slightly differ-
ent settings, there are several entries in the JUnit FAQ (junit.sourceforge.net/
doc/faq/faq.htm) that describe the problem and solution in detail. We recom-
mend you read the FAQ if you need a more thorough explanation of the problem
and its causes.

◆ Related

■ The JUnit FAQ (http://junit.sourceforge.net/doc/faq/faq.htm)

■ 8.6—The graphical test runner does not load your classes properly

■ Chapter 11—Testing Enterprise JavaBeans

Part 2

Testing J2EE

Most “serious” Java development these days revolves around J2EE: enter-
prise components for Java. This part of the book explores testing techniques for
the core J2EE technologies: servlets, JavaServer Pages, Velocity templates, Enter-
prise JavaBeans, and Java Messaging Service. It also covers concepts common to
web application platforms: page flow, dynamic content, distributed objects, as well
as the separation of application logic, business logic, and persistence. The recipes
in this part of the book generally fall into two categories: refactoring towards test-
ing J2EE designs, and dealing with legacy J2EE designs, where legacy generally
means “you are afraid to change it.” From this point forward, recipes build on the
foundations in part 1, so you will see numerous references here to earlier recipes.
In a way, the goal of the remaining recipes is to reduce every testing problem to a
smaller number of recipes from part 1. Enjoy.

259Designing J2EE applications
for testability
Designing J2EE applications for testability

We originally conceived this part as “JUnit and Frameworks,” because there are a
few general guidelines that govern how to test code that lives in a framework. With
J2EE, frameworks are everywhere: servlets, EJBs, JMS message listeners—these are all
objects we code within a component framework and execute in the context of con-
tainers. This raises two main issues: performance and dependency; and a testable
design is one that manages both effectively.

The performance problem

The performance issue stems from the containers or the application server. Exe-
cuting code inside a container incurs overhead that affects the execution speed of
your tests. This has a negative impact on the testing experience, which Kent Beck
mentions briefly in Test-Driven Development: By Example: “Tests that run a long time
won’t be run often, and often haven’t been run for a while, and probably don’t
work.” Ron Jeffries provides some interesting commentary on how we might
behave if we can someday test our entire system, be sure those tests mean the sys-
tem works, and all in less time than it takes to think about it.1 One of the key ben-
efits of testing is the refactoring safety net—the ability to make changes
confidently because you can always execute the tests to see if your last change
broke anything. One of the key practices in refactoring is to execute the tests after
every change, to be sure that you have not injected a defect.2 Because many refac-
torings involve several changes—say ten or more—a slow test suite discourages
you from executing the tests frequently enough to realize most of the benefit of
the refactoring safety net. This is all rather a roundabout way of saying that slow
tests are more than a nuisance, and their productivity impact is more than just the
extra time to execute the tests. It is worth investing considerable amounts of time
in making tests fast enough that you will feel free to execute them at any moment.
Many of the recipes in the chapters that follow address this issue by guiding you
through refactorings that move your code away from the container, allowing you
to execute most of your tests without incurring the overhead of an application
server. This performance issue is related to the way your J2EE components depend
on their environment.

1 www.xprogramming.com/xpmag/expUnitTestsat100.htm
2 Martin Fowler describes this in Chapter 4 of Refactoring: Improving the Design of Existing Code. See “The

Value of Self-testing Code.”

260 PART 2

Introduction
The dependency problem

A framework is based on the Hollywood Principle—“don’t call us; we’ll call you.”
Framework designers expect you to build components that depend directly on
their code: your classes implement their interfaces, or extend their classes. They
say, “You worry about the business logic and let us take care of persistence (or a
web interface, or transactions).” It looks good on paper, but it leads to testing
problems: in particular, if your business logic is built right into a servlet, then you
cannot execute that logic without running the application server, which leads us
to the performance problems of the previous paragraph.3 There are two main
approaches to this problem: mock objects and reducing dependency. It turns out
that this is a source of some controversy among JUnit practitioners.

Mock objects—palliative care

We loosely define a mock object as follows: an object that you can use in a test to
stand in place of a more expensive-to-use or difficult-to-use object. When people
ask about testing and databases, most people offer this advice: “mock the data-
base.” That is, rather than use a real database in your tests, you should substitute a
mock version of the database objects and let your business logic operate on those.
They could use files for persistence, or they could ignore persistence altogether.
The benefit is avoiding the expensive, external resource and the test execution
speed problems that come with it. We use the term mock objects approach, then, to
mean a general approach to testing that relies on mock objects to avoid the pain
of testing against the real thing. Throughout this book—but especially when dis-
cussing J2EE components—we recommend the mock objects approach to test
those parts of your application that integrate with expensive, external resources.
We do not, however, recommend mock objects as the first and final solution to
this problem. (For more about mock objects, see the essay “The mock objects
landscape.” There is more than meets the eye.)

NOTE Terminology—Members of the Programmer Testing community have been
trying to converge on a narrow, accurate definition of mock object, as the
term seems to mean different things to different people. They have
coined the term testing object to refer to any object you would use for a test
that you would not use in production code, roughly equivalent to the
meaning of mock object we have just introduced. Using the community’s
definition, a mock object, then, would be a special kind of testing object—

3 Altogether accidental alliteration.

261Designing J2EE applications
for testability
one that allows the programmer to set expectations on how it is used and
can verify itself against those expectations with a simple method invoca-
tion. This matches better with the concept as it was introduced in the
Mock Objects paper.4 The definition we have presented here merely
matches the current common usage with which you may already be famil-
iar, but we rather like the term testing object, as it more directly describes
the underlying concept. We will try to use the two terms appropriately,
but will invariably revert to long-standing habits—calling testing objects
“mock objects”—from time to time.

Reducing dependency—the cure

Rather than reach for a mock object right away, we recommend reducing your
dependency on the frameworks around you. Briefly, code your objects in such a
way that you can “plug in” a J2EE-based implementation of the services it provides:
persistence, web interface, transactions, and so on. If you store customer informa-
tion in a database, then create a CustomerStore interface and have your business
logic depend only on this interface. Now create the class JdbcCustomerStore, which
implements CustomerStore and provides JDBC-specific services, interacting with
the database. By separating your business logic from the persistence framework,
you make it easy to test the business logic with predictable data and those tests are
fast. Just provide an in-memory implementation of CustomerStore—what some
might call a mock object, but we disagree5—and test your business logic using the
InMemoryCustomerStore. If your business logic cannot tell the difference between
the two implementations of CustomerStore, then by and large it does not matter
which implementation you choose for your tests! As always, the devil is in the
details, and we get into those details throughout the rest of this book.

It takes an investment in time and effort to make a J2EE design easy to test. The
good news is that once you know the general principles, and especially if you let
tests drive your work, then it becomes quite natural to build J2EE-independent
components, and then integrate them with J2EE later. The goal is to make the
integration with J2EE as thin as possible to minimize the number of tests you need
to execute against the live container. This maximizes the benefit of testing your
code with JUnit. Unfortunately, there are times when this is simply not an option.

4 Steve Freeman, Steve Mackinnon, Philip Craig, “Endo-Testing: Unit Testing with Mock Objects,”
www.connextra.com/aboutUs/mockobjects.pdf.

5 If you want the sordid details, then scan the archives of the Test-Driven Development Yahoo! group at
groups.yahoo.com/group/testdrivendevelopment/messages. Start at message 5068.

262 PART 2

Introduction
Testing legacy J2EE components

As we wrote previously, we define legacy in this context as “code you are afraid to
change.” In this case “you” might actually be you, or your team lead, your manager,
or some other person with a vested interest in keeping you from changing existing
code. There are a number of reasons for this, including (but not limited to, as law-
yers like to say):

■ “We need features; don’t waste my time working on stuff that’s already done!”

■ “It works and we don’t know why, so don’t touch it.”

■ “Didn’t you get it right the first time?!”

■ “If you change John’s code, he gets angry, so just leave it alone.”

■ “You can’t change Mary’s code without her approval, and she’s on vacation
this week.”

We could go on, but as fun as that is, we need to figure out how to test code that
we are not in a position to change. Refactoring towards a more testable design is
therefore not an option open to us. What do we do? Recognizing that this situa-
tion is more common than we would hope, we have devoted some recipes in this
part to testing legacy J2EE components: servlets, JSPs, and EJBs. There are really
only two general techniques that you can use in this situation: test from end to
end or resort to trickery to substitute mock objects.

End-to-End Tests—tests that execute the end-user interface and involve the entire
application—are important, as they establish that the application actually works;
however, these tests are expensive to execute, to write, and to maintain. They are
slow, because they involve the entire application and all the expensive, external
resources it uses. They are difficult to write, because you have to understand how
all the components interact in order for the test to verify exactly what you want to
verify. It is also difficult to re-create certain obscure error conditions, making it
difficult to write tests for how well you handle those error conditions—things such
as “disk full” and “graphical resources low.”6 End-to-End Tests are difficult to
maintain, because insignificant changes can break them—different screen layout,
different button names, translating into German—all these things can lead to
changes in the End-to-End Tests. This is the negative feedback loop that drives
many development shops to overspend on testing resources rather than use that

6 J. B. worked on a project that spent three weeks hunting down a defect that only occurred when graphical
resources were low. It took fifteen minutes of opening windows to recreate the conditions for each test.

263The Coffee Shop application
money (and time) to eliminate the problem through design improvement. Rely-
ing on End-to-End Tests to verify components is a losing proposition.

An alternative is to use virtual machine and bytecode magic to substitute mock
objects where you need them. We have always been leery of this approach, mostly
because we do not know much about it; however, a recent development in this
area looks promising: Virtual Mock Objects (www.virtualmock.org). Their site states,
“VirtualMock is a Java unit testing tool which supports the Mock Objects testing
approach. Through the use of Aspect-Oriented Programming, it is designed to
address some of the limitations of existing Mock Object tools and approaches.”
Because this is relatively new, much of the advice we offer in this book ignores it.
Once we have had the chance to digest it, perhaps our approach will change: the
trade-off between mock objects and reducing dependency will certainly change
and we will have to change with it. We think that Virtual Mock Objects has the
potential to open up new options for people who need to write Object Tests for
legacy code—at least in Java. But even so, we recommend reducing dependency
over using mock objects. The result is code that is more flexible in addition to
being easier to test. It is not a question of disliking mock objects; but in the spirit
of the Agile Manifesto (www.agilemanifesto.org), we value reducing dependency
over mocking collaborators.

Post script

As we came closer to releasing the book, we discovered that the jMock project
(www.jmock.org), together with the CGLib package (http://cglib.sourceforge.net),
make it relatively easy to substitute mock implementations of classes (not just
interfaces) at runtime in tests. This achieves some of the same goals as Virtual
Mock, and so it will be interesting to see how these projects progress in the com-
ing months and years. We strongly recommend you look into both jMock and Vir-
tual Mock to see which approach will best help you apply the mock objects
approach to legacy code.

The Coffee Shop application

The Coffee Shop application is a run-of-the-mill online store that we will use to
provide examples throughout the remainder of this book. Although we will refer
to it frequently in various recipes, it is not the goal of this book to build towards a
working online coffee shop. To do that, we would need to make certain design
decisions, such as whether to use JavaServer Pages (JSPs), Velocity templates, or

264 PART 2

Introduction
XSL transformations as our presentation engine. Rather than decide on one tech-
nology, we will use examples from all these technologies in different recipes to
illustrate the techniques they describe. We use the Coffee Shop application simply
to provide a context for our J2EE-related recipes, rather than try to talk about test-
ing J2EE applications in abstract terms.

To understand the recipes, it is enough to understand the requirements for the
Coffee Shop application, so you will not see any architecture or design diagrams
here. Throughout part 2 we will introduce those details as we need them. To illus-
trate a recipe, we will say, “Suppose the Coffee Shop application needs to do this;
then you might have a design that looks like that, and here is how to use JUnit to
test it.” With this out of the way, we will describe the essential requirements for the
Coffee Shop application.

In general terms, this is an online store, in the spirit of amazon.com, although
not nearly as rich in features. The users of the store are generally shoppers pur-
chasing coffee beans by the kilogram. The store uses the shopcart7 metaphor,
allowing the shopper to collect different kinds of coffee beans into his cart before
completing his purchase. The store has an online catalog of coffee beans that the
shopper can browse; the kinds and prices of the coffee are set by the administrator.

As we have already mentioned, we will propose additional features as needed to
illustrate the techniques in our recipes. You can assume that the Coffee Shop
application always has the very basic features we have mentioned here. Now that
we have set the context for part 2, it is time to get to some recipes!

7 Or “shopping cart,” if you prefer. Both terms are relatively common, and it just happens that we use
“shopcart” more often.

Testing and XML
This chapter covers
■ Comparing XML documents with XMLUnit
■ Ignoring superficial differences in XML documents
■ Testing static web pages with XMLUnit
■ Testing XSL transformations with XMLUnit
■ Validating XML documents during testing
265

266 CHAPTER 9

Testing and XML
XML documents are everywhere in J2EE: deployment descriptors, configuration
files, XHTML and XSL transformations, Web Services Description Language, and
on and on. If you are going to test J2EE applications, you are going to need to
write tests involving XML documents. Notice the title of this chapter is “Testing
and XML,” and not “Testing XML.” It is not our mission here to test XML parsers,
but rather to describe how to write tests involving XML documents and other XML-
related technologies, such as XSL transformations. Given that XML documents are
everywhere, it looks to us that this is an important skill to have, and we can sum-
marize the entire chapter in two words: use XPath.

The XPath language defines a way to refer to the content of an XML document
with query expressions that can locate anything from single XML attribute values
to large complex collections of XML elements. If you have not seen XPath before,
we recommend Elizabeth Castro’s XML for the World Wide Web, which describes XML,
XSL, and XPath in detail.1 The overall strategy when testing with XML documents
is to make assertions about those documents using XPath to retrieve the actual
content. You want to write assertions like this:

assertEquals("Rainsberger", document.getTextAtXpath("/person/lastName"));

This assertion says, “the element lastName inside element person at the root of the
document should have the text Rainsberger.” Following is an XML document that
satisfies this assertion.

<?xml version="1.0?">
<person>
 <firstName>J. B.</firstName>
 <lastName>Rainsberger</lastName>
</person>

This is perhaps the simplest and most direct way to use XPath in your tests. When
testing Java components whose output is an XML document, you want to treat the
XML document as a return value and write assertions just as we described back in
chapter 2, “Elementary tests.” The key difference is that you need some additional
tools to help you manipulate XML documents as Java objects, and that is where

1 Also consider Elliotte Rusty Harold’s Processing XML with Java (Pearson Education, 2002). Castro’s book
is a more general introduction, whereas Harold’s deals directly with Java. Harold’s book is available
online at http://cafeconleche.org/books/xmljava/.

Listing 9.1 A simple XML document

267Testing and XML
XPath comes in. You can use XPath to obtain the text of an element, to obtain the
value of an attribute, or to verify whether an element exists. For example, if you
have an XML document with many person elements and want to verify that there
is a Rainsberger among them, you can use the same technique but with a differ-
ent XPath statement:

assertFalse(document.getNodesAtXpath(
 "//person[lastName='Rainsberger']").isEmpty());

Here, the method getNodesAtXpath() works rather like a database query: “find all
the person elements having a lastName element with the text Rainsberger and
return them as a collection.” The assertion says, “The collection of person ele-
ments with the lastName of Rainsberger should not be empty.” These are the two
kinds of XPath statements you will use most often in your tests.

Up to this point we have said little about where to find methods such as get-
NodesAtXpath() and getTextAtXpath(), because they are certainly not part of
JUnit. There is an XPath API that you can use to execute XPath queries on a
parsed XML document. The most widely used implementations of the XPath API
are found in Xalan (http://xml.apache.org/xalan-j) and jaxen (http://jaxen.
sourceforge.net).2 You could use this API directly to make assertions about the
structure and content of XML documents, but rather than reinventing the wheel,
we recommend using XMLUnit (http://xmlunit.sourceforge.net). This package
provides XMLTestCase, a base test case (see recipe 3.6, “Introduce a Base Test
Case”) that adds custom assertions (see recipe 17.4, “Extract a custom assertion”)
built on XPath. To use XMLUnit, create a test case class that extends org.custom-
monkey.xmlunit.XMLTestCase, then write your tests as usual. In your tests you will
use the various XMLUnit assertions to verify that XML elements exist, to verify
their value, and even to compare entire XML documents. Let’s take an example.

Consider XML marshalling, which is the act of turning Java objects into XML
documents (and the other way around). Web applications that use XSL transfor-
mations (rather than page templates, such as JSPs) as their presentation engine
typically need to marshal Java beans to XML so that the transformation engine can
present that data to the end user as a web page. Other systems marshal data to and
from XML to communicate with other computers in a heterogeneous environ-
ment—one involving many computing platforms or programming languages, such
as that created by web services. Suppose we are testing a simple XML marshaller

2 Our experience is with Xalan, rather than with jaxen, so when we discuss XPath throughout this book,
we are referring to the Xalan implementation.

268 CHAPTER 9

Testing and XML
that creates an XML document from a Value Object. The “person” document in
listing 9.1 could have been produced by our XML marshaller operating on a Per-
son object with the String attributes of firstName and lastName. We ought to be
able to write out the XML document corresponding to a Person object and verify
its contents. Enough words; it is time for a test.

Assume that the XmlMarshaller constructor takes the class object correspond-
ing to our Value Object class and a String that you would like it to use as the
name of the XML root element. The remaining XML elements are named accord-
ing to the attributes of the Value Object. Listing 9.2 shows the resulting test.

package junit.cookbook.xmlunit.test;

import java.io.StringWriter;
import junit.cookbook.xmlunit.*;
import org.custommonkey.xmlunit.XMLTestCase;

public class MarshalPersonToXmlTest extends XMLTestCase {
 public void testJbRainsberger() throws Exception {
 Person person = new Person("J. B.", "Rainsberger");
 XmlMarshaller marshaller = new XmlMarshaller(
 Person.class, "person");
 StringWriter output = new StringWriter();
 marshaller.marshal(person, output);

 String xmlDocumentAsString = output.toString();

 assertXpathExists("/person", xmlDocumentAsString);

 assertXpathEvaluatesTo(
 "J. B.",
 "/person/firstName",
 xmlDocumentAsString);

 assertXpathEvaluatesTo(
 "Rainsberger",
 "/person/lastName",
 xmlDocumentAsString);
 }
}

One thing you will notice about this test is that it makes no mention at all of files.
We are very accustomed to thinking of XML documents as files, because we usu-
ally use XML documents in their stored format, and we usually store XML in
files. Nothing about XML requires that documents be processed using files. In fact,
web services generally send and receive XML documents over network connections

Listing 9.2 Testing an XML object marshaller

269Testing and XML
without ever writing that data to file. To keep everything simple, our Xml-
Marshaller writes data to a Writer—any Writer—and the most convenient kind to
use for this kind of test is a StringWriter: this way we do not have to load the
resulting XML document from disk before parsing and verifying it. It is already in
memory!

The assertions we make in this test are the custom assertions that XMLUnit pro-
vides. The first we use is assertXpathExists(), which executes the XPath query
and fails only if there are no nodes in the XML document matching the query.
Here we are using this custom assertion to verify the existence of a person root
element. The other custom assertion we use is assertXpathEvaluatesTo(), which
executes an XPath query and compares the result to an expected value; the asser-
tion fails if the result and the expected value are different. XPath queries gener-
ally return either a list of nodes (in which you can search for the one you expect)
or a String value (corresponding to the text of an element or attribute).

We could simplify this test, at the risk of making it more brittle, by making an
assertion on the entire XML document which we expect the XML marshaller to
produce. XMLUnit provides the method assertXMLEqual(), which checks whether
two XML documents are equal. The way that XMLUnit defines equality in this
case, though, requires some explanation. With XMLUnit, documents may be simi-
lar or identical. Documents are identical if the same XML elements appear in
exactly the same order. Documents are similar if they represent the same content,
but perhaps with certain elements appearing in a different order. Sometimes it
matters, and sometimes it does not. As XMLUnit’s web site says, “With XMLUnit,
you have the control.” Referring to listing 9.1, the order in which the <firstName>
and <lastName> elements appear does not affect the meaning of the document. If
we compare the document in listing 9.1 to a copy with <lastName> before <first-
Name>, we would expect them to be equal, based on the way we interpret the docu-
ments. This way of interpreting whether documents are equal--viewing them as
data--is common in the kinds of applications we build, so assertXMLEqual() com-
pares documents for similarity, rather than identity. As an example, here is a test
for our XML object marshaller. We are verifying that the data is marshalled cor-
rectly, so we can build the test around assertXMLEqual()without having to resort
to multiple XPath-based assertions (we have highlighted the differences between
this test and the previous one in bold print):

public void testJbRainsbergerUsingEntireDocument()
 throws Exception {

 Person person = new Person("J. B.", "Rainsberger");
 XmlMarshaller marshaller =

270 CHAPTER 9

Testing and XML
 new XmlMarshaller(Person.class, "person");
 StringWriter output = new StringWriter();
 marshaller.marshal(person, output);

 String expectedXmlDocument =
 "<?xml version=\"1.0\" ?>"
 + "<person>"
 + "<firstName>J. B.</firstName>"
 + "<lastName>Rainsberger</lastName>"
 + "</person>";

 String xmlDocumentAsString = output.toString();

 assertXMLEqual(expectedXmlDocument, xmlDocumentAsString);
}

Rather than write an assertion to verify each part of the document that interests us,
this second test creates the entire document we expect and compares it with the
actual document the XML marshaller gives us. This is how to use XMLUnit in its sim-
plest form. There is, however, one warning to go with this technique: what you think
of as white space differences are not really mere white space differences in XML.

An XML document consists of a structure of elements—a tag, its attributes, and
its content. The content of an XML element can either be text, more elements, or
a combination of the two. It is the “combination of the two” that creates problems
when comparing XML documents with one another. To illustrate this important
point, let us consider what happens when we change the expected XML document
in what we believe to be a purely cosmetic way. Another programmer has decided
that failure messages would be easier to read if the expected XML document were
formatted with line breaks and tabs, so she changes the test to the following:

public void testJbRainsbergerUsingEntireDocument()
 throws Exception {

 Person person = new Person("J. B.", "Rainsberger");
 XmlMarshaller marshaller =
 new XmlMarshaller(Person.class, "person");
 StringWriter output = new StringWriter();
 marshaller.marshal(person, output);

 String expectedXmlDocument =
 "<?xml version=\"1.0\" ?>\n"
 + "<person>\n"
 + "\t<firstName>J. B.</firstName>\n"
 + "\t<lastName>Rainsberger</lastName>\n"
 + "</person>\n";

 String xmlDocumentAsString = output.toString();

 assertXMLEqual(expectedXmlDocument, xmlDocumentAsString);
}

271Testing and XML
When she executes this test, she fully expects it to continue to pass, so she does so
almost absentmindedly.3 Much to her surprise, she sees this failure message:

junit.framework.AssertionFailedError: org.custommonkey.xmlunit.Diff [dif-
ferent] Expected number of child nodes '5' but was '2' - comparing <per-
son...> at /person[1] to <person...> at /person[1]

Five nodes? By our count there are two: firstName and lastName. What’s the prob-
lem? The issue is that what you treat as white space, and therefore not a node, an
XML parser treats as a text node with empty content. When you look at the follow-
ing XML document, you see a person element with two elements inside it:

<?xml version="1.0" ?>
<person>
 <firstName>J. B.</firstName>
 <lastName>Rainsberger</lastName>
</person>

When the XML parser looks inside the person element, it finds an empty text ele-
ment (thanks to the carriage return/linefeed character or characters), a first-
Name element, another empty text element, a lastName element, and another
empty text element—that makes five. That explains the failure message, although
it is not exactly the kind of behavior we want. We would like to ignore those empty
text elements altogether. Fortunately, XMLUnit provides a simple way to ignore
these kinds of white space differences. We invoke one extra method in our test,
telling XMLUnit to ignore white space (we have highlighted the new method invo-
cation in bold print):

public void testJbRainsbergerUsingEntireDocument()
 throws Exception {

 Person person = new Person("J. B.", "Rainsberger");
 XmlMarshaller marshaller =
 new XmlMarshaller(Person.class, "person");
 StringWriter output = new StringWriter();
 marshaller.marshal(person, output);

 String expectedXmlDocument =
 "<?xml version=\"1.0\" ?>\n"
 + "<person>\n"
 + "\t<firstName>J. B.</firstName>\n"
 + "\t<lastName>Rainsberger</lastName>\n"
 + "</person>\n";

3 Do not be critical of her for this. Other programmers have concluded in similar cases, “It’s a superficial
change, so I’m sure it works. I’ll just check in my change and go on vacation.” At least she ran the tests!

272 CHAPTER 9

Testing and XML
 String xmlDocumentAsString = output.toString();

 XMLUnit.setIgnoreWhitespace(true);
 assertXMLEqual(expectedXmlDocument, xmlDocumentAsString);
}

This tells XMLUnit to ignore all those extra elements containing only white space
when comparing XML documents. Spaces in an element’s content are not affected
by this setting. If you need to do this for entire suites of tests, then move this state-
ment into your test case class’s setUp() method, as it is part of those tests’ fixture.

There are other kinds of superficial differences that you may want to ignore on
a test-by-test basis. You may, for example, want to compare only the structure of
two documents without worrying about the values of attributes and the text.
XMLUnit allows you to decide which differences are significant by implementing
your own DifferenceListener. See recipe 9.3, “Ignore certain differences in XML
documents,” for details.

As we mentioned previously, many web applications transform XML documents
into XHTML using XSLT (http://www.w3.org/TR/xslt) as their presentation engine.
If so, you will want to test your XSL transformations in isolation, just as you would
test your JSPs or Velocity templates in isolation. See recipe 9.6, “Test an XSL
stylesheet in isolation,” and also see chapter 12, “Testing Web Components,” for
recipes addressing JSPs and Velocity templates. The next most common use of
XML documents in testing concerns the various J2EE deployment descriptors.
There are many cases in which making an assertion on a deployment descriptor is
more effective than testing the underlying deployed component. See the other
chapters in this part of the book for details on when, how, and why to use the var-
ious J2EE deployment descriptors during testing. Finally, it is possible to treat
HTML documents as though they are XML documents by writing XHTML (http://
www.w3.org/TR/xhtml1/). You can test web pages in isolation in one of two ways:
either write them in XHTML and use the techniques we have previously described,
or use an HTML-tolerant parser that converts web pages into easy-to-verify XML
documents. See recipe 9.5, “Test the content of a static web page,” for an example
of how to do this.

Validating XML documents provides a way to avoid writing some JUnit tests for
your system. We like JUnit, but whenever there is an opportunity to do something
even simpler, we take advantage of it. You can validate XML documents using either
a DTD or an XML schema, and although this book is not the place to describe how
to do that, see recipe 9.7, “Validate XML documents in your tests,” for a discussion
on making XML document validation part of your testing environment.

273Verify the order of elements
in a document
9.1 Verify the order of elements in a document

◆ Problem

You want to verify an XML document whose elements need to appear in a particu-
lar order.

◆ Background

You have code that produces an XML document, and the order in which the ele-
ments appear in the document changes the “value” the document represents.
Consider, for example, a DocBook document: the order in which chapters, sec-
tions, and even paragraphs appear determines the meaning of the book. If you
are marshalling a List of objects out to XML (see the introduction to this chapter
for a discussion of XML marshalling) then you will want the corresponding XML
elements to appear in the same order as they were stored in the List (otherwise,
why is it a List?). If you have tried using assertXMLEqual() to compare docu-
ments with this sensitivity to order, then you may have seen XMLUnit treat certain
unequal documents as equal, and this is not the behavior you want. You need
XMLUnit to be stricter in its definition of equality.

◆ Recipe

To verify the order of elements in a document you may need to check whether
the actual document is identical to the expected document, rather than similar.
These are terms that XMLUnit defines by default, but allows you to redefine when
you need to (see recipe 9.3). By default, documents are identical if their node
structures are the same, elements appear in the same order, and corresponding
elements have the same value. If you ignore white space (see the introduction to
this chapter) then XML documents are identical if the only differences between
them are white space.4 If the elements are at the same level of the node’s tree
structure, but sibling elements with different tag names are in a different order, then
the XML documents are not identical, but similar. (See the Discussion section for
more on this.) You want to verify that documents are identical, whereas assertXM-
LEqual() only verifies whether they are similar.

Verifying whether documents are identical is a two-step process, compared to
just using a customized assertion. First you “take a diff” of the XML documents, then

4 Specifically ignorable white space as XML defines the term. This includes spacing of elements, but not
white space inside a text node’s value. Node text “A B” is still different from “A B”.

274 CHAPTER 9

Testing and XML
make an assertion on that “diff.” If you are familiar with CVS or the UNIX toolset,
then you know what we mean by a “diff”: the UNIX tool computes the differences
between two text files, whereas XMLUnit’s class Diff (org.custommonkey.xml-
unit.Diff) computes the differences between two XML documents. To take a diff
of two XML documents with XMLUnit, you create a Diff object from the respec-
tive documents, after which you can ask the Diff, “Are the documents similar? Are
they identical?” Let us look at a simple example.

Consider a component that builds an article, suitable for publication on the
web, from paragraphs, sections, and headings that you provide through a simple
Java interface. You might use this ArticleBuilder as the model behind a special-
ized article editor that you want to write.5 As you are writing tests for this class, you
decide to add a paragraph and a heading to an article and verify the resulting
XML document. Listing 9.3 shows the test using assertXMLEqual().

public class BuildArticleTest extends XMLTestCase {
 public void testMultipleParagraphs() throws Exception {
 XMLUnit.setIgnoreWhitespace(true);

 ArticleBuilder builder =
 new ArticleBuilder("Testing and XML");

 builder.addAuthorName("J. B. Rainsberger");
 builder.addHeading("A heading.");
 builder.addParagraph("This is a paragraph.");

 String expected =
 "<?xml version=\"1.0\" ?>"
 + "<article>"
 + "<title>Testing and XML</title>"
 + "<author>J. B. Rainsberger</author>"
 + "<p>This is a paragraph.</p>"
 + "<h1>A heading.</h1>"
 + "</article>";

 String actual = builder.toXml();
 assertXMLEqual(expected, actual);
 }
}

5 Ron Jeffries explores building a specialized article editor in “Adventures in C#” (http://www.xprogram-
ming.com/) as well as his book Extreme Programming Adventures in C# (Microsoft Press, 2004).

Listing 9.3 Comparing documents with assertXMLEqual()

275Verify the order of elements
in a document
Here we have “accidentally” switched the heading and the paragraph in our
expected XML document: the heading ought to come before the paragraph, not
after it. No problem, we say: the tests will catch that problem—but this test passes!
It passes because the expected and actual documents are similar, but not identi-
cal. In order to avoid this problem, we change the test as shown in listing 9.4 (the
change is highlighted in bold print):

public void testMultipleParagraphs() throws Exception {
 XMLUnit.setIgnoreWhitespace(true);

 ArticleBuilder builder =
 new ArticleBuilder("Testing and XML");

 builder.addAuthorName("J. B. Rainsberger");
 builder.addHeading("A heading.");
 builder.addParagraph("This is a paragraph.");

 String expected =
 "<?xml version=\"1.0\" ?>"
 + "<article>"
 + "<title>Testing and XML</title>"
 + "<author>J. B. Rainsberger</author>"
 + "<p>This is a paragraph.</p>"
 + "<h1>A heading.</h1>"
 + "</article>";

 String actual = builder.toXml();

 Diff diff = new Diff(expected, actual);
 assertTrue(
 "Builder output is not identical to expected document",
 diff.identical());
}

First we ask XMLUnit to give us an object representing the differences between
the two XML documents, then we make an assertion on the Diff, expecting it to
represent identical documents—specifically that the corresponding elements
appear in the expected order. This test fails, as we would expect, alerting us to our
mistake. So if we run the risk of this kind of problem, why does assertXMLEqual()
behave the way it does? It turns out not to be a common problem in practice.

While looking for an example for this recipe, we asked programmers to show
us examples of XML documents with a particular property. We wanted to see a

Listing 9.4 Testing for identical XML documents

276 CHAPTER 9

Testing and XML
document with sibling tags (having the same parent node) with different names,
where changing the order of those elements changes the document’s meaning.
For the most part, they were unable to come up with a compelling example,
which surprised us. Far from a proof, let us look at some reasons why.

Consider XML documents that represent books or articles. These documents
have sections, chapters, paragraphs—structure that maps very well to XML. In an
HTML page, paragraphs merely follow headings, but the paragraphs in a section
really belong to that section. It makes more sense to represent a section of a docu-
ment as its own XML element containing its paragraphs, as opposed to the way
HTML does it. This is the approach that DocBook (http://www.docbook.org/)
takes: a section element contains a title element followed by paragraph elements.
The paragraph elements are siblings in the XML document tree, the order of the
paragraphs matters, and the elements all have the same name. On the other
hand, when we use XML documents to represent Java objects, we often render
each attribute of the object as its own element. Those elements have different
names, and most often the order in which those elements appear in the docu-
ment does not affect the value of the object the document represents. So there
appears to be a correlation here:

■ If sibling elements have different names, then the order in which they appear
likely does not matter.

■ If the order in which sibling elements appear matters, then they likely have
the same name.

Based on these simple observations, we can conclude that assertXMLEqual()
behaves in a manner that works as you would expect, most of the time. It may not
be immediately obvious, but we thought it was neat once we reasoned it through.

◆ Discussion

When you use assertXMLEqual(), XMLUnit ignores the order in which sibling ele-
ments with different tag names appear. This is common when marshalling a Java
object to XML: we typically do not care whether the first name appears before or
after the last name, so long as both appear in the resulting XML document. We
emphasize “different tag names” because XMLUnit preserves (and checks) the
order of sibling elements with the same tag name, even when checking docu-
ments for similarity. If you need to marshal a Set, rather than a List, to XML, then
you will likely represent each element with its own tag and those tags will have the
same name, such as item. When comparing an expected document with the

277Ignore the order of elements
in an XML document
actual marshalled one, you want to ignore the order of these item elements. In
order to ignore this difference between the two documents, you need to custom-
ize XMLUnit’s behavior, which we describe in recipe 9.3.

◆ Related

■ 9.3—Ignore certain differences in XML documents

■ DocBook (http://www.docbook.org/)

9.2 Ignore the order of elements in an XML document

◆ Problem

You want to verify an XML document and the order of certain XML elements
within the document does not matter.

◆ Background

In recipe 9.1, “Verify the order of elements in a document,” we wrote about a cor-
relation between the names of XML elements and whether it matters in which
order the elements appear. We claimed that when there are many tags with the
same name, the order in which they appear tends to be important. One exception
to this rule that we have encountered is the web deployment descriptor. Servlet
initialization parameters, request attributes, session attributes, and other parts of
the servlet specification are all essentially Maps of data. In particular, a servlet’s ini-
tialization parameters are stored in a Map whose keys are the names of the parame-
ters (as Strings) and whose values are the values of those parameters (also as
Strings). The web deployment descriptor—or web.xml as you may know it—rep-
resents servlet initialization parameters with the XML element <init-param>, which
contains a <param-name> and a <param-value>. It treats the parameters as a List of
name-value pairs, but those name-value pairs do not logically form a List; they
form a Set instead. The order of the parameters in the deployment descriptor
generally does not affect the meaning of those parameters.6 Accordingly, when we
test for the existence of and the correctness of a servlet’s initialization parameters,
we either have to pay attention to the order in which we specify the parameters in
the deployment descriptor or change the test so that it does not take their order
into account.

6 If your servlet initialization code depends on the order in which the web container hands you those
parameters, then you are in for a surprise one day. Consider yourself warned.

278 CHAPTER 9

Testing and XML
◆ Recipe

The most direct way to solve this problem, which we recommend, is to traverse the
DOM (Document Object Model) tree for both XML documents. In general, if you
are unconcerned about the order of a group of sibling elements with the same tag
name, then they represent items in either a Set or a Map.7 For that reason, we rec-
ommend you collect the data into a Set (or a Map) using the XPath API, then com-
pare the resulting objects for equality in your test. XMLUnit does not do quite as
much for us in this case as we would like, but no tool can be all things to all people.
As an example, consider the servlet initialization parameters in a web deployment
descriptor for a Struts application, although it could be for any kind of web appli-
cation. We just chose Struts because we like it. Listing 9.5 shows such a sample:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
 <display-name>Struts Taglib Exercises</display-name>

 <!-- Action Servlet Configuration -->
 <servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>
 org.apache.struts.webapp.exercise.ApplicationResources
 </param-value>
 </init-param>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>

7 We looked hard—honestly, we did—for a counterexample and could not find one.

Listing 9.5 A sample web deployment descriptor

279Ignore the order of elements
in an XML document
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>

 <!-- Additional settings omitted for brevity -->
</web-app>

We want to focus on the elements in bold print, gather them into Map objects in
memory, and then compare the corresponding Map objects for equality. This
makes for rather a simple looking test:

public void testActionServletInitializationParameters()
 throws Exception {

 File expectedWebXmlFile =
 new File("test/data/struts/expected-web.xml");
 File actualWebXmlFile = new File("test/data/struts/web.xml");

 Document actualDocument = buildXmlDocument(actualWebXmlFile);
 Document expectedDocument =
 buildXmlDocument(expectedWebXmlFile);

 Map expectedParameters =
 getInitializationParametersAsMap(expectedDocument);

 Map actualParameters =
 getInitializationParametersAsMap(actualDocument);

 assertEquals(expectedParameters, actualParameters);
}

The good news is that the test itself is brief and to the point. In words, it says, “get
the initialization parameters from the expected and actual documents and they
ought to be equal.” The bad news is that, as always, the devil is in the details.
Rather than distract you from your reading, we have decided to move the com-
plete solution—which is mostly XML parsing code—to solution A.3, “Ignore the order
of elements in an XML document.” There you can see how we implemented get-
InitializationParametersAsMap() and buildXmlDocument(), the latter of which
uses a nice convenience method from XMLUnit.

NOTE Network connectivity and the DTD—Notice that the web deployment descrip-
tor in listing 9.5 declares that it conforms to a remotely accessible DTD.
XMLUnit tests will attempt to load the DTD from the remote location at
runtime, requiring a network connection. If XMLUnit does not find the
DTD online, it will throw an UnknownHostException with a message read-
ing “Unable to load the DTD for this document,” which does not clearly
describe the real problem in context. One way to avoid this problem is to
execute the tests on a machine that has access to the remote site providing

280 CHAPTER 9

Testing and XML
the DTD. Perhaps better, though, is to make the DTD available locally by
downloading and storing it on the test machine. Include the location of
the local copy in the DTD declaration as follows in bold print:

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "file:///C:/test/data/struts/web-app_2_2.dtd">

This also has the pleasant effect of avoiding the remote connection in the
first place, increasing the execution speed of your tests. Of course, now your
tests are slightly more brittle, as they depend on files on the local file system.
We describe the trade-offs involved in placing test data on the file system in
both chapter 5, “Managing Test Data,” and chapter 17, “Odds and Ends.”

◆ Discussion

When we first tried to write this deployment test, we compared the actual web
deployment descriptor against a Gold Master we had previously created8 (see rec-
ipe 10.2, “Verify your SQL commands,” for a description of the Gold Master concept):

public void testStrutsWebDeploymentDescriptor()
 throws Exception {

 File expectedWebXmlFile =
 new File("test/data/struts/expected-web.xml");
 File actualWebXmlFile = new File("test/data/struts/web.xml");

 Document actualDocument = buildXmlDocument(actualWebXmlFile);
 Document expectedDocument =
 buildXmlDocument(expectedWebXmlFile);

 assertXMLEqual(expectedDocument, actualDocument);
}

We decided that it was simpler to just compare the entire document, so that is
what we did. When we executed this test, all was well until we started generating
the web deployment descriptor, rather than handcrafting it. The generator wrote
the parameters to XML in a different order than when we wrote the document by
hand. We were not concerned about the order of these tags, and when that order
changed, our test failed unnecessarily. This is when we decided that we needed to
change the test to do what this recipe recommends.

Next we tried solving this problem with an XMLUnit DifferenceListener (see
recipe 9.3), but were not able to do it, at least not always. This is another place

8 The Gold Master technique is only as good as the correctness of the master copy itself. Be careful! Make
sure that the master is absolutely correct and is under strict change control.

281Ignore certain differences
in XML documents
where a human’s interpretation of the document differs from the software’s inter-
pretation. The XMLUnit Diff engine sees four <init-param> tags in both the
expected and actual documents and says, “Same names and the same number of
them, so they are the same.” It does not consider the nontext content of the
<init-param> tags when comparing them to one another, so it does not notice
(yet) that they are different. Only when the Diff engine proceeds to compare the
<param-name> and <param-value> tags does it notice a difference, and by that
point, it interprets the difference as “<param-name> nodes have different text,”
rather than the much more benign “<init-param> nodes are out of order.” The
former is a failure, but the latter is not, leading to a false negative result in our
tests. We could not think of a way to safely ignore these differences, short of track-
ing all the values we have seen so far and comparing them against one another
after the Diff engine has processed all the <init-param> nodes. That is just too
much work. At that point, we thought we may as well just process the nodes in the
first place, which is why we recommend the solution in this recipe.

This may not always be a problem, so try using assertXMLEqual() before embark-
ing on writing all this extra code. This problem is caused by the document itself:
the fact that the differences between the <init-param> nodes are found deeper in
each node’s subtree, and not right at the same level as the <init-param> nodes
themselves. If, for example, the <init-param> nodes had ID attributes and those ID
attributes were out of sequence, the Diff engine would have detected that and
reported the difference as a sequence difference, which we could easily ignore. See
recipe 9.3 for details on how to use the DifferenceListener feature to ignore
those kinds of differences.

◆ Related

■ 9.1—Verify the order of elements in a document

■ 9.3—Ignore certain differences in XML documents

■ A.3—Ignore the order of elements in an XML document (complete solution)

9.3 Ignore certain differences in XML documents

◆ Problem

You want to verify an XML document, but need to ignore certain superficial differ-
ences between the actual and expected documents.

282 CHAPTER 9

Testing and XML
◆ Background

We generally prefer comparing an expected value to an actual value in our tests,
as opposed to decomposing some complex value into its parts and then checking
each corresponding part individually. For this reason, we prefer to use assertXML-
Equal() over individual XPath-based assertions in a test, but sometimes we run
into a situation where we want to compare, say, 80% of the content of two XML
documents and ignore the rest. We might need several dozen XPath-based asser-
tions, when really all we want to do is to ignore what we might determine to be
“superficial” differences between the two documents. We want to ignore a few val-
ues here and there, or the order of certain attributes, but compare the rest of the
documents for similarity without resorting to a mountain of assertions.

In our Coffee Shop application there is an unpleasant dependency between
our tests and the product catalog. Our choice of XSL transformation for the pre-
sentation layer prompts us to convert Java objects from the business logic layer
into XML suitable for presentation. In particular, we need to convert the Shop-
cartModel, which represents the items in the current shopcart. When the user
places a quantity of coffee in her shopcart, the system adds CoffeeQuantity
objects to the ShopcartModel. When it comes time to display the shopcart, the sys-
tem needs to display the total cost of the items in her shopcart, for which it must
consult a CoffeeBeanCatalog. The catalog provides each coffee product’s unit
price from which the system computes the total cost. In summary, we need to con-
vert a ShopcartModel into an XML document with prices in it, but in order to do
this we need to prime the catalog with whatever coffee products we want to put in
the test shopcart. That does not seem right. If we just ignored the prices, trusting
that our business logic computes them correctly,9 we could avoid the problem of
having tests depend on a specific catalog.

◆ Recipe

The good news is that XMLUnit provides a way to ignore certain differences
between XML documents. The even better news is that XMLUnit allows you to
change the meaning of “different” from test to test. You can “listen” for differ-
ences as XMLUnit’s engine reports them, ignoring the superficial differences that
do not concern you for the current test. To achieve this you create a custom difference
listener—that is, your own implementation of the interface org.custommon-
key.xmlunit.DifferenceListener. To use your custom difference listener, you ask
XMLUnit for the differences between the actual and expected XML documents,

9 The business logic has comprehensive tests, after all.

283Ignore certain differences
in XML documents
then use your listener as a kind of filter, applying it to the list of differences
between the documents in order to ignore the ones that do not concern you. We
can solve our problem directly using a custom difference listener.

Looking at the DifferenceConstants interface of XMLUnit, we can see the way
XMLUnit categorizes differences between XML documents. One type of differ-
ence is a text value difference (represented in DifferenceConstants as the constant
TEXT_VALUE)— that is, the text is different for a given XML tag. We can therefore
look for differences of this type, examine the name of the tag, and ignore the dif-
ference if the tag name is unit-price, total-price or subtotal. Another type of
difference is ATTR_VALUE—that is, the values are different for a given tag attribute.
We can look for differences of this type, examine the name of the attribute and
the element that owns it, and ignore the difference if both the element name is
item and the attribute name is id. (Product IDs depend on the catalog, too.) We
now have enough information to write our IgnoreCatalogDetailsDifference-
Listener. We warn you: the DOM API is rather verbose, so if you are not accus-
tomed to it, read slowly and carefully. First, let us look at the methods we have to
implement from the interface DifferenceListener, shown here in listing 9.6:

public class IgnoreCatalogDetailsDifferenceListener
 implements DifferenceListener {

 public int differenceFound(Difference difference) {
 int response = RETURN_ACCEPT_DIFFERENCE;

 int differenceId = difference.getId();
 if (DifferenceConstants.TEXT_VALUE_ID
 == differenceId) {

 String currentTagName =
 getCurrentTagName(difference);

 if (tagNamesToIgnore.contains(currentTagName)) {
 response =
 RETURN_IGNORE_DIFFERENCE_NODES_SIMILAR;
 }
 }
 else if (DifferenceConstants.ATTR_VALUE_ID
 == differenceId) {

 Attr attribute = getCurrentAttribute(difference);

 if ("id".equals(attribute.getName())
 && "item".equals(
 attribute
 .getOwnerElement()
 .getNodeName())) {

Listing 9.6 An implementation of DifferenceListener

284 CHAPTER 9

Testing and XML
 response =
 RETURN_IGNORE_DIFFERENCE_NODES_SIMILAR;
 }
 }

 return response;
 }

 public void skippedComparison(
 Node expectedNode,
 Node actualNode) {

 // Nothing to do here
 }
}

XMLUnit invokes differenceFound() for each difference it finds between the two
XML documents you compare. As a parameter to differenceFound(), XMLUnit
passes a Difference object, providing access to a description of the difference and
the DOM Node objects in each document so that you can explore them further.
Our implementation looks for the two kinds of differences we wish to ignore: text
value differences and attribute value differences.

When our difference listener finds a text value difference, it retrieves the name
of the tag containing the text, and then compares it to a set of “tags to ignore.” If
the current tag name is one to ignore, then we respond to XMLUnit with “Ignore
this difference when comparing for similarity.” (There is another constant we can
return to say, “Ignore this difference when comparing for identity.”) We declared
the Set of tag names to be ignored as a class-level constant.10

public class IgnoreCatalogDetailsDifferenceListener
 implements DifferenceListener {

 // Remaining code omitted

 private static final Set tagNamesToIgnore = new HashSet() {
 {
 add("unit-price");
 add("total-price");
 add("subtotal");
 }
 };
}

10 The coding technique here is to create an anonymous subclass with an instance initializer. It sounds
complicated, but the benefit is clear, concise code: one statement rather than four. It looks a little like
Smalltalk. See Paul Holser’s article on the subject (http://home.comcast.net/~pholser/writings/con-
cisions.html).

285Ignore certain differences
in XML documents
We also provided a convenience method to retrieve the name of the “current
tag”—the tag to which the current Difference corresponds. The method getTag-
Name() handles Text nodes differently: because a Text node does not have its own
name, we are interested in the name of its parent node:

public class IgnoreCatalogDetailsDifferenceListener
 implements DifferenceListener {

 // Remaining code omitted

 public String getCurrentTagName(Difference difference) {
 Node currentNode =
 difference.getControlNodeDetail().getNode();

 return getTagName(currentNode);
 }

 public String getTagName(Node currentNode) {
 if (currentNode instanceof Text)
 return currentNode.getParentNode().getNodeName();
 else
 return currentNode.getNodeName();
 }
}

When our difference listener finds an attribute value difference, it retrieves the
current attribute name and the name of the tag that owns it, compares it against
the one it wants to ignore, and if there is a match, the difference listener ignores
it. Here is the convenience method for retrieving the current attribute name:

public class IgnoreCatalogDetailsDifferenceListener
 implements DifferenceListener {

 // ...

 public Attr getCurrentAttribute(Difference difference) {
 return (Attr)
 difference.getControlNodeDetail().getNode();
 }
}

If differenceFound() does not find any differences to ignore, then it responds
“accept this difference,” meaning that XMLUnit should count it as a genuine differ-
ence rather than a superficial one. If there remain genuine differences after the
superficial ones are ignored, then XMLUnit treats the documents as dissimilar and
assertXMLEqual() fails. Listing 9.7 shows an example of how we used this differ-
ence listener (the lines of code for the difference listener are in bold print):

286 CHAPTER 9

Testing and XML
package junit.cookbook.coffee.model.xml.test;

import java.util.Arrays;
import junit.cookbook.coffee.display.*;
import junit.cookbook.coffee.model.*;
import org.custommonkey.xmlunit.*;
import com.diasparsoftware.java.util.Money;

public class MarshalShopcartTest extends XMLTestCase {
 private CoffeeCatalog catalog;

 protected void setUp() throws Exception {
 XMLUnit.setIgnoreWhitespace(true);
 catalog = new CoffeeCatalog() {
 public String getProductId(String coffeeName) {
 return "001";
 }

 public Money getUnitPrice(String coffeeName) {
 return Money.ZERO;
 }
 };
 }

 public void testOneItemIgnoreCatalogDetails() throws Exception {
 String expectedXml =
 "<?xml version='1.0' ?>\n"
 + "<shopcart>\n"
 + "<item id=\"762\">"
 + "<name>Sumatra</name>"
 + "<quantity>2</quantity>"
 + "<unit-price>$7.50</unit-price>"
 + "<total-price>$15.00</total-price>"
 + "</item>\n"
 + "<subtotal>$15.00</subtotal>\n"
 + "</shopcart>\n";

 ShopcartModel shopcart = new ShopcartModel();
 shopcart.addCoffeeQuantities(
 Arrays.asList(
 new Object[] { new CoffeeQuantity(2, "Sumatra")}));

 String shopcartAsXml =
 ShopcartBean.create(shopcart, catalog).asXml();

 Diff diff = new Diff(expectedXml, shopcartAsXml);

 diff.overrideDifferenceListener(
 new IgnoreCatalogDetailsDifferenceListener());

 assertTrue(diff.toString(), diff.similar());
 }
}

Listing 9.7 Using the DifferenceListener

287Ignore certain differences
in XML documents
In the method setUp() we faked out the catalog so that we would not have to
prime it with data. Every product costs $0 and has ID 001.

If the documents are not similar, in spite of ignoring all these differences, then
the failure message lists the remaining differences. You can then decide whether
to change the difference listener to ignore the extra differences or to fix the
actual XML document.

◆ Discussion

An alternative to this approach is to build a custom Document Object Model from
the XML documents, an approach we describe in recipe 9.2, “Ignore the order of
elements in an XML document,” by loading servlet initialization parameters into a
Map.11 It is then easy to compare an expected web deployment descriptor docu-
ment object against the actual one, because the Map compares the servlet entries
the way you would expect: ignoring the order in which they appear. We think that
this approach is simpler; however, if you doubt us, then as always, try them both
and measure the difference.

Remember the two essential approaches to verifying XML documents: using
XPath to verify parts of the actual document, or creating an entire expected docu-
ment and comparing it to the actual document. When working with Plain Old
Java Objects, we will generally go out of our way to use the latter approach by
building the appropriate equals() methods we need. Our experience tells us to
expect a high return on investment in terms of making it easier to write future
tests. With XML documents the trade-off is less clear.

Building a complex difference listener can take a considerable amount of work,
which mostly comes from the difficulty in figuring out exactly which differences to
ignore and which to retain. This is not a criticism of XMLUnit, but the way its
authors have categorized differences may not map cleanly onto your mental
model of the differences between two documents. This complexity is inherent to
the problem of describing the difference between two structured text files.12 From
time to time, depending on the complexity of what “similar” and “identical” XML
documents mean in your domain, you may find yourself spending an hour trying
to build the correct difference listener. If this happens, we recommend you stop,
abandon the effort, and go back to using the XPath-based assertions. We also
strongly recommend sticking with XPath-based assertions if you find yourself
wanting to ignore 80% of the actual document and wanting to check “just this part

11 You do not need to build a custom DOM for the entire document, just the parts you care about.
12 How many times has your version control system reported the difference between your version of a Java

source file and the repository’s version “in a strange way?” That is the nature of the problem.

288 CHAPTER 9

Testing and XML
here.” It may be more work to describe the parts of the document to ignore than
simply to write assertions for the part you want to examine. In that case, you can
combine the approaches: use XPath to extract the document fragment that inter-
ests you, then compare it with the fragment you expect using assertXMLEqual().

◆ Related

■ 9.2—Ignore the order of elements in an XML document

9.4 Get a more detailed failure message from XMLUnit

◆ Problem

You want a more detailed failure message from XMLUnit when documents are
different.

◆ Background

The XMLUnit Diff engine stops reporting differences after it finds the first differ-
ence, just as JUnit stops reporting failed assertions once the first assertion fails in
a test. Although this is consistent with JUnit’s core philosophy, it limits the
amount of information available to diagnose the causes of the defects in your
code. It would certainly be helpful if you had more information from XMLUnit
about the differences between the document you have and the one you expect.

◆ Recipe

We recommend placing all the differences between the expected and actual XML
documents in the failure message of your XMLUnit assertions. To do that, create a
DetailedDiff object from the original Diff then include it in your failure mes-
sage. Here is an example (our use of DetailedDiff is in bold print):

public void testMultipleParagraphs() throws Exception {
 XMLUnit.setIgnoreWhitespace(true);

 ArticleBuilder builder =
 new ArticleBuilder("Testing and XML");

 builder.addAuthorName("J. B. Rainsberger");
 builder.addHeading("A heading.");
 builder.addParagraph("This is a paragraph.");

 String expected =
 "<?xml version=\"1.0\" ?>"
 + "<article>"

289Get a more detailed failure
message from XMLUnit
 + "<title>Testing and XML</title>"
 + "<author>J. B. Rainsberger</author>"
 + "<p>This is a paragraph.</p>"
 + "<h1>A heading.</h1>"
 + "</article>";

 String actual = builder.toXml();

 Diff diff = new Diff(expected, actual);
 assertTrue(new DetailedDiff(diff).toString(), diff.identical());
}

This DetailedDiff lists all the differences between the two documents, rather
than just the first difference. In this case, the paragraph and heading elements are
mixed up in the test, although we do not realize that right now. (Sometimes we
make a mistake when writing a test.) Here is the information that XMLUnit gives
us when this assertion fails:

[not identical] Expected sequence of child nodes '2' but was '3'

➾ - comparing <p...> at /article[1]/p[1] to <p...> at /article[1]/p[1]

[not identical] Expected sequence of child nodes '3' but was '2'

➾ - comparing <h1...> at /article[1]/h1[1] to <h1...> at /article[1]/h1[1]

This tells us that the test expects the <p> tag to appear in position 2 and the <h1>
tag to appear in position 3, relative to the <article> tag that contains them both.
That does not make sense! The heading ought to come before the paragraph!
This is the detailed information we need to see that this time it is the test, and not
the production code, that needs fixing. Once we reverse the order of the lines in
the expected XML document, the test passes:

public void testMultipleParagraphs() throws Exception {
 XMLUnit.setIgnoreWhitespace(true);

 ArticleBuilder builder =
 new ArticleBuilder("Testing and XML");

 builder.addAuthorName("J. B. Rainsberger");
 builder.addHeading("A heading.");
 builder.addParagraph("This is a paragraph.");

 String expected =
 "<?xml version=\"1.0\" ?>"
 + "<article>"
 + "<title>Testing and XML</title>"
 + "<author>J. B. Rainsberger</author>"
 + "<h1>A heading.</h1>"
 + "<p>This is a paragraph.</p>"
 + "</article>";

290 CHAPTER 9

Testing and XML
 String actual = builder.toXml();

 Diff diff = new Diff(expected, actual);
 assertTrue(new DetailedDiff(diff).toString(), diff.identical());
}

That’s much better.

◆ Discussion

We recommend building a custom assertion (see recipe 17.4, “Extract a custom
assertion”) called assertXMLIdentical(String expected, String actual) with
this specialized failure message. We are a little surprised that no one has added it
to XMLUnit yet—or perhaps by now they have! That is the essence of open source:
if the product is missing something you need, add it yourself, then later submit it
for inclusion into the product. You do not need to be stuck with code that falls
short of what you need, even if only a little bit. Of course, XMLUnit is an excellent
library and we are not out to criticize it, but all software needs improvement.

◆ Related

■ 17.4—Extract a custom assertion

9.5 Test the content of a static web page

◆ Problem

You want to test the content of a web page, but your web pages are not written in
XHTML, so they are not valid XML documents.

◆ Background

We love XHTML, but it has one fatal flaw: no web browser on the planet enforces it.
Browsers are very lenient when it comes to HTML, which is why very few people—
programmers, web designers, hobbyists—are motivated to write their web pages
in XHTML. It is more work for them to do it and, unless they need to parse their
web pages as XML, they benefit nothing from the effort. If web design tools were
to create XHTML by default (and some at least give you the option to do so) then
the story might be different, but as it stands, very few people write XHTML. As a
result, unless you write every part of every web page you need to test, you will have
to work a little harder to use the testing techniques we have introduced in this
chapter. The alternative is to use another tool to help turn loosely written HTML
into well-formed XML.

291Test the content of a static web page
This recipe works best for verifying static web pages. If you want to verify the con-
tent of a dynamically generated web page, see chapter 12, “Testing Web Compo-
nents,” and chapter 13, “Testing J2EE Applications.” The former discusses testing
web page templates in isolation and the latter describes how to test generated web
pages by simulating a web browser. HtmlUnit, the tool of choice for so-called
“black box” web application testing, uses the techniques in this recipe to provide a
rich set of custom assertions for verifying web page content. This recipe explains
some of the machinery behind HtmlUnit, in case you wish to, or need to, get
along with HtmlUnit.

There are HTML parsers that you can use to convert HTML documents into equiv-
alent, well-formed XML. These parsers present web pages as DOM trees which you
can inspect and manipulate as needed. The two most well-known parsers are Tidy
(http://tidy.sourceforge.net/) and NekoHTML (http://www.apache.org/~andyc/
neko/doc/html/). Although one can generally use either parser, we favor NekoHTML,
as it handles a wider range of badly formed HTML. The general strategy is to load
your web page into the HTML parser, which then creates a DOM representation of
the page (see figure 9.1). You can then apply the techniques in the preceding rec-
ipes to analyze the DOM and verify the parts of it you need to verify. We will use
this technique to verify the welcome page for our Coffee Shop application.

Following is the web page we would like to verify. As you can see, it is not quite
XHTML compliant: the link and input start tags do not have corresponding end
tags and there is text content without a surrounding paragraph tag.

<html>
<head>
<link href="theme/Master.css" rel="stylesheet" type="text/css">
<title>Welcome!</title>
</head>
<body>
<form name="launchPoints" action="coffee" method="post">
Browse our <input type="submit" name="browseCatalog" value="catalog">.
</form>

Web page HTML parser Document
Object Model

XPath assertions

Your test
case

Figure 9.1
Testing a web page by
converting it to XML

292 CHAPTER 9

Testing and XML
</body>
</html>

The test we would like to write verifies that there is a way to navigate from this wel-
come page to our product catalog. We are looking for a form whose action goes
through our CoffeeShopController servlet and has a submit button named
browseCatalog. If those elements are present, then the user will be able to reach
our catalog from this page. In our test we need to configure the NekoHTML
parser, parse the web page, retrieve the DOM object, and use XMLUnit to make
assertions about the content of the resulting XML document. Listing 9.8 shows the
test we need to write:

package junit.cookbook.coffee.web.test;

import java.io.FileInputStream;

import org.custommonkey.xmlunit.XMLTestCase;
import org.apache.xerces.parsers.DOMParser;
import org.cyberneko.html.HTMLConfiguration;
import org.w3c.dom.Document;
import org.xml.sax.InputSource;

public class WelcomePageTest extends XMLTestCase {
 private Document welcomePageDom;

 protected void setUp() throws Exception {
 DOMParser nekoParser =
 new DOMParser(new HTMLConfiguration());

 nekoParser.setFeature(
 "http://cyberneko.org/html/features/augmentations",
 true);

 nekoParser.setProperty(
 "http://cyberneko.org/html/properties/names/elems",
 "lower");

 nekoParser.setProperty(
 "http://cyberneko.org/html/properties/names/attrs",
 "lower");

 nekoParser.setFeature(
 "http://cyberneko.org/html/features/report-errors",
 true);

 nekoParser.parse(
 new InputSource(
 new FileInputStream(
 "../CoffeeShopWeb/Web Content/index.html")));

Listing 9.8 WelcomePageTest

293Test the content of a static web page
 welcomePageDom = nekoParser.getDocument();
 assertNotNull("Could not load DOM", welcomePageDom);
 }

 public void testCanNavigateToCatalog() throws Exception {
 assertXpathExists(
 "//form[@action='coffee']"
 + "//input[@type='submit' and @name='browseCatalog']",
 welcomePageDom);
 }
}

The test itself is very simple: it uses a single XPath statement to look for a form
with the expected action that also contains the expected submit button. Our web
application maps the URI coffee to the servlet CoffeeShopController, which
explains why we compare the form’s action URI to coffee. We could have written
separate assertions to verify that the expected form exists, that it has the expected
action URI, that it contains a submit button, and that it contains the expected sub-
mit button, as shown here:

public void testCanNavigateToCatalog() throws Exception {
 assertXpathExists("//form", welcomePageDom);

 assertXpathEvaluatesTo(
 "coffee",
 "//form/@action",
 welcomePageDom);

 assertXpathExists(
 "//form[@action='coffee']//input[@type='submit']",
 welcomePageDom);

 assertXpathEvaluatesTo(
 "browseCatalog",
 "//form[@action='coffee']"
 + "//input[@type='submit']/@name",
 welcomePageDom);
}

There are a few differences with this more verbose test. First, because each asser-
tion verifies only one thing, it is easier to determine the problem from a failure. If
the second assertion fails, you can be sure of one of two causes: there is more than
one form in the web page or the first form on the page has the wrong action. Next,
these assertions are more precise: if there are other forms on the page or other
buttons in the form, these assertions may fail. Whether this last difference is a
benefit or excessive coupling depends on your perspective. We generally prefer to
make the weakest assertion that can possibly verify that we have done something

294 CHAPTER 9

Testing and XML
right, rather than make the strongest assertion that can possibly eliminate everything
we have done wrong. The latter kind of assertion tends to make tests overly brittle.

We should mention the way we have configured NekoHTML for this test. We
highlighted in bold print the classes that we imported, because we are not actually
using the NekoHTML parser, but rather a Xerces DOM parser with NekoHTML’s
HTML DOM configuration. This allows us to assume in our tests that all tag names
and attribute names are lowercase (the XML standard) even though the web page
may not be written that way. This configuration minimizes the disruption that
web-authoring tools may introduce into a web design environment. Many tools
automatically “fix up” web pages, making them conform to whatever conventions
the tool uses when it generates HTML in WYSIWYG mode. These include trying to
balance some tags, converting all tag names to uppercase, converting all attribute
names to lowercase, and so on. You want your tests to be able to withstand these
kinds of changes. We therefore use the NekoHTML HTMLConfiguration object to
create a Xerces DOMParser, which allows us to set various NekoHTML-supported
features and properties on the parser, including “convert all tag names to lower-
case” and “convert all attribute names to lowercase.” We recommend that you
consult the NekoHTML documentation for a complete discussion of the available
features and properties.

◆ Discussion

There are some important configuration notes about NekoHTML, which its web
site discusses in detail. First, be sure to put nekohtml.jar on your runtime class
path before your XML parser. Next, you only need nekohtml.jar, and not the XNI
version of the parser. The most important item, however, has to do with how your
web pages are written: specifically, whether the HTML tag names are uppercase or
lowercase. It is very important to get this setting right, otherwise none of your
XPath-based assertions will work. It is standard practice in HTML for tag names to
be uppercase and attribute names to be lowercase, such as in this HTML page:

<HTML>
<HEAD>
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">
<TITLE>Welcome!</TITLE>
</HEAD>
<BODY>
<FORM name="launchPoints" action="coffee" method="post">
Browse our <INPUT type="submit" name="browseCatalog" value="catalog">.
</FORM>
</BODY>
</HTML>

295Test the content of a static web page
By default, NekoHTML is configured to expect web pages written this way; so if
you write an XPath-based assertion that expects the tag input, the assertion fails,
because the tag name is INPUT. The DOMParser object you want for your tests
depends on how the web pages have been written. If they follow the HTML DOM
standard of uppercase tag names and lowercase attribute names, then simply use
Neko’s parser with the default HTMLConfiguration settings. (No need to set any
features.) This means that your XPath-based assertions must use uppercase for tag
names and lowercase for attribute names. Listing 9.9 demonstrates:

package junit.cookbook.coffee.web.test;

import org.custommonkey.xmlunit.XMLTestCase;
import org.cyberneko.html.parsers.DOMParser;
import org.w3c.dom.Document;

public class WelcomePageTest extends XMLTestCase {
 private Document welcomePageDom;

 protected void setUp() throws Exception {
 DOMParser nekoParser = new DOMParser(new HTMLConfiguration());

 nekoParser.parse(
 new InputSource(
 new FileInputStream(
 "../CoffeeShopWeb/Web Content/"
 + "index-DOMStandard.html")));

 welcomePageDom = nekoParser.getDocument();
 assertNotNull("Could not load DOM", welcomePageDom);
 }

 // Tests must expect tag names in UPPERCASE
 // and attribute names in lowercase to work
 // with this configuration of NekoHTML
}

It is important to note that if you instantiate the NekoHTML parser this way you
will not be able to set the various DOM parser features or properties. The NekoHTML site
(http://www.apache.org/~andyc/neko/doc/html/) says more about this, so if
you need to know more, we suggest visiting the site. The good news is that
NekoHTML provides you with a sensible default behavior (matching the HTML
DOM standard), and it gives you the control you need to change that behavior
when needed. If you want to use NekoHTML to verify that your web pages comply
with the XHTML standard, then follow these steps:

Listing 9.9 How not to use HTMLConfiguration for NekoHTML

296 CHAPTER 9

Testing and XML
1 Create the DOM Parser with the NekoHTML configuration, as we did in this
recipe.

2 Change the property configurations for names/elems and names/attrs to
match, rather than lower.

3 Write your tests to expect all tag names and attribute names to be lower-
case.

If you configure your parser this way, then your XPath-based assertions will only
pass if the web pages themselves have lowercase tag names and attribute names,
per the XHTML standard.

As we were writing this, Tidy is not supported on Windows, although you can
obtain unsupported binaries and try it out yourself. If you would like to use Tidy
outside Java—after all, it is a useful tool on its own—then you need to explore the
Tidy web site to examine your options. In spite of its unsupported status, there is a
thriving user community around Tidy, so if you have questions, we are confident
you can find the help you need. You may simply have to be a bit more patient.
Also be aware that as of this writing JTidy had not released new code since August
2001, so you may be better off choosing NekoHTML. That said, please consult
NekoHTML’s site for its own limitations and problems, one of the most important
being you cannot use Xerces-J 2.0.1 as your XML parser. At press time, the latest ver-
sion of NekoHTML does not work with this particular version of the popular XML
parser.

NOTE JTidy is alive!—Just before we went to press a reviewer brought to our
attention that there is activity on the JTidy project. For their develop-
ment releases—the first ones in about 18 months—the JTidy folks are
concentrating on adding tests, which is always a good sign. So far, they
have managed to get 63 of their 185 tests to pass. Naturally, we support
their efforts and look forward to improved versions of JTidy in the future!

We hope that XHTML grows in popularity, because it is much easier to test web
pages written in XHTML than web pages written in straight HTML. However, we
are not holding our breath, because what is truly important to users is whether
their browser can render a web page. Those browsers are very forgiving, and as
long as they can process horrendous examples of HTML then we will need solu-
tions such as Tidy or NekoHTML. We suspect that nothing will change until brows-
ers simply stop rendering HTML in favor of XML with cascading stylesheets. Once
again, we are not holding our breath.

297Test an XSL stylesheet in isolation
◆ Related

■ 9.1—Verify the order of elements in a document

■ 9.2—Ignore the order of elements in an XML document

■ 9.3—Ignore certain differences in XML documents

■ NekoHTML (http://www.apache.org/~andyc/neko/doc/html/)

■ JTidy (http://sourceforge.net/projects/jtidy)

■ Chapter 12—Testing Web Components

■ Chapter 13—Testing J2EE Applications

9.6 Test an XSL stylesheet in isolation

◆ Problem

You want to verify an XSL stylesheet outside the context of the application that uses it.

◆ Background

Despite the proliferation of JSPs in the J2EE community, it is not the only way to
build a web application’s presentation layer. One strong alternative is XSL trans-
formation, which takes data in XML format and presents it as HTML to the end
user. We have worked on projects that used this technology and we find that it has
one great benefit over JSPs: XSL transformation does not require an application
server. We like this a great deal, because it means we can test such a presentation layer
entirely outside any kind of J2EE container. All we need are parsers and trans-
formers, such as Xerces and Xalan (http://xml.apache.org/).

If you are working on such a project, you may feel tempted not to test your XSL
stylesheets in isolation. You reason, as we have reasoned in the past, “We will test
the XSL stylesheets when we test the application end to end.” You want to avoid
duplicating efforts, which is a laudable goal, so you decide not to treat your XSL
stylesheets as independent units worthy of their own tests. Or, you may simply not
know how to do it!13 We can tell you from direct, painful, personal experience
that this is an error in judgment. Transforming XML is a nontrivial operation
fraught with errors. If you need convincing, look at the size of Michael Kay’s
excellent reference work XSLT: Programmer’s Reference—it’s slightly more than
1,000 pages. That tells us that XSL transformations are complex enough to break,

13 That was our excuse. Get your own.

298 CHAPTER 9

Testing and XML
and when they do break, you will be glad to have isolated tests that you can exe-
cute to help you determine the cause of the defect. We strongly recommend test-
ing XSL stylesheets in isolation, and this recipe describes two approaches.

◆ Recipe

Testing an XSL stylesheet is about verifying that your templates do what you think
they do. The general approach consists of transforming a representative set of XML
documents and verifying the result, so the techniques we use here are the XML com-
parison techniques used in the rest of this chapter. We hard code simple XML
documents in our tests—usually as Strings—then apply the XSL transformation
and make assertions about the resulting XML document. As with any other XML
document tests, XMLUnit provides two main strategies for verifying content:
XPath-based assertions on parts of the actual document, or comparing an expected
document against the actual document. Fortunately, XMLUnit provides some con-
venience methods to help us do either. To illustrate this technique, we return to
our Coffee Shop application and test the XSL stylesheet that displays the content
of a shopper’s shopcart.

The structure of the “shopcart” document is a simple one: a shopcart contains
items and a subtotal. Each shopcart item describes its own details: the coffee
name, quantity, unit price, and total price. Listing 9.10 shows a sample XML docu-
ment showing three items in the shopcart:

<?xml version="1.0" encoding="UTF-8"?>

<shopcart>
 <item id="762">
 <name>Special Blend</name>
 <quantity>1</quantity>
 <unit-price>$7.25</unit-price>
 <total-price>$7.25</total-price>
 </item>
 <item id="903">
 <name>Huehuetenango</name>
 <quantity>2</quantity>
 <unit-price>$6.50</unit-price>
 <total-price>$13.00</total-price>
 </item>
 <item id="001">
 <name>Colombiano</name>
 <quantity>3</quantity>
 <unit-price>$8.00</unit-price>
 <total-price>$24.00</total-price>

Listing 9.10 A shopcart as an XML document

299Test an XSL stylesheet in isolation
 </item>
 <subtotal>$44.25</subtotal>
</shopcart>

NOTE Effective application design with XSLT—You may notice that the data in this
document is preformatted—the currency values are formatted as such—
and that there is derived data that we could have calculated on demand.
We recommend delivering data to the presentation layer already format-
ted and fully calculated. The presentation layer ought not do anything
other than decide how to present data; calculations are business logic
and formatting currency is application logic. The more we separate respon-
sibilities in this way, the easier it is to write isolated tests.

Now to our first test. We need to verify that our stylesheet correctly renders an
empty shopcart. Before we provide the code for this test, we ought to mention
that these tests verify content, and are not meant to examine the look-and-feel of
the resulting web page. In general, nothing is as effective as visual inspection for
ensuring that a web page looks the way it should.14 Moreover, if our tests depend
too much on the layout of web pages, then they become overly sensitive to purely
cosmetic changes. We are wary of anything that unnecessarily discourages us from
changing code. Listing 9.11 shows the test, which expects to see an HTML table
for the shopcart, no rows representing shopcart items, and a $0.00 subtotal.

package junit.cookbook.coffee.presentation.xsl.test;

import java.io.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.StreamSource;
import org.custommonkey.xmlunit.XMLTestCase;
import org.custommonkey.xmlunit.Transform;
import org.w3c.dom.Document;

public class DisplayShopcartXslTest extends XMLTestCase {
 private String displayShopcartXslFilename =
 "../CoffeeShopWeb/Web Content/WEB-INF/template"
 + "/style/displayShopcart.xsl";

 private Source displayShopcartXsl;

14 Sure, there are automated ways to verify some aspects of a window’s layout, but in our experience, the
return on investment is low compared to spending the time to just look at the page.

Listing 9.11 DisplayShopcartXslTest

300 CHAPTER 9

Testing and XML
 protected void setUp() throws Exception {
 displayShopcartXsl =
 new StreamSource(
 new FileInputStream(displayShopcartXslFilename));
 }

 public void testEmpty() throws Exception {
 String shopcartXmlAsString =
 "<?xml version=\"1.0\" ?>"
 + "<shopcart>"
 + "<subtotal>$0.00</subtotal>"
 + "</shopcart>";

 Document displayShopcartDom =
 doDisplayShopcartTransformation(shopcartXmlAsString);

 assertXpathExists(
 "//table[@name='shopcart']",
 displayShopcartDom);

 assertXpathEvaluatesTo(
 "$0.00",
 "//table[@name='shopcart']//td[@id='subtotal']",
 displayShopcartDom);

 assertXpathNotExists(
 "//tr[@class='shopcartItem']",
 displayShopcartDom);
 }

 public Document doDisplayShopcartTransformation(
 String shopcartXmlAsString)
 throws
 TransformerConfigurationException,
 TransformerException {

 Source shopcartXml =
 new StreamSource(
 new StringReader(shopcartXmlAsString));

 Transform transform =
 new Transform(shopcartXml, displayShopcartXsl);

 return transform.getResultDocument();
 }
}

The method doDisplayShopcartTransformation() performs the transformation
we need to test. It uses the XMLUnit class Transform to simplify applying the trans-
formation and to retrieve the resulting document.

301Test an XSL stylesheet in isolation
The test builds an empty shopcart XML document as a String, applies the
transformation, then makes XPath-based assertions on the resulting document. In
particular, it expects the following things:

■ A table representing the shopcart, which the test finds by examining its name.

■ A table data cell (td) inside the table containing the shopcart subtotal
amount, which the test finds by examining its ID.

■ No table rows (tr) inside the table using the stylesheet class shopcartItem,
which is how the test detects the existence of shopcart items on the page.

NOTE Identifying the interesting parts of a web page—You may have noticed that we
use IDs, names, and other identifying text to help the test find the spe-
cific part of the web page it needs to verify. Labeling the various “interest-
ing” parts of a web page is a core web-testing technique. Without it, tests
would need to verify content by examining the relative positioning of
HTML tags on the page. This kind of physical coupling makes tests sensi-
tive to layout changes, which makes testing more expensive. Instead, we
add a small amount of logical coupling by identifying the parts of the web
page on which the tests need to do their work. At worst, someone chang-
ing the web page needs to make sure that these identifiers continue to
identify the same information on the page. This requires some extra atten-
tion on the part of the web designer, but is more than worth the effort.

Because XSL stylesheets are generally quite long, we prefer not to distract you by
showing the one we use to display the shopcart in its entirety. Refer to solution
A.4, “Test an XSL stylesheet in isolation” to see a more complete suite of tests and
an XSL stylesheet that makes them pass. As we add more tests, we will begin to
repeat some of our XPath-based assertions. We recommend that you be aware of
the duplication and extract custom assertions for the ones you use most often. See
recipe 17.4, “Extract a custom assertion,” for an example of this technique.

◆ Discussion

We mentioned an alternative technique, which involves comparing an expected
web page against the actual web page that the transformer creates. These tests are
easier to write, but can become difficult to maintain, as purely cosmetic changes
to the presentation layer require you to update the expected web pages. The tests
generally consist of extracting data from a web page, building objects that repre-
sent that data, then using assertEquals() to compare the expected data against
the actual data. Because this amounts to parsing a web page, any change in its lay-
out is likely to affect the parsing code. It is essential that you extract this parsing

302 CHAPTER 9

Testing and XML
code to a single place in your class hierarchy, as it is likely to change. Over time, if
you refactor the XPath-based assertions mercilessly, you will find yourself building
a small library of XPath queries that handle HTML elements such as tables, forms,
and paragraphs. If you continue in this direction, you will eventually build
another version of HtmlUnit, so once you recognize that you are heading in that
direction, we recommend you simply start using HtmlUnit. See chapter 13, “Test-
ing J2EE Applications,” for recipes involving this web application-testing package.

In the process of preparing the complete solution for this recipe, we ran into a
nasty problem: our XML document was too long to be all on one line. Because we
built the XML document as a String, we did not pay attention to line breaks, as we
would if we were writing a text file. At some point, some component the test uses
(maybe XMLUnit, maybe the transformer; we did not bother to find out) began to
truncate data. It turns out that we could solve the problem by adding line breaks
to the XML document in our test. Very annoying. The good news is this: it might
have taken hours and hours to narrow down the problem without all these tests.
As it was, it still took over 15 minutes, but at least we found and solved the prob-
lem relatively quickly.

◆ Related

■ Chapter 13—Testing J2EE Applications

■ 17.4—Extract a custom assertion

■ A.4—Test an XSL stylesheet in isolation (complete solution)

9.7 Validate XML documents in your tests

◆ Problem

You want your tests to validate the XML documents your application uses.

◆ Background

Most of you began wanting to validate XML documents after being bitten by recur-
ring defects related to invalid XML input to some part of your system. Some
teams, for example, validate their Struts configuration file (struts-config.xml)
in order to avoid discovering configuration errors at runtime. For some configu-
ration errors, the only recovery step is to fix the configuration error and restart the
application server. During development and testing, restarting the application server
is a time-consuming annoyance, and during production it may not be possible

303Validate XML documents in your tests
until a predetermined time of day, week, or month! If you are in this position
yourself, then you can appreciate the desire to prevent these configuration errors
before they have the opportunity to adversely affect the system.

◆ Recipe

You can either add validation to your JUnit tests or perform validation somewhere
else. As this is a book about JUnit, we will describe the second strategy briefly and
focus on the first. There are two broad classes of XML documents that you may be
using in your application: configuration documents and data transfer documents.
We recommend that you validate configuration documents as part of your build
process. We also recommend that you validate data transfer documents in your
tests, so that you can safely disable validation during production. Let us explain
what we mean by each of these recommendations.

A configuration document is generally a file on disk that your system uses to
configure itself. The Struts web application framework’s struts-config.xml is an
example of a configuration document. You edit this document to change, for
example, the navigation rules of your application, then Struts uses this document
to implement those navigation rules. A configuration document typically changes
outside the context of your system’s runtime environment—that is, the system
does not create configuration documents, but merely uses them. It is wise to vali-
date configuration documents against a Document Type Definition (DTD) or XML
schema, if one is available, as this helps you avoid discovering badly formed or syn-
tactically incorrect configuration files before your system attempts to use them.
For example, if you build and test a Struts-based application using Ant, add a tar-
get such as this to your Ant buildfile:

<target name="validate-configuration-files">
 <xmlvalidate warn="false">
 <fileset dir="${webinf}" includes="struts-config.xml,web.xml"/>
 <dtd publicId="-//Apache Software Foundation//
 ➾ DTD Struts Configuration 1.1//EN"

 location="dtd/struts-config_1_1.dtd" />
 <dtd publicId="-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 location="dtd/web-app_2_3.dtd" />
 </xmlvalidate>
</target>

This target validates both the Struts configuration file and the application’s web
deployment descriptor against their respective DTDs. We recommend having your
“test” target depend on this one, to ensure that whenever you execute your tests,
you also validate these important configuration files. If the configuration files are

304 CHAPTER 9

Testing and XML
incorrect, then your test run may mean nothing, as it may attempt to test an incor-
rectly configured system. Just because you have a testing framework does not
mean that that is the only place to do testing. Save yourself some irritation and val-
idate configuration files before you run your tests.

A data transfer document is a way to transfer data from one tier of your applica-
tion to another. We commonly use data transfer documents to build an XSLT-
based presentation layer. The model executes business logic and returns Java
objects to the controller, which then formats that data as an XML document and
submits it to the presentation layer. The presentation layer transforms the docu-
ment into a web page to display to the end user. The system generates data trans-
fer documents at runtime, some of which share a specific, predictable structure. If
you find your project having a problem with garbage-in, garbage-out in this part
of your application, then we recommend that you add tests that validate that each
data transfer document conforms to the structure you expect. You can use either
DTDs or XML schemas for this purpose, although there is always the risk of overus-
ing XML schemas. See the Discussion section for details. To validate data transfer
documents, locate the XML parsers in your system and make it possible to config-
ure them to validate incoming documents. This generally requires some refactor-
ing on your part.

For example, if you use XSLT as your presentation engine, then some object
somewhere is responsible for performing the transformation—it is either your
Controller or some object that it uses. In the Coffee Shop application, we can con-
figure the CoffeeShopController servlet to perform XSL transformations. We need
the ability to enable validation on this XSL transformation service so that, when we
execute our tests, we can validate the incoming XML document against its DTD or
declared XML schema. This can be as simple as adding a method named setVali-
dateIncomingDocument() which, when invoked, causes the underlying service (in
this case, our XSL transformation service) to validate the incoming XML docu-
ment before passing it through the XSL transformer. Implementing this feature
involves nothing more complex than creating an XML parser, enabling validation,
and parsing a document, but for an example implementation, see solution A.5,
“Validate XML documents in your tests.” The key part, from our perspective, is
enabling this feature in our tests. To do that, we simply make it part of our test fix-
ture. (See recipe 3.4, “Factor out a test fixture,” and recipe 3.5, “Factor out a test
fixture hierarchy,” for details on managing test fixtures.) Here is the test fixture
method15 that performs an XSL translation with document validation enabled:

15 A method can be part of a fixture, just as a variable is part of a fixture. We may eventually refactor the
fixture and move such a method into a production class, but sometimes it really is just a tool for the test.

305Validate XML documents in your tests
public Document doDisplayShopcartTransformation(
 String shopcartXmlAsString)
 throws Exception {

 TransformXmlService service =
 new TransformXmlService(displayShopcartXslReader);

 service.setSourceDocumentValidationEnabled(true);

 DOMResult documentResult = new DOMResult();

 service.transform(
 new StreamSource(
 new StringReader(shopcartXmlAsString)),
 documentResult);

 assertTrue(
 "Incoming XML document failed validation: "
 + service.getValidationProblems(),
 service.isSourceDocumentValid());

 return (Document) documentResult.getNode();
}

We used this technique in our tests for presenting shopcart contents. The data
transfer document in our tests did not specify the product IDs for the products in
the shopcart, which would cause problems for the end user. When we executed
the tests with validation enabled, this is the error message we received:

junit.framework.AssertionFailedError: Incoming XML document
failed validation: [org.xml.sax.SAXParseException: Attribute
"id" is required and must be specified for element type "item".]

This message is certainly more helpful than finding out about the problem at
runtime, where the symptom is less obvious: the “Buy!” button on the shopcart
page (which uses the product ID in its HTML element name) would not work
because there is no way to identify the brand of coffee that the shopper wants to
buy. When we added an ID to the item tag in the data transfer document, the tests
all passed. This recipe provides a way to make problems obvious, which is always a
good idea.

NOTE Make problems obvious—Rather than infer the cause of a defect from a sec-
ondary symptom, write your tests in such a way that the problem becomes
obvious. Without validating the shopcart data transfer document, all we
would know is that one of our end-to-end tests fails because the “Buy!”
button does not work. There are a few reasons this could fail: the XSL
stylesheet could be wrong, the “Add Coffee to Shopcart” action could be

306 CHAPTER 9

Testing and XML
wrong, there could be data corruption, or there might be no coffee
matching that particular product ID. By validating the data transfer docu-
ment in the tests, the cause of the defect becomes obvious and, most
importantly, inexpensive to fix.

Now whenever we execute our tests, we add another layer of problem isolation. If
the XML document we pass as input to our test is invalid, then document valida-
tion fails before the object under test tries to process it, making it clear whether
the problem is bad input or an incorrectly behaving XML-processing component.

◆ Discussion

Bear in mind that validating XML is expensive, particularly if doing so forces you
to parse the same XML document more than once. If your system is passing data
transfer documents to other components in your system, then you can feel safe
turning validation off in production. After all, your tests will catch the vast major-
ity of problems that you might have with those documents (at least the problems
you know about). If, instead, you are receiving data transfer documents from a
component outside your control—either from another group in your organization
or someone outside your organization—then we recommend leaving validation
enabled, even in production. If nothing else, it quickly settles the question of who
is responsible for a problem: you or them.16

There is one trap to avoid when validating data transfer documents against
XML schemas. The power of the XML schema is its expressiveness: it can validate
structure and data, leveraging the power of regular expressions. As in any similar
situation, you need to be ever aware of the power you have available and be care-
ful not to overstep your bounds. In particular, it becomes tempting to validate
every little thing you can in your XML schemas. For example, you may be tempted
to verify that the shipping charge in a Purchase Order document is less than $10
when the order contains over $300 worth of goods. After all, XML schemas allow
you to do this, so why not? The problem is simple: that is a business rule, and a
data transfer document—a simple data structure that your system passes between
layers—is the wrong place to validate business rules. Why? Because changes in
business rules ought not to affect the system’s ability to generate XML documents
from a PurchaseOrder object! This is a clear sign that the design needs work.

16 We are not concerned with assessing blame, but it is important to assess responsibility, because someone
has to fix it. Better it be the programmer whose component is actually broken.

307Validate XML documents in your tests
Validate business rules by testing your business rules; stick to just validating struc-
ture and formatting in your data transfer document tests.17

◆ Related

■ 3.4—Factor out a test fixture

■ 3.5—Factor out a test fixture hierarchy

■ A.5—Validate XML documents in your tests

17 Of course, if you process business rules using an XML-based engine then you may perform XML schema
validation in your tests. It is better to separate the tests rather than have one try to do two things.

Testing and JDBC
This chapter covers
■ Which parts of your JDBC client code not to test
■ Testing your mapping between domain objects and ResultSets
■ Verifying SQL commands with the Gold Master technique
■ Using database meta data to write simpler tests
■ Managing test data in different databases and using DbUnit
■ Testing legacy JDBC code
308

309Testing and JDBC
There are those who would say that the database is the core of any “real” Java
application. Although applications need data, many people have designed appli-
cations around the database, as though it were the center of the universe. This
leads to high coupling between the application and its data sources and, as we
have been saying throughout, high coupling and duplication are primary sources
of frustration during Programmer Testing. In this chapter we present strategies
and techniques for testing data components as well as offering ways to refactor
your application towards a more testable design.

As of this writing, one of the greatest stumbling blocks in testing Java database
code—that is, JDBC clients—is that there appears not to be any mature, standalone
SQL parsers for Java. When we looked for one, there were two promising candi-
dates: HSQLDB and Mimer. HSQLDB (hsqldb.sourceforge.net) is an all-Java database
platform, so we thought it would be possible to use its parser directly. Although we
could have looked at the source to see how HSQLDB parsed SQL statements before
execution, the parser is so tightly coupled with the database and its SQL query exe-
cuter, that (as is) it is impossible to parse an SQL statement by itself. This is not to
disparage HSQLDB or its authors—perhaps they had no requirement for a standal-
one parser. If we could work with them to extract it, that would be nice.

Upright Database Technology provides an online SQL query validator based on
its Mimer (www.mimer.com) database engine; but at press time only offered its
validation feature as a web service, rather than in embedded mode, which is really
what we want. Several more hours on Google proved fruitless, so we are left to
conclude that as of this writing there is no standalone SQL parser that you can use
to verify your SQL statements. We present alternative techniques for handling this
issue until a suitable SQL parser/validator comes along.

As a community, test-driven programmers have written a great deal about test-
ing against the database. It is often the first complex bit of testing that a programmer
attempts. You can find some excellent guiding principles in Richard Dallaway’s
article “Unit Testing Database Code.”1 Among the guidelines you will find there is
“you need four databases,” which we include here to give you a taste of the article:

1 The production database. Live data. No testing on this database.

2 Your local development database, which is where most of the testing is
carried out.

3 A populated development database, possibly shared by all developers so
you can run your application and see it work with realistic amounts of

1 www.dallaway.com/acad/dbunit.html. Excerpted with permission.

310 CHAPTER 10

Testing and JDBC
data, rather than the handful of records you have in your test database.
You may not strictly need this, but it’s reassuring to see your app work
with lots of data (a copy of the production database’s data).

4 A deployment database, or integration database, where the tests are run
prior to deployment to make sure any local database changes have been
applied. If you’re working alone, you may be able to live without this one,
but you’ll have to be sure any database structure or stored procedure
changes have been made to the production database before you go live
with your code.

The recipes in this chapter fall into two essential categories: how to write Object
Tests for both your data components and their clients, and how to test your data
access layer as a unit. The recipes in the former category will be most helpful for
programmers who are either building data components or are able (and willing)
to refactor existing data components to make them easier to test. The recipes in
the latter category are for those who have inherited data components that they can-
not change or are at a point in their project where refactoring is not an option.
(Even Martin Fowler himself described situations in which one ought not to refactor
in his Refactoring: Improving the Design of Existing Code.)

We have some early advice for the reader. Many programmers new to JUnit
choose their data access code as the first bit of complex code to try to test. They
begin writing tests for every JDBC call they make: every create, retrieve, update, and
delete. Before too long they build up a collection of tests replete with both dupli-
cation and mutual dependence. For each table, they often follow this pattern:

1 First put a row into the database “through the back door.”2

2 Verify that the data access object can retrieve the row.

3 Create a row through the data access object.

4 Verify through the back door that the row is there.

All this in a single test! Doing this for every table is repetitive; and the second part
of the test (which ought to be its own test!) depends on the first part passing.
Please notice that these tests verify your vendor’s implementation of its JDBC
provider as much as—if not more than—they verify your data access code. Con-
centrate on testing the code you have written. Don’t test the platform; conserve your
testing energy to apply to your own code.

2 The “back door” is plain JDBC itself. The test first creates data using a straight JDBC method invocation to
avoid using the data access object to test itself. A noble effort, but more trouble than it is worth.

311Testing and JDBC
To illustrate the point, let us test a DELETE statement. In our Coffee Shop appli-
cation, we store data representing discounts and promotional offers in a database
table called catalog.discount. On an ongoing basis, the marketing department
gives the go-ahead for new discounts and promotional offers, usually for a limited
time. Once an offer has expired, we want to be able to remove it from the cata-
log.discount table. We also want to be able to cancel any kind of offer on
demand, in case something goes wrong—for example, we want to avoid acciden-
tally offering coffee beans at $1 per kilogram. We need a simple utility that deletes
all discounts that expired by some date that the user chooses. Eventually we want
to write a test for that utility’s data access code, including the following “happy
path” test. This test assumes an empty catalog.discount table, removes all dis-
counts that have expired by January 1, 2003, and then searches for all discounts
that expire by January 1, 2003, expecting there to be none.

public class DeleteDiscountsTest extends CoffeeShopDatabaseFixture {
 // other code omitted
 public void testDiscountsExpiredThirtyDaysAgo() throws Exception {
 // FIXTURE: getDataSource() returns our test data source
 // FIXTURE: Table cleanup occurs in setUp() and tearDown()
 DiscountStore discountStore =
 new DiscountStore(getDataSource());

 Date expiryDate = DateUtil.makeDate(2003, 1, 1);

 discountStore.removeExpiredDiscountAsOf(expiryDate);

 Collection expiresByDate =
 discountStore.findExpiresNoLaterThan(expiryDate);

 assertTrue(expiresByDate.isEmpty());
 }
}

We have decided that DiscountStore should use JDBC to talk to a database, so this
class contains the following general categories of behavior:

■ DiscountStore translates Value Object properties to PreparedStatement
parameters to use in a PreparedStatement that executes the corresponding
SQL command.

■ DiscountStore executes SQL commands using the JDBC API.

■ For SELECT statements (queries), DiscountStore translates ResultSet col-
umns into Value Object properties, so as to return Value Objects (business
objects) to the business logic layer.

312 CHAPTER 10

Testing and JDBC
A test such as the one in our DeleteDiscountTest example has one troubling
dependency: it relies on data in the database to determine the correctness of the
“delete discount” feature. This dependency couples our tests to a working, live
database, which not only slows the tests down but also makes them more brittle.
(What happens when someone accidentally adds data to the test database?) More
to the point, in order to verify any part of this class, we are forced to execute an SQL
command, which is the one part of the class’s behavior over which we have no
control: we are unwittingly testing the JDBC driver, which is code we did not write.
We ought to treat the JDBC API and our database vendor’s JDBC provider as “trusted
libraries,” meaning that we ought not to test them—or at a minimum, we ought to
test them at most once to verify that they work in general, and then worry about
testing our code instead.

NOTE Do you trust the library?—If you do not trust your JDBC provider implemen-
tation, then either use one you do trust or write Learning Tests that verify
the JDBC provider’s behavior against your expectations. This is especially
useful if you are frequently upgrading the JDBC provider or you need to
support multiple databases with the same JDBC code.

Many veterans of JUnit are quick to suggest using a mock JDBC provider to decou-
ple you from the production JDBC provider, but we recommend an alternative
approach: refactor your dependency on the JDBC API to a minimum, and thus
reduce the number of tests that require a live database. We love mock objects, but
there is always the risk that the mock JDBC provider differs from your production
JDBC provider in some important way. If the JDBC provider you use has a defect,
you could complain about it; but in the end, you have to live with that defect,
upgrade, or switch vendors. The fact that the mock JDBC provider works correctly
does not help you in production. It is certainly possible to manage these risks, but
we prefer to avoid them. We do this by testing the above behaviors separately,
minimizing the number of tests that depend on having a live database available.

The first kind of test verifies that we create PreparedStatements correctly from a
Discount Value Object. We need one of these tests per PreparedStatement. Proceed
with this task until fear turns to boredom. We tried to test this behavior directly by
creating the PreparedStatement for the DELETE statement we wanted to test, but
quickly ran into a roadblock in the JDBC API. This test uses the hypothetical class
DiscountStoreJdbcImpl, a JDBC-specific discount store. We are just trying out a
design idea for now:

public class DiscountStorePreparedStatementTest
 extends CoffeeShopDatabaseFixture {

313Testing and JDBC
 public void testCreate_RemoveExpiredDiscountAsOf()
 throws Exception {

 DiscountStoreJdbcImpl discountStoreJdbcImpl =
 new DiscountStoreJdbcImpl(getDataSource());

 PreparedStatement removeExpiredDiscountAsOf =
 discountStore.prepareJdbcStatement(
 "removeExpiredDiscountAsOf",
 expiryDate);

 // How do we check the PreparedStatement?
 }
}

Unfortunately for us, the people who designed the JDBC API provided no way to
ask a PreparedStatement about its parameters. It is a very secretive object that way.3

Although a MockPreparedStatement would provide us with the extra information
we need, we prefer to try another approach. Rather than actually creating the Pre-
paredStatement, we verify the parameters we plan to pass to it. Rather than testing
a JDBC implementation of DiscountStore, we test a JDBC query builder for the Dis-
countStore. We write the following test for a new class we plan to introduce:

public void testParametersForRemoveExpiredDiscountAsOf()
 throws Exception {

 Date expiryDate = DateUtil.makeDate(2003, 1, 1);
 List domainParameters = Collections.singletonList(expiryDate);

 DiscountStoreJdbcQueryBuilder discountStoreJdbcQueryBuilder =
 new DiscountStoreJdbcQueryBuilder();

 List removeExpiredDiscountAsOfParameters =
 discountStoreJdbcQueryBuilder
 .createPreparedStatementParameters(
 "removeExpiredDiscountAsOf",
 domainParameters);

 List expectedParameters =
 Collections.singletonList(
 JdbcUtil.makeTimestamp(expiryDate));

 assertEquals(
 expectedParameters,
 removeExpiredDiscountAsOfParameters);
}

3 George Latkiewicz informs us that starting with a recent version of JDBC (bundled with JDK 1.4), one
can ask a PreparedStatement for parameter type information through its meta data, but that is not
enough for our purposes.

314 CHAPTER 10

Testing and JDBC
The new class is DiscountStoreJdbcQueryBuilder, which knows how to create the
PreparedStatement parameters for each feature that the DiscountStore supports,
mapping domain-level parameters, which are Java-based business objects, to SQL-
level parameters, which match the various SQL data types. We have decided to
name the feature we want to test removeExpiredDiscountAsOf, so the Discount-
Store can ask its query builder for the PreparedStatement parameters that go with
the removeExpiredDiscountAsOf feature (or as we are implementing the feature in
JDBC, its SQL command).

Notice that although this is a DiscountStore JDBC query builder, there is no
actual dependency on the JDBC API. This test does not use a database fixture and
there is no need for PreparedStatements and the like. The production code that
passes this test is quite simple:

public List createPreparedStatementParameters(
 String statementName,
 List domainParameters) {

 Date expiryDate = (Date) domainParameters.get(0);
 return Collections.singletonList(
 JdbcUtil.makeTimestamp(expiryDate));
}

You may not feel as though you have made much progress writing this simple test,
but we did convert a domain object (java.util.Date) into a database object
(java.sql.Timestamp) and that is what needed to happen. We can cross number
one off our list, although you should write tests for the error case—domainParame-

ters might not have the expected Date object in it—if you are concerned that
someone might pass bad data into this method.

The second behavior is the correct execution of the query: that is, creating the cor-
rect DiscountStore prepared statement and executing the statement. Because this is
JDBC-specific behavior, we now rename the class to DiscountStoreJdbcImpl and
extract the interface DiscountStore from it [Refactoring, 341]. At the same time, we
change our DeleteDiscountsTest to use the JDBC implementation of DiscountStore.

public void testDiscountsExpiredThirtyDaysAgo() throws Exception {
 DiscountStore discountStore =
 new DiscountStoreJdbcImpl(getDataSource());

 Date expiryDate = DateUtil.makeDate(2003, 1, 1);

 discountStore.removeExpiredDiscountAsOf(expiryDate);

 assertTrue(
 discountStore.findExpiresNoLaterThan(expiryDate).isEmpty());
}

315Testing and JDBC
Nothing else changes, but the test still passes. We change the implementation of
DiscountStoreJdbcImpl.removeExpiredDiscountAsOf() so that it asks the query
builder for the prepared statement parameters and sets them in a loop:

public void removeExpiredDiscountAsOf(Date expiryDate) {
 // Define variables
 try {
 connection = getDataSource().getConnection();

 deleteStatement =
 connection.prepareStatement(
 "delete from "
 + "catalog.discount "
 + "where ("
 + "catalog.discount.toDate <= ?"
 + ")");

 List parameters =
 queryBuilder.createPreparedStatementParameters(
 "removeExpiredDiscountAsOf",
 Collections.singletonList(expiryDate));

 deleteStatement.clearParameters();

 int columnIndex = 1;
 for (Iterator i = parameters.iterator();
 i.hasNext();
 columnIndex++) {

 Object eachParameter = (Object) i.next();
 deleteStatement.setObject(columnIndex, eachParameter);
 }

 deleteStatement.executeUpdate();
 }
 // Handle exceptions and clean up resources
}

We can extract the code printed in bold into a method that executes the prepared
statement. The resulting method depends not one bit on a domain object. It is pure
JDBC client code:

private void executeDeleteStatement(
 PreparedStatement deleteStatement, List parameters)
 throws SQLException {

 deleteStatement.clearParameters();

 int columnIndex = 1;
 for (Iterator i = parameters.iterator();
 i.hasNext();
 columnIndex++) {

316 CHAPTER 10

Testing and JDBC
 Object eachParameter = (Object) i.next();
 deleteStatement.setObject(columnIndex, eachParameter);
 }

 deleteStatement.executeUpdate();
}

We can move this into a new class, which we call a JDBC query executer, and never
have to test this behavior again! Let that sink in a little, because it is surprising.

We can take this a few steps further. Here is an outline of what we did:

1 Notice that the only discount-specific code left in removeExpiredDiscount-
AsOf() is the string representing the DELETE query.

2 After the previous step, we were able to move all the exception-handling
code into executeDeleteStatement().

3 After that we noticed poor alignment of responsibilities: DiscountStore-
JdbcImpl provided the SQL query string, but the DiscountStoreJdbc-
QueryBuilder processed the parameters. That did not seem right, so we
moved the SQL query string into the query builder.

The code for removeExpiredDiscountAsOf() as of now looks like this.

public void removeExpiredDiscountAsOf(Date expiryDate) {
 String deleteExpiredDiscountsSql =
 queryBuilder.getSqlString("removeExpiredDiscountAsOf");

 List parameters =
 queryBuilder.createPreparedStatementParameters(
 "removeExpiredDiscountAsOf",
 Collections.singletonList(expiryDate));

 executeDeleteStatement(deleteExpiredDiscountsSql, parameters);
}

Pretty short, don’t you think? But now there is duplication: the literal string
"removeExpiredDiscountAsOf" appears twice. To remove the duplication, the query
builder needs to provide a single method, returning the query string and the pre-
pared statement parameters together in a single object. No problem: we intro-
duce the class PreparedStatementData to store both those pieces of information.
We also introduce the class JdbcQueryExecuter to execute queries and change
DiscountStoreJdbcImpl to use it:

public class DiscountStoreJdbcImpl implements DiscountStore {
 // Some code omitted for brevity

 private DiscountStoreJdbcQueryBuilder queryBuilder =
 new DiscountStoreJdbcQueryBuilder();

317Test making domain objects
from a ResultSet
 private JdbcQueryExecuter queryExecuter;

 public DiscountStoreJdbcImpl(DataSource dataSource) {
 queryExecuter = new JdbcQueryExecuter(dataSource);
 }

 public void removeExpiredDiscountAsOf(Date expiryDate) {
 PreparedStatementData removeExpiredDiscountAsOfStatementData =
 queryBuilder.getPreparedStatementData(
 "removeExpiredDiscountAsOf",
 Collections.singletonList(expiryDate));

 queryExecuter.executeDeleteStatement(
 removeExpiredDiscountAsOfStatementData);
 }
}

Look at how little code is left in the actual DiscountStore! Building the SQL query
string and marshalling the parameters—converting them from domain parame-
ters to SQL parameters—is all done in the query builder, which you can test without
using a database. Executing the delete statement is done in the query executer, for
which you only need a handful of tests that use a database. That is all. You might have
100 different DELETE statements, but there is only one method that actually uses the
JDBC API to execute those statements. This means that you may have a few hun-
dred tests running in memory and a handful of tests—less than ten—running
against the database. There is a savings both in complexity and in the time it takes
to execute your tests. You win twice!

No more testing the JDBC provider. Test your code.

10.1 Test making domain objects from a ResultSet

◆ Problem

You want to verify that you are correctly making domain objects from the JDBC
ResultSet objects returned by your SELECT queries.

◆ Background

There are really only two things that can go wrong when executing a query with
JDBC. You might issue the wrong SQL command. You might unmarshal data into
objects incorrectly. The straightforward way to test this is to do it all in one go:
prime the database with data, create the SELECT statement, execute it, and then
verify that you SELECTed what you expected. (That rhymes; how nice!) While this
is straightforward, it does not scale very well.

318 CHAPTER 10

Testing and JDBC
After a while, every SELECT test looks the same: the differences are in the query
string and whether you invoke getString(), getInt(), getBlob()or ... you get the
picture. There must be a way to remove all that duplication. Surely there is,
because we described how to do exactly that in the introduction to this chapter!
Once you have applied those techniques and only one part of your data access
layer executes the SQL command, you are left with the responsibility of testing just
those two things mentioned previously: the command and the unmarshalling
logic. This recipe handles the latter; see recipe 10.2, “Verify your SQL commands,”
for details on testing the former.

◆ Recipe

We need to test turning a ResultSet into the Set of domain objects that the
ResultSet represents. A direct approach is to populate a ResultSet object with
known data, invoke the “make domain objects from this” method, and then com-
pare the results with the expected values. Unfortunately for us, JDBC does not pro-
vide a standalone implementation of ResultSet to which we can start adding data.
This is one situation in which mock objects are simple and work well. Fortunately
for us, the Mock Objects project (www.mockobjects.com) provides a couple of
easy-to-use ResultSet implementations: MockMultiRowResultSet for result sets with
multiple rows of data and MockSingleRowResultSet for result sets with a single
row of data. The latter provides a simpler interface and can perform better than
the former.

NOTE The Mock Objects project—This project began as an embodiment of the
ideas that Tim Mackinnon, Steve Freeman, and Philip Craig described in
their paper “Endo-Testing: Unit Testing with Mock Objects.”4 It contains
mock implementations of various J2SE and J2EE library classes and inter-
faces. We do not rely heavily on this package—we mostly use EasyMock to
implement mock objects—but the Mock Objects project does provide a
useful collection of prefabricated mock objects. We recommend using
their objects while you “get the feel” of mock objects (or testing objects in
general) before building your own. It is important to experience the
effect that mock objects have on the style of the tests that use them. As
the authors themselves point out, Mock Objects (their implementation
of the concept) help you focus on the interactions between objects, with-
out worrying about every little implementation detail for each test.

4 www.connextra.com/aboutUs/mockobjects.pdf

319Test making domain objects
from a ResultSet

d
 a
Now that we have a result set whose data we can hard code, we can write our test
for turning a ResultSet object into a domain object. We will verify that we can cre-
ate a Discount object from the catalog.discount table. Listing 10.1 shows a good
first test.

public void testDiscountJoinWithDiscountDefinition()
 throws Exception {

 PercentageOffSubtotalDiscountDefintion
 expectedDiscountDefinition =
 new PercentageOffSubtotalDiscountDefintion();
 expectedDiscountDefinition.percentageOffSubtotal = 25;

 Date expectedFromDate = DateUtil.makeDate(1974, 5, 4);
 Date expectedToDate = DateUtil.makeDate(2000, 5, 5);

 Discount expectedDiscount =
 new Discount(
 expectedFromDate,
 expectedToDate,
 expectedDiscountDefinition);

 DiscountStoreJdbcMapper mapper = new DiscountStoreJdbcMapper();

 Map rowData = new HashMap();

 rowData.put(
 "typeName",
 PercentageOffSubtotalDiscountDefintion.class.getName());

 rowData.put("fromDate", JdbcUtil.makeTimestamp(1974, 5, 4));
 rowData.put("toDate", JdbcUtil.makeTimestamp(2000, 5, 5));
 rowData.put("percentageOffSubtotal", new Integer(25));
 rowData.put("suspended", null);

 MockSingleRowResultSet resultSet = new MockSingleRowResultSet();
 resultSet.addExpectedNamedValues(rowData);

 assertTrue(resultSet.next());

 Discount actualDiscount = mapper.makeDiscount(resultSet);
 assertEquals(expectedDiscount, actualDiscount);
}

Ignoring the additional complexity of using mock objects, the test follows the
usual pattern: we create the Discount object we expect, create a ResultSet with
the JDBC data we want to process, and then check the mapper’s behavior. We
used the MockSingleRowResultSet because our test only used a single row of data.
You can use the corresponding MockMultiRowResultSet if your test needs to oper-

Listing 10.1 A test for unmarshalling ResultSet data

Store the name/value
pairs for a single row

Stuff the
hard code
data into
ResultSet

Point the ResultSet at the first row

320 CHAPTER 10

Testing and JDBC
ate on multiple rows of data. We present the DiscountStoreJdbcMapper that passes
this test in listing 10.2.5

package junit.cookbook.coffee.jdbc;

import java.sql.ResultSet;
import java.sql.SQLException;
import junit.cookbook.coffee.data.*;
import com.diasparsoftware.jdbc.JdbcMapper;

public class DiscountStoreJdbcMapper extends JdbcMapper {
 public Discount makeDiscount(ResultSet discountResultSet)
 throws SQLException {

 Discount discount = new Discount();

 discount.fromDate = getDate(discountResultSet, "fromDate");
 discount.toDate = getDate(discountResultSet, "toDate");

 discount.discountDefinition =
 makeDiscountDefinition(discountResultSet);

 return discount;
 }

 public DiscountDefinition makeDiscountDefinition(
 ResultSet resultSet)
 throws SQLException {

 String discountClassName = resultSet.getString("typeName");
 if (PercentageOffSubtotalDiscountDefintion
 .class.getName().equals(discountClassName)) {

 PercentageOffSubtotalDiscountDefintion
 discountDefinition =
 new PercentageOffSubtotalDiscountDefintion();
 discountDefinition.percentageOffSubtotal =
 resultSet.getInt("percentageOffSubtotal");
 return discountDefinition;
 }
 else
 throw new DataMakesNoSenseException(
 "Bad discount definition type name: '"
 + discountClassName + "'");
 }
}

Listing 10.2 DiscountStoreJdbcMapper

5 The method getDate() appearing in this listing is defined in the superclass JdbcMapper. It does what
you would expect: retrieves a Date value for the specified column.

Part of
JdbcMapper

DataMakesNoSenseException is a
new custom exception we created

321Test making domain objects
from a ResultSet
◆ Discussion

We ought to warn you that when using this technique it is crucial that the data in
your hard-coded result set match the data you would retrieve from the production
database. Be aware of trouble spots common to database programming in general
(and not just JDBC), such as time zone differences, number formats and strings
that are too big for a column. For example, some databases silently truncate over-
sized strings, while others throw an exception to indicate that the string is too
long. It is important both to understand the behavior of your live database and to
identify any differences between the mock JDBC objects and your vendor’s JDBC
implementation. You may need to create custom mock objects to achieve a more
faithful simulation of your vendor’s JDBC provider’s idiosyncrasies.

Also, this recipe shows us that high coupling means less reuse. The JDBC
ResultSet is an excellent example of an object with too many responsibilities. It
does at least three important things: represents a single table row, provides an
iterator over a collection of table rows, and interacts with the underlying database
to fetch those rows. This is too much work for a single object. Often when we write
Object Tests we want to use just one of the features such an object provides with-
out its other responsibilities “getting in the way.” A class with high internal cou-
pling thwarts attempts at reusing the “smaller object” that we feel is trying to get
out of the “bigger object.” The task this recipe sets out to perform is a fine exam-
ple of this struggle.

We only want the data; we do not want to talk to a database to get it. If JDBC
were to provide a separate class representing the rows in a ResultSet then we
could use the production quality implementation in place of a mock object in our
tests. We would be able to test the way we map SQL data types onto Java data types
and relational column names onto Value Object properties. Unfortunately there
is no such separation of data from its source, forcing us to use a mock ResultSet
object. We can appreciate the value of this mock object by looking at the size of
the interface it implements. To write a custom mock object for the ResultSet
interface requires a considerable amount of work, even if we only need a small
part of that interface! The MockResultSet implementations represent the data
that a live ResultSet would fetch from a database without actually doing so. If
JDBC had only separated those responsibilities in the first place, we would not
need to use a MockResultSet at all; and all things being equal, we prefer to test
with production code, rather than simulators.

◆ Related

■ 10.2—Verify your SQL commands

322 CHAPTER 10

Testing and JDBC
10.2 Verify your SQL commands

◆ Problem

You would like to verify your SQL commands without necessarily involving the
database each time.

◆ Background

The three ingredients6 for correct JDBC code are:

1 Correct SQL commands

2 Correctly converting domain objects to PreparedStatement parameters

3 Correctly converting a ResultSet to domain objects

We have shown that the rest of the interaction with the JDBC API can be isolated
to a single place, tested once, and then trusted forever. Verifying your SQL com-
mands with JUnit is strange. When we try to write such a test, it seems to reduce to
this assertion:

assertEquals(
 expectedSqlString,
 queryBuilder.getSqlString(statementName);

This is equivalent—isomorphic, really—to putting a key-value pair into a Map, and
then verifying that you can retrieve the value with the key. It only tests the key’s
hashCode() method and Java’s implementation of HashMap or TreeMap, which has
nothing to do with JDBC and SQL. Is there a point to using JUnit to verify SQL
commands? We do not think so.

◆ Recipe

We recommend not writing JUnit tests to verify your SQL commands against a
database. This is one case where JUnit is not the best tool for the job. Instead we
recommend simply executing your SQL commands using your database’s command-
line tool, such as Mimer’s BatchSQL.

Yes, you read that correctly: we recommend manual tests in this case. Have we
gone mad?

6 There are more issues to handle, including connection pooling and transactions, but those are more
infrastructure issues and should only be coded once in an application. Here we are referring to JDBC
code you would need to write throughout an application, handling various tables, queries and updates.

323Verify your SQL commands
No, although you may disagree with that assessment. Generally speaking, the
best way to verify SQL commands is to try them out a few times, become comfort-
able with them, and then treat them as “correct.” You may then write tests that ver-
ify that the SQL commands still match the “last known correct version.” In short,
apply the Golden Master technique.

NOTE Gold(en) Master—Also known as “golden results,” a Golden Master—or
Gold Master, depending on whom you ask—is a test result that you verify
once by hand, and then use as the baseline for future test runs. Future
executions of that test pass if the results match the Gold Master output.
Do not confuse this technique with the well-known anti-pattern Guru
Checks Output. We are talking about checking output by hand once then
using that output to implement a self-verifying test. With Guru Checks
Output, you need the guru to check the output of each test run, and
when the guru is not around, no testing can happen. With Gold Master,
we capture the guru’s knowledge once and keep it in the test for all time.

To illustrate the point, here is an example from the Coffee Shop application.
While shoppers are purchasing coffee from the online store, a product manager
somewhere is updating the catalog. She needs to add products to the database
when we decide to launch a new type of coffee bean. Somewhere in the system
there is a line of code that creates the corresponding SQL statement to insert a
new coffee bean product into the appropriate table. Let us treat this as a legacy
coding scenario, meaning that the code already exists and “is correct”—at least as
far as our basic observations of the system are concerned. We want to add a test to
help stop us from changing the SQL statement without seeing the effects immedi-
ately. In a legacy code situation this is the first line of defense.

First we locate the method that performs the SQL update:

public void addProduct(Product toAdd) {
 Connection connection = null;
 PreparedStatement insertStatement = null;

 try {
 connection = dataSource.getConnection();
 insertStatement =
 connection.prepareStatement(
 "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) values "
 + "(?, ?, ?)");

 insertStatement.clearParameters();
 insertStatement.setString(1, toAdd.productId);
 insertStatement.setString(2, toAdd.coffeeName);
 insertStatement.setInt(3, toAdd.unitPrice.inCents());

324 CHAPTER 10

Testing and JDBC
 if (insertStatement.executeUpdate() != 1)
 throw new DataMakesNoSenseException(
 "Inserted more than 1 row into catalog.beans!");
 }
 catch (SQLException e) {
 throw new DataStoreException(e);
 }
 finally {
 try {
 if (insertStatement != null)
 insertStatement.close();

 if (connection != null)
 connection.close();
 }
 catch (SQLException ignored) {
 }
 }
}

If we are able to refactor this method, we can extract the SQL command into a
method similar to the following:

public String getAddProductSqlString() {
 return "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) values "
 + "(?, ?, ?)";
}

Note that we generally favor extracting these strings to methods rather than to
symbolic constants, because it is easier to refactor the method in something more
general purpose, such as a key-based lookup method. This is just a special case of
interface/implementation separation...but we digress.7

Now that we have extracted out the SQL string, we can write the following test:

public void testAddProductSqlString() throws Exception {
 CatalogStoreJdbcImpl store = new CatalogStoreJdbcImpl(null);
 assertEquals("", store.getAddProductSqlString());
}

Notice that we expect an empty string here, which is obviously not the string we
really expect the catalog store to execute against the database. We write this test
because we are unsure about the actual SQL command we are going to get, and
yet the JUnit API requires that we expect something. Because we have decided to
treat the actual SQL command as correct, we need to let the store tell us what that

7 It is also a small amount of Smalltalk influence, which we think is generally a Good Thing.

325Verify your SQL commands
string is, rather than guess at it. It is much easier this way. We execute the test and
receive this failure message:

expected:<> but was:<insert into catalog.beans

➾ (productId, coffeeName, unitPrice) values (?, ?, ?)>

Now we know the SQL command to expect, so we place it in the test for future ref-
erence, using trusty old copy-and-paste:

public void testAddProductSqlString() throws Exception {
 CatalogStoreJdbcImpl store = new CatalogStoreJdbcImpl(null);
 assertEquals(
 "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) values "
 + "(?, ?, ?)",
 store.getAddProductSqlString());
}

This test now passes, allowing us to do some future refactoring such as generating
this statement from database schema information. If our refactoring changes the
SQL command in any way, this test lets us know immediately, at which point we
can either update the Gold Master string or decide that something we have done
has introduced a defect.

◆ Discussion

The next step is to externalize the Gold Master string to a file, in which case a
properties file suffices. Once all your SQL commands are externalized to a file you
can use that as the source for your SQL queries, rather than hard coding them in
your JDBC client. This refactoring adds considerable flexibility to your design. If
tomorrow the database group decides to reorganize the tables using a different
schema name or a different table-naming scheme, you only need to change a sin-
gle file and rerun all the tests.

Now what if you are unable to refactor the SQL command as we did here? How
do you determine the Gold Master string? The answer is to substitute a Data-
Source implementation that collects that information for you. Rather than rein-
vent the wheel, you can use Mock Objects to write essentially the same test as we
have already described:

public void testAddProductSqlString() throws Exception {
 String expectedSqlString = "";

 MockDataSource dataSource = new MockDataSource();
 MockConnection2 connection = new MockConnection2();
 MockPreparedStatement expectedStatement =
 new MockPreparedStatement();
 expectedStatement.addUpdateCount(1);

Store the Gold Master string

326 CHAPTER 10

Testing and JDBC
 dataSource.setupConnection(connection);
 connection.setupAddPreparedStatement(
 expectedSqlString,
 expectedStatement);

 CatalogStoreJdbcImpl store =
 new CatalogStoreJdbcImpl(dataSource);

 Product product =
 new Product(
 "762",
 "Expensive New Coffee",
 Money.dollars(10, 50));

 store.addProduct(product);

 expectedStatement.verify();
}

When we executed this test, we received this message:

junit.framework.AssertionFailedError: com.mockobjects.sql.
CommonMockConnection2.preparedStatements does not contain insert into
catalog.beans (productId, coffeeName, unitPrice) values (?, ?, ?)

This is the Gold Master string! Now we can place this in the test, assigning it to the
variable expectedSqlString above. After we make that change and execute the
test again, it passes! The Gold Master string is now in the test to guard against
future unexpected changes. Notice that there is a bit more work to do here, as cli-
ents cannot gain direct access to the SQL string, but the technique is the same:
execute the test once without knowing what to expect, let the test tell you what
value to expect, and then change the test so that it expects that value from this
point forward.

Remember the important distinction between Gold Master (which we like) and
Guru Checks Output (which we like much less): in the former case you check the
output by hand once, after which point the test becomes self-verifying; in the latter
case, you have to check the output each time you execute the test. If you use Guru
Checks Output, and if you are the guru, then we hope you have no plans for a
vacation any time soon.

◆ Post script

One of our reviewers, George Latkiewicz, suggested an alternative technique
using JUnit. Because we have not tried this technique in a real project yet, we can-
not really recommend it, but it sounds good and is worth trying.

The technique is simple. Ask the JDBC driver to compile your SQL command by
creating a PreparedStatement from a live connection to the database. When you

Tell the Mock Connection
which SQL string to expect

The production
code will supply
the SQL string

Check the Gold Master against
the production code

327Test your database schema
invoke prepareStatement(), the Connection object should throw an SQLException
if the statement is incorrect. The amount of validation is not limited in this case
merely to SQL syntax, but the JDBC driver should also report incorrect column
and table names. You could create a Parameterized Test Case (see recipe 4.8,
“Build a data-driven test suite”) to test each SQL command your application might
need to execute. The test would simply invoke prepareStatement() on each com-
mand without actually executing it.8 George has found this particularly useful
when the statements change frequently or when he has had to support multiple
database systems or JDBC drivers (including differences among platforms). In par-
ticular, George has found this technique invaluable when generating SQL com-
mands dynamically.

Now we still think that the Gold Master approach, on the whole, provides bet-
ter return on both the investment of effort and the investment in time executing
tests, but we are only speculating. To be fair, we would need to try George’s tech-
nique before drawing any conclusions. For that reason, we offer it to you as an
alternative and hope that it works well for you.

◆ Related

■ Keith Stobie, “Test Result Checking Patterns” for a description of Gold Master,
also known as Batch Check, Golden Results, and Reference Checking (various
web references)

10.3 Test your database schema

◆ Problem

You want to test your database schema, verifying such things as nullable columns,
indices, foreign key constraints, and triggers.

◆ Background

We Agilists love to live in a dream world where the team9 collectively owns the data-
base. This is a world in which programmers and database administrators work
together in harmony to build the perfect database for our collective customer (or
boss). The database schema is flexible and everyone is responsive to change.

8 This is one kind of test that does not require any assertions. Just invoke the method, and if it does not
throw any exceptions, then the test passes. Not all tests require explicit assertions to be useful.

9 http://groups.yahoo.com/group/extremeprogramming/files. Look for the document called “One Team.”

328 CHAPTER 10

Testing and JDBC
When change happens, everyone knows about it immediately. When this hap-
pens, it is a beautiful thing.

The reality is that in most organizations there are large walls between “the data-
base group” and “the developers,” making such harmonious collaboration nearly
impossible. Even if not the result of some nefarious management control strategy,
if your application has grown around the database, then the chances are good
that a separate team maintains the database and acts as gatekeeper: all changes go
through them. Whenever you submit a request to change the database schema,
you need to be sure that your change was received correctly and processed cor-
rectly, and what better way to do that than with tests?

NOTE It actually happened... Before you believe that nothing could ever go wrong
submitting database schema changes to a separate team, consider this
story. A programmer—we’ll name him Joe—builds his component against
an in-memory data model before translating that model into a relational
database schema. He creates the schema, right down to the necessary
DDL, and then submits a schema change request to the database team.
One week later, after his schema changes are integrated into the weekly
test driver, he runs his tests against the new database schema. Lo and
behold—one of them fails! Surprised, Joe examines the test driver’s data-
base creation script—only to find that the database team has misplaced a
unique index on one of the tables. Even more surprised, Joe asks the
database team lead what happened. “We maintain the schema using
ERwin,”10 the team lead says, “so we imported your DDL into the tool,
and then exported the entire database schema into the test driver. ERwin
must have messed up somewhere.” Even though Joe thought he was
being precise by submitting a DDL for the database tables, something was
lost in the translation. Joe learned a valuable lesson: the database schema
could break!

If Joe’s experience resonates with you, then you need to add some tests to protect
yourself against these kinds of surprises.

◆ Recipe

Perhaps the best solution to this problem has nothing to do with testing: create a
single, unambiguous description of your application’s data model from which the
DDL scripts are generated. Martin Fowler describes using XML documents—easy
to parse and therefore easy to verify using XPath (see chapter 9, “Testing and

10 A relational database modeling tool, part of the AllFusion Modeling Suite, from Computer Associates
(www3.ca.com).

329Test your database schema
XML”)—as the single description of the application’s data layout from which a
database schema may be generated [PEAA, 49]. You can find tools for parsing
XML today, but we could not find tools for parsing DDL for Java.

Let us now assume that you need to test the database schema without being
able (or allowed) to use XML documents to represent it. In this case the general
strategy is to write a test for each of the following aspects of your database schema.
Verify that:

■ Tables and columns exist.

■ Primary key columns are correct.

■ Foreign key constraints are correct, including cascade properties.

■ Triggers are correct.

■ Default values and check constraints are correct.

■ Stored procedures are correct.

■ Database object privileges are correct.

For any of these kinds of tests, there are two general strategies to consider: either
make assertions on database meta data or test against the database judging the
correctness of the schema by performing queries and checking the results. We
prefer the meta data strategy, because it does not depend on any data in the data-
base, but meta data support is different from database vendor to database vendor.
Our Coffee Shop application uses a Mimer (www.mimer.se) database to store
business data, and we were not sure how well its JDBC provider supports database
meta data, so we tried the Learning Test in listing 10.3.

public void testTablesAndColumnsExist() throws Exception {
 MimerDataSource coffeeShopDataSource = new MimerDataSource();
 coffeeShopDataSource.setDatabaseName("coffeeShopData");
 coffeeShopDataSource.setUser("admin");
 coffeeShopDataSource.setPassword("adm1n");

 Connection connection = coffeeShopDataSource.getConnection();
 DatabaseMetaData databaseMetaData = connection.getMetaData();
 ResultSet schemasResultSet = databaseMetaData.getSchemas();

 Map databaseSchemaDescriptors = new HashMap();
 while (schemasResultSet.next()) {
 databaseSchemaDescriptors.put(
 schemasResultSet.getString("TABLE_SCHEM"),
 schemasResultSet.getString("TABLE_CATALOG"));
 }

Listing 10.3 A Learning Test for the database

330 CHAPTER 10

Testing and JDBC
 schemasResultSet.close();
 connection.close();

 fail(databaseSchemaDescriptors.toString());
}

This is essentially a “printf,” but it has the side effect of being easily transformed
into a regression test that we can use to uncover incompatibilities or other
changes in future versions of the Mimer JDBC provider. After looking at the out-
put from the fail() statement, we can decide what to assert. The first thing we
learned was that the column TABLE_CATALOG is not in the result set—something
that the Javadoc for DatabaseMetaData.getSchemas() says ought to be there. We
need a closer look at the schema meta data. Fortunately, we can use Diasparsoft
Toolkit’s JdbcUtil to get a human-readable representation of a JDBC result set.
We placed this line of code before trying to process the result set:

fail(JdbcUtil.resultSetAsTable(schemasResultSet).toString());

The result set only has one column: TABLE_SCHEM, and sure enough, the CATALOG
schema we expect to be there is there. We change the test to reflect this knowl-
edge and remove this bit of trace code. Listing 10.4 shows the new test.

public void testTablesAndColumnsExist() throws Exception {
 MimerDataSource coffeeShopDataSource = new MimerDataSource();
 coffeeShopDataSource.setDatabaseName("coffeeShopData");
 coffeeShopDataSource.setUser("admin");
 coffeeShopDataSource.setPassword("adm1n");

 Connection connection = coffeeShopDataSource.getConnection();
 DatabaseMetaData databaseMetaData = connection.getMetaData();
 ResultSet schemasResultSet = databaseMetaData.getSchemas();

 List schemaNames = new LinkedList();
 while (schemasResultSet.next()) {
 schemaNames.add(schemasResultSet.getString("TABLE_SCHEM"));
 }

 schemasResultSet.close();
 connection.close();

 assertTrue(schemaNames.contains("CATALOG"));
}

Listing 10.4 Our Learning Test after having learned something

What do
we get?

A more direct
assertion

331Test your database schema
We changed the “schema descriptors”—which we thought would have more than
one property—to “schema names,” which are just Strings. We no longer need a
Map, because each item we want to store in the collection is now a single value—a
List will do. Our assertion is more direct and easier to understand: we expect
there to be a schema called CATALOG. Now this test is slightly brittle, because it
assumes that the schema meta data will come back in uppercase. If you are con-
cerned about this, then use Diasparsoft Toolkit’s CollectionUtil, which provides
a case-insensitive search capability for collections of strings. Replace the assertion
above with the following code:

assertTrue(
 CollectionUtil.stringCollectionContainsIgnoreCase(
 schemaNames,
 "catalog"));

Both of the two preceding tests now pass and we have successfully verified the exist-
ence of the schema CATALOG in our database. You can use the remaining parts of the
ResultSetMetaData API to verify the existence of tables, columns, and constraints—
as always, depending on the degree to which your database vendor supports these
features. Not all do, including at least one of the big players in the industry. What to
do when meta data lets you down? Return to the basics: describe the expected
behavior for a database with the desired characteristic and write the corresponding
test. The one in listing 10.5 verifies that coffeeName is unique within the table CATA-
LOG.BEANS, even though coffeeName is not a primary key.

public void testCoffeeNameUniquenessConstraint() throws Exception {
 MimerDataSource coffeeShopDataSource = new MimerDataSource();
 coffeeShopDataSource.setDatabaseName("coffeeShopData");
 coffeeShopDataSource.setUser("admin");
 coffeeShopDataSource.setPassword("adm1n");

 Connection connection = coffeeShopDataSource.getConnection();

 PreparedStatement createBeanProductStatement =
 connection.prepareStatement(
 "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) "
 + "values (?, ?, ?)");

 createBeanProductStatement.clearParameters();
 createBeanProductStatement.setString(1, "000");
 createBeanProductStatement.setString(2, "Sumatra");
 createBeanProductStatement.setInt(3, 725);

Listing 10.5 Verifying a unique index

332 CHAPTER 10

Testing and JDBC
 assertEquals(1, createBeanProductStatement.executeUpdate());

 // How will Mimer react to the duplicate entry?
}

Because we are new to Mimer, we are unsure how it will react to the duplicate
entry, so we do not know which exception to expect—or whether to expect one at
all. (You never know.) This means that we start again with a Learning Test. Let us
execute the same update a second time and see what happens. We replace the
comment with this line of code:

createBeanProductStatement.executeUpdate();

When we execute the test, Mimer tells us java.sql.SQLException: UNIQUE con-
straint violation, so we know to expect an SQLException, but we don’t know which
SQLState corresponds, so we refine the Learning Test and replace the preceding
line with this block:

try {
 createBeanProductStatement.executeUpdate();
}
catch (SQLException expected) {
 fail(expected.getSQLState());
}

When we execute the test, we get another UNIQUE constraint violation mes-
sage. What?!

Oh yes, the data is in the database from the previous test run. This is why we rec-
ommend writing as many tests as possible without involving an actual database—
even in a simple case such as this we have the complication of setting up and tearing
down the data. See recipe 10.6, “Manage external data in your test fixture,” for
some strategies for managing a test fixture that includes a database. Now back to
our test. We add code at the start of the test to delete all data from table CATALOG.
BEANS, then we execute the test. The SQLState is 23000. We consult the Mimer doc-
umentation quickly and determine that this SQLState code represents an “integrity
constraint violation.” Bingo. See listing 10.6 for the final version of this test.

package junit.cookbook.coffee.jdbc.test;

import java.sql.*;
import java.util.LinkedList;
import java.util.List;
import junit.framework.TestCase;

Listing 10.6 CoffeeShopDatabaseSchemaTest, the final version

Check only one
row inserted

333Test your database schema
import com.diasparsoftware.java.util.CollectionUtil;
import com.mimer.jdbc.MimerDataSource;

public class CoffeeShopDatabaseSchemaTest extends TestCase {
 public void testCoffeeNameUniquenessConstraint()
 throws Exception {
 MimerDataSource coffeeShopDataSource = new MimerDataSource();
 coffeeShopDataSource.setDatabaseName("coffeeShopData");
 coffeeShopDataSource.setUser("admin");
 coffeeShopDataSource.setPassword("adm1n");

 Connection connection = coffeeShopDataSource.getConnection();
 connection.createStatement().executeUpdate(
 "delete from catalog.beans");

 PreparedStatement createBeanProductStatement =
 connection.prepareStatement(
 "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) "
 + "values (?, ?, ?)");

 createBeanProductStatement.clearParameters();
 createBeanProductStatement.setString(1, "000");
 createBeanProductStatement.setString(2, "Sumatra");
 createBeanProductStatement.setInt(3, 725);

 assertEquals(1, createBeanProductStatement.executeUpdate());

 try {
 createBeanProductStatement.executeUpdate();
 fail("Added two coffee products with the same name?!");
 }
 catch (SQLException expected) {
 assertEquals(
 String.valueOf(23000),
 expected.getSQLState());
 }
 }

 // JDBC resource cleanup code omitted for brevity
}

One thing to bear in mind is that this test assumes some information about the
database schema. In particular, the failure message assumes that the duplicate key
field is the coffee name, as opposed to, perhaps, the product ID. This is the kind
of subtle dependency that tends to creep into tests for JDBC code, especially when
testing against a live database. Suppose that three months from now the unique-
ness constraints on the table change, and this test fails. The failure message, while
trying to be helpful by being precise, is now possibly misleading. For a small table of
three columns, that may not be a great problem; however, for a table with dozens

334 CHAPTER 10

Testing and JDBC
of columns, this could waste considerable debugging time by throwing the pro-
grammer off track. We tend to err on the side of putting more information in fail-
ure messages, but like any habit, there are times when it becomes a bad habit. If
you are aware of the potential problem, then you are in a better position to han-
dle it should it arise.

◆ Discussion

We have encountered a few issues to consider when testing against a live database,
even when you have the database all to yourself. To achieve test isolation you need to
clean the database before each test. There are two key consequences to this practice:

■ Table dependencies grow quickly—You must add logic to clean all the tables,
and the more complex your foreign key constraints, the more complex this
logic becomes. It is not uncommon in a medium-sized application to have
upwards of 40 database tables, all but a few of which have foreign key con-
straints that determine the order in which the tables must be deleted.

■ The database is an expensive external resource—The more tests you write that
exercise the database, the more slowly your tests will execute. Remember
that one of the goals of Programmer Testing is that tests be fast so that you
can and will execute them frequently while programming. This is what pro-
vides the refactoring safety net you need to keep your design flexible and
reduce the cost of adding features.

NOTE Crunch the numbers—It is more straightforward to write tests against a
live database, especially to the programmer not accustomed to decou-
pling JDBC client code from a physical database. It is important to
crunch the numbers and realize the benefit of refactoring away from
the database. We wrote two tests to verify which columns in a table were
nullable. The first approach was to take Martin Fowler’s advice and
move the database definition to XML; the second approach was to use
database meta data as we have described here. On a Pentium-4 1.7 GHz
computer with 512 MB of RAM, the former test took an average of 0.05
seconds to execute, while the latter test took 0.5 seconds. The differ-
ence appears miniscule, but this is to check seven database columns in
the same table. Assume there are 1000 such columns to check—and
about 50 to 200 tables, depending on the database designer’s philoso-
phy and design sense. Multiply by 143 (1000/7) and the difference is
143 * 0.45 = 64.35 seconds or more than one minute! Now as your test
suite grows, startup costs such as establishing database connections
cease to dominate the suite’s execution time as much as for a smaller

335Verify your tests clean up JDBC resources
suite. Even if we are overstating the difference, and it is closer to only
30 seconds, that is 30 seconds per test execution per member of the
team per day for, on average, half the lifetime of your project. Pull out
your calculator and see how that adds up.

So while we wanted to provide you with examples of verifying the database schema
against a live database, it is generally worth the effort to exclude the database from
the equation. If you are truly concerned that the database does not work, write a
few Learning Tests against the database, and then run them as part of your back-
ground build—say using Anthill or Cruise Control. At a minimum, you will have
End-to-End Tests that verify that your application talks to the database correctly by
testing through your application’s user interface.11 If the tests for your data access
layer also verify the way you integrate with a live database, then you are duplicating
efforts between the two kinds of tests. This is a waste. Focus your Object Tests on
individual objects instead.

◆ Related

■ 10.6—Manage external data in your test fixture

10.4 Verify your tests clean up JDBC resources

◆ Problem

You have written some tests that create JDBC objects such as connections, state-
ments, and result sets. You want to avoid leaking resources by ensuring that your
tests clean themselves up.

◆ Background

There are a number of problems with leaking JDBC resources. For one, you can eas-
ily defeat the purpose of JDBC connection pooling by holding on to connections
until the database gives up waiting for you and orphans them, rendering them
unusable. This article we found on the Web describes the problem in more detail.12

11 Object Tests on their own are not enough to verify that you have implemented the features your end
users need. That is what the End-to-End Tests are for.

12 From “WebSpherePro System Admin Tips,” May 28, 2003 issue (www.e-promag.com/epnewsletters).
Use search keywords “connection pooling performance”.

336 CHAPTER 10

Testing and JDBC
NOTE Connection pool performance—Many users report that JDBC connection pool-
ing enhances performance for a short time, but then actually degrades
user response times significantly after a few hundred user transactions.
The problem seems to be a server performance issue, but it’s actually a
coding flaw: failure to close JDBC sessions and release JDBC resources.

Opening JDBC resources is an expensive process, which is why JDBC
connection pooling exists in the first place. Without pooling, if you fail to
close and release JDBC connections you’re not really consuming, there is
no obvious performance drain. Eventually you may run out of memory,
but often that situation doesn’t occur during the life of the server.

But with connection pooling, if you fail to close JDBC sessions, you’ll
eventually exhaust the pool, at which point your application will experi-
ence long waits until connections get freed by other instances.

The first place to look for such problems is in the cleanup phase of an
individual HTTP transaction. Even though you may have an application-
level session open, you must close JDBC sessions to return them to the
pool for reuse by other HTTP sessions.

If you don’t see any obvious failures to close JDBC sessions, you may be
“leaking” sessions in exception code. Any exception handler that ends
the HTTP interaction needs to release JDBC resources. This is a particu-
larly insidious failure mode because you may experience such exceptions
infrequently, allowing a long time to lapse between server startup and
application slowdown.

Although the above words were written in the context of IBM’s WebSphere Appli-
cation Server, it applies to a much broader context: no matter what your platform,
the more JDBC resources you leak, the more memory you leak, which impacts per-
formance. You will experience frequent garbage collection and slow, silent ero-
sion of the memory your application needs to do its job.

The bad news is that if you do not clean up JDBC resources, the JDBC API will
simply let you continue not cleaning up after yourself. We imagine it sits there
laughing at you while it watches your code consume every available byte of mem-
ory. Fortunately, cleaning up JDBC resources in your code is not a problem. In
your tests, you allocate a connection at the top of the test and close it at the bot-
tom. If you allocate a statement, you close it at the bottom. What could go wrong?

The problem is that you need to clean up even if your test fails! You have no
doubt coded your JDBC resource cleanup in finally statements. Those finally
statements are ugly: they themselves may throw SQLExceptions all over the place.
It is not pretty. There must be a better way.

337Verify your tests clean up JDBC resources
◆ Recipe

You can use the following as a checklist to ensure that any test using JDBC
resources cleans up after itself properly, not only in terms of cleaning up the data-
base, but also in cleaning up the Java objects the test uses to talk to the database.

✔ Create the data source in setUp().
✔ Allocate connections in setUp()—you may only need one, unless you are

testing transactional behavior with multiple connections.
✔ Create collections in setUp() to store any result sets, statements, and con-

nections you want to clean up on your way out—one collection for each
kind of resource.

✔ As you create JDBC resources in your test, add them to the “clean me up
later” collections you created in the preceding step.

✔ In tearDown(), invoke close() on any of the resources you used in the test.
Be sure to test for null first, because you never know when the test ended!

After you have done this two or three times, you will notice a definite code pattern
that you can likely refactor up into a Base Test Case (see recipe 3.6, “Introduce a
Base Test Case”). There is also some duplication that can be pushed out to utility
classes, but we’re getting ahead of ourselves. First, let’s look at an example. We
have written two tests for the Coffee Shop database schema: one that verifies the
existence of a catalog and table, another that verifies the existence of a uniqueness
constraint on a table column. Both tests run against the database. Listing 10.7
shows the code for both tests, with some extraneous code removed.

public class CoffeeShopDatabaseSchemaTest extends TestCase {
 public void testTablesAndColumnsExist() throws Exception {
 MimerDataSource coffeeShopDataSource = new MimerDataSource();
 coffeeShopDataSource.setDatabaseName("coffeeShopData");
 coffeeShopDataSource.setUser("admin");
 coffeeShopDataSource.setPassword("adm1n");

 Connection connection = coffeeShopDataSource.getConnection();
 DatabaseMetaData databaseMetaData = connection.getMetaData();
 ResultSet schemasResultSet = databaseMetaData.getSchemas();

 List schemaNames = new LinkedList();
 while (schemasResultSet.next()) {
 schemaNames.add(schemasResultSet.getString("TABLE_SCHEM"));
 }

 assertTrue(

Listing 10.7 Two database schema tests

338 CHAPTER 10

Testing and JDBC
 CollectionUtil.stringCollectionContainsIgnoreCase(
 schemaNames,
 "catalog"));

 schemasResultSet.close();
 connection.close();
 }

 public void testCoffeeNameUniquenessConstraint() throws Exception {
 MimerDataSource coffeeShopDataSource = new MimerDataSource();
 coffeeShopDataSource.setDatabaseName("coffeeShopData");
 coffeeShopDataSource.setUser("admin");
 coffeeShopDataSource.setPassword("adm1n");

 Connection connection = coffeeShopDataSource.getConnection();
 connection.createStatement().executeUpdate(
 "delete from catalog.beans");

 PreparedStatement createBeanProductStatement =
 connection.prepareStatement(
 "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) "
 + "values (?, ?, ?)");

 createBeanProductStatement.clearParameters();
 createBeanProductStatement.setString(1, "000");
 createBeanProductStatement.setString(2, "Sumatra");
 createBeanProductStatement.setInt(3, 725);

 assertEquals(1, createBeanProductStatement.executeUpdate());

 try {
 createBeanProductStatement.executeUpdate();
 fail("Added two coffee products with the same name?!");
 }
 catch (SQLException expected) {
 assertEquals(String.valueOf(23000), expected.getSQLState());
 }
 }
}

The code printed in bold is duplicated in the two tests, so we extract these lines
into a test fixture (see recipe 3.4, “Factor out a test fixture”).

Now that we have taken care of the connection, we need to handle the state-
ments. Here is our general approach:

1 We create an instance-level collection of statements to close.

2 We identify all the places in a test where we have created a statement and,
just before executing it, place it in the list of statements to close.

3 We add code in tearDown() to iterate over the list of statements to close,
closing each one.

339Verify your tests clean up JDBC resources
We repeat these three steps for result sets as well. Listing 10.8 shows the resulting code.

public class CoffeeShopDatabaseSchemaTest extends TestCase {
 public void testTablesAndColumnsExist() throws Exception {
 DatabaseMetaData databaseMetaData = connection.getMetaData();
 ResultSet schemasResultSet = databaseMetaData.getSchemas();
 resultSetsToClose.add(schemasResultSet);

 List schemaNames = new LinkedList();
 while (schemasResultSet.next()) {
 schemaNames.add(schemasResultSet.getString("TABLE_SCHEM"));
 }

 assertTrue(
 CollectionUtil.stringCollectionContainsIgnoreCase(
 schemaNames,
 "catalog"));
 }

 public void testCoffeeNameUniquenessConstraint() throws Exception {
 Statement statement = connection.createStatement();
 statementsToClose.add(statement);

 statement.executeUpdate("delete from catalog.beans");

 PreparedStatement createBeanProductStatement =
 connection.prepareStatement(
 "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) "
 + "values (?, ?, ?)");

 statementsToClose.add(createBeanProductStatement);

 createBeanProductStatement.clearParameters();
 createBeanProductStatement.setString(1, "000");
 createBeanProductStatement.setString(2, "Sumatra");
 createBeanProductStatement.setInt(3, 725);

 assertEquals(1, createBeanProductStatement.executeUpdate());

 try {
 createBeanProductStatement.executeUpdate();
 fail("Added two coffee products with the same name?!");
 }
 catch (SQLException expected) {
 assertEquals(String.valueOf(23000), expected.getSQLState());
 }
 }

 private Connection connection;
 private MimerDataSource dataSource;
 private List statementsToClose = new LinkedList();
 private List resultSetsToClose = new LinkedList();

Listing 10.8 Handling JDBC resources in the test fixture

Will be closed
after each test

Will be closed after each test

Will be
closed after
each test

Store object
to close

340 CHAPTER 10

Testing and JDBC
 protected void setUp() throws Exception {
 dataSource = new MimerDataSource();
 dataSource.setDatabaseName("coffeeShopData");
 dataSource.setUser("admin");
 dataSource.setPassword("adm1n");

 connection = dataSource.getConnection();
 }

 protected void tearDown() throws Exception {
 for (Iterator i = statementsToClose.iterator(); i.hasNext();) {
 Statement each = (Statement) i.next();
 each.close();
 }

 for (Iterator i = resultSetsToClose.iterator(); i.hasNext();) {
 ResultSet each = (ResultSet) i.next();
 each.close();
 }

 if (connection != null)
 connection.close();
 }

 public MimerDataSource getDataSource() {
 return dataSource;
 }
}

Once this fixture is in place, you can take it a step further and extract the JDBC
resource cleanup into its own class. Your database test fixture only needs to hold
an instance to this new class—call it JdbcResourceRegistry, where you can regis-
ter JDBC resources to be cleaned up. In setUp(), create a new resource registry; in
tearDown(), invoke JdbcResourceRegistry.cleanup().

You can finally move the database fixture code up into a database fixture class.
This code is generally application- or component-specific, as it involves using your
data source and priming it with specific fixture data. We pushed the CoffeeShop-
DatabaseSchemaTest fixture objects up to a new test fixture we called CoffeeShop-
DatabaseFixture, which we show in listing 10.9.

package junit.cookbook.coffee.jdbc.test;

import java.sql.*;
import junit.framework.TestCase;
import com.diasparsoftware.java.sql.JdbcResourceRegistry;
import com.mimer.jdbc.MimerDataSource;

// You should only need one database fixture for the entire project

Listing 10.9 CoffeeShopDatabaseFixture

Close each
“closable” object

341Verify your tests clean up JDBC resources
public abstract class CoffeeShopDatabaseFixture extends TestCase {
 private Connection connection;
 private MimerDataSource dataSource;
 private JdbcResourceRegistry jdbcResourceRegistry;

 protected void setUp() throws Exception {
 dataSource = new MimerDataSource();
 dataSource.setDatabaseName("coffeeShopData");
 dataSource.setUser("admin");
 dataSource.setPassword("adm1n");

 jdbcResourceRegistry = new JdbcResourceRegistry();

 connection = dataSource.getConnection();
 getJdbcResourceRegistry().registerConnection(connection);
 }

 protected void tearDown() throws Exception {
 getJdbcResourceRegistry().cleanUp();
 }

 public MimerDataSource getDataSource() {
 return dataSource;
 }

 protected Connection getConnection() {
 return connection;
 }

 protected JdbcResourceRegistry getJdbcResourceRegistry() {
 return jdbcResourceRegistry;
 }

 protected void registerConnection(Connection connection) {
 jdbcResourceRegistry.registerConnection(connection);
 }

 protected void registerStatement(Statement statement) {
 jdbcResourceRegistry.registerStatement(statement);
 }

 protected void registerResultSet(ResultSet resultSet) {
 jdbcResourceRegistry.registerResultSet(resultSet);
 }
}

Let us review how far we have come. By refactoring our database test, we have
built a database fixture class from which all other database-related tests can
extend. If you are testing legacy JDBC code, then this is a particularly useful
design. If you plan to refactor your JDBC code in the direction of a small JDBC
engine, this fixture helps you write the tests that support that refactoring effort.
All in all, a good thing. You can see the difference in listing 10.10, which shows
CoffeeShopDatabaseSchemaTest using the new fixture.

Simple, no?

Convenience
methods

342 CHAPTER 10

Testing and JDBC
package junit.cookbook.coffee.jdbc.test;

import java.sql.*;
import java.util.LinkedList;
import java.util.List;

import com.diasparsoftware.java.util.CollectionUtil;

public class CoffeeShopDatabaseSchemaTest
 extends CoffeeShopDatabaseFixture {

 protected void tearDown() throws Exception {
 Statement statement = getConnection().createStatement();
 registerStatement(statement);

 statement.executeUpdate("delete from catalog.beans");

 super.tearDown();
 }

 public void testTablesAndColumnsExist() throws Exception {
 DatabaseMetaData databaseMetaData =
 getConnection().getMetaData();
 ResultSet schemasResultSet = databaseMetaData.getSchemas();
 registerResultSet(schemasResultSet);

 List schemaNames = new LinkedList();
 while (schemasResultSet.next()) {
 schemaNames.add(schemasResultSet.getString("TABLE_SCHEM"));
 }

 assertTrue(
 CollectionUtil.stringCollectionContainsIgnoreCase(
 schemaNames,
 "catalog"));
 }

 public void testCoffeeNameUniquenessConstraint() throws Exception {
 Statement statement = getConnection().createStatement();
 registerStatement(statement);

 statement.executeUpdate("delete from catalog.beans");

 PreparedStatement createBeanProductStatement =
 getConnection().prepareStatement(
 "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) "
 + "values (?, ?, ?)");

 registerStatement(createBeanProductStatement);

 createBeanProductStatement.clearParameters();
 createBeanProductStatement.setString(1, "000");
 createBeanProductStatement.setString(2, "Sumatra");

Listing 10.10 CoffeeShopDatabaseSchemaTest using the new fixture

Register objects
to be closed
after each test

Invoke super to do the regular cleanup

Register objects to be
closed after each test

Register objects
to be closed
after each test

343Verify your production code
cleans up JDBC resources
 createBeanProductStatement.setInt(3, 725);

 assertEquals(1, createBeanProductStatement.executeUpdate());

 try {
 createBeanProductStatement.executeUpdate();
 fail("Added two coffee products with the same name?!");
 }
 catch (SQLException expected) {
 assertEquals(String.valueOf(23000), expected.getSQLState());
 }
 }
}

◆ Discussion

If you need this (almost) automatic cleanup facility, then take a look at GSBase’s
JDBC resource wrappers, available at gsbase.sourceforge.net. These resource wrap-
pers clean up after themselves, which is quite nice of them! If you can change the
JDBC code you need to test, then we recommend using these resource wrappers,
even as a substitute for the techniques in this recipe.

◆ Related

■ 3.4—Factor out a test fixture

■ 3.6—Introduce a Base Test Case

■ GSBase (http://gsbase.sourceforge.net)

10.5 Verify your production code cleans up JDBC resources

◆ Problem

You want to test your production code, verifying that it closes all the JDBC
resources it allocates: result sets, statements, and connections.

◆ Background

The good news is that if your application moves all query execution into one
place, just as we have recommended and described in this chapter, then there is
not much work to do. The only production code that needs to clean up JDBC
resources is that query execution code, so in this case you would only need to
apply this recipe to a handful of methods.

344 CHAPTER 10

Testing and JDBC
The bad news is that if your application—and this is still the most common
case—has JDBC calls all over the place, then you have much more work to do. You
need to evaluate very carefully whether it is more effort to write all the tests you
need or throw away all your data access code (but not the knowledge you gained
in writing and reading it!) and replace it with the JDBC framework we have devel-
oped here. Take some time and estimate—apply this recipe a few times and mea-
sure how long it takes. Rewrite one data access class and measure how long it
takes. Compare the results.

If you have decided to forge ahead and test all the scattered JDBC client code,
rather than using a JDBC framework, then this recipe can point you in the right
direction.

◆ Recipe

You can use the Mock Objects JDBC implementations to verify that close() has
been invoked (or not, as the case might be) for the various JDBC resources you
need to use. Listing 10.11 shown an example of such a test.

package junit.cookbook.coffee.jdbc.test;

import java.sql.*;
import junit.cookbook.coffee.data.*;
import junit.cookbook.coffee.data.jdbc.CatalogStoreJdbcImpl;
import junit.framework.*;
import com.diasparsoftware.java.util.Money;
import com.mockobjects.sql.*;

public class AddProductTest extends TestCase {
 public void testHappyPathWithPreparedStatement() {
 Product toAdd =
 new Product("999", "Colombiano", Money.dollars(9, 0));

 final MockPreparedStatement addProductStatement =
 new MockPreparedStatement();
 addProductStatement.addUpdateCount(1);
 addProductStatement.setExpectedCloseCalls(1);

 MockConnection2 connection = new MockConnection2();
 connection.setupAddPreparedStatement(
 "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) values "
 + "(?, ?, ?)",
 addProductStatement);

 CatalogStore store = new CatalogStoreJdbcImpl(connection);
 store.addProduct(toAdd);

Listing 10.11 Verify that the CatalogStore closes its PreparedStatement

Set expectation

345Verify your production code
cleans up JDBC resources
 addProductStatement.verify();
 connection.verify();
 }
}

We have drawn attention to the code that sets and verifies our expectations, using a
common Mock Objects coding pattern. First we invoke setExpectedCloseCalls() to
indicate how many times the code we are testing should close the PreparedState-
ment—once. At the end of the test we invoke verify() to allow both the mock Pre-
paredStatement and mock Connection the chance to fail if the expectations we have
set have not been met. That is, the test fails if we do not close the PreparedState-
ment exactly once, or if we try to close the Connection at all.13 We do not want the
CatalogStore to close the Connection for two reasons: first, whoever obtains the
Connection ought to close it, and the CatalogStore did not obtain the connection;
and second, we want multiple data stores to be able to participate in the same trans-
action, and to do that they must be able to use the same Connection, which means
they had better not close it!

◆ Discussion

We have not included an example test that verifies that we have closed our
ResultSet objects, but that is easy to add. Also remember that it is important to
close the result set, and then the statement, and then the connection, in that order.
This technique does not ensure that we have cleaned up our resources in the
order required: Mock Objects do not provide direct support for verifying the
order in which methods on different objects have been invoked.

To be complete you need to write this kind of test for every distinct piece of
JDBC client code. Think about how your JDBC client code is designed: you may
need to write hundreds of tests. The good news is that if you notice coding patterns
in the tests themselves, you can always refactor to a Parameterized Test Case (see
recipe 4.8, “Build a data-driven test suite”) and, if the design contains actual dupli-
cation, you may be able to extract a handful of representative test cases from your
system and write just those tests. If you do not yet appreciate the power of refac-
toring, you will once you get to avoid writing all those tests. Walk over to your
manager and say, “I just saved us about 150 hours of work.” With luck, she will ask
you how.

13 Because we have not set an expected number of close() calls on the mock Connection, it expects
close() not to be invoked at all. It is the same as invoking setExpectedCloseCalls(0).

Verify expectations

346 CHAPTER 10

Testing and JDBC
We see JDBC client code littered throughout applications on a regular basis and
we view this as a serious design problem. You may have the sense that we look
down on the people who create these designs problems, and that could not be
further from the truth. If you are the one who wrote the data access code that led
to having to write hundreds of tests like the ones in this recipe, do not feel bad
about it. Instead, see how you can refactor your way out of it. You wrote the best
code you could at that time under those conditions with what you knew then.
Don’t feel bad because you didn’t do what you did not know how to do. Who can?
Learn from the experience, and maybe laugh about it a little. We do.

◆ Related

■ 4.8—Build a data-driven test suite

10.6 Manage external data in your test fixture

◆ Problem

You want to test against a database, but after each test the database is in a slightly
different state.

◆ Background

JUnit practitioners often say that “shared test setup smells.” This is our cute way of
saying that the desire to share fixture data between tests is an indication of a
design problem; if not now, then soon (but not for the rest of your life—you can
always refactor). By “shared fixture” we mean the case when test #1 updates the
fixture by adding some data, and then test #2 sees the data that test #1 has added.
This breaks test isolation and, by now, our opinion on that point should be clear.
If not, then please keep reading.

Instead of sharing fixture data, code your tests so that they share a common
starting point, and then add or remove data as needed for the individual test.
Sometimes that common starting point is a clean slate, and sometimes it is a
known set of data. It is possible to organize your fixture so that it is easy to extract
into a separate class and reuse in many tests. This recipe describes how to do that.

◆ Recipe

First things first: extract any tests you write against a live database to its own fix-
ture. See recipe 3.4, “Factor out a test fixture,” for details on how to do that. Once
you have a fixture for your database tests, the general strategy is this.

347Manage external data in your test fixture
1 In setUp(), connect to the database and prime it with whatever data you need.

2 In tearDown(), delete all data from the database.

If you would like to do something a little tricky, you can start a transaction in
setUp(), and then roll it back in tearDown() so that JDBC never actually commits
the data to the database. No data to clean up! Listing 10.12 shows an example that
puts everything together.

package junit.cookbook.coffee.jdbc.test;

import java.sql.*;

public class SelectCoffeeBeansTest extends CoffeeShopDatabaseFixture {
 protected void setUp() throws Exception {
 super.setUp();

 Connection connection = getConnection();
 connection.setAutoCommit(false);

 PreparedStatement insertStatement =
 connection.prepareStatement(
 "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) values "
 + "(?, ?, ?)");

 registerStatement(insertStatement);

 insertCoffee(insertStatement, "001", "Sumatra", 750);
 insertCoffee(insertStatement, "002", "Special Blend", 825);
 insertCoffee(insertStatement, "003", "Colombiano", 810);
 }

 protected void tearDown() throws Exception {
 getConnection().rollback();
 super.tearDown();
 }

 public void testFindExpensiveCoffee() throws Exception {
 Connection connection = getConnection();
 PreparedStatement findExpensiveCoffeeStatement =
 connection.prepareStatement(
 "select * from catalog.beans where unitPrice > 2000");

 registerStatement(findExpensiveCoffeeStatement);

 ResultSet expensiveCoffeeResults =
 findExpensiveCoffeeStatement.executeQuery();
 registerResultSet(expensiveCoffeeResults);

 assertFalse(expensiveCoffeeResults.next());
 }

Listing 10.12 Using the “rollback” trick

Need to set up superclass fixture

Enable “rollback” trick

Hide Prepared-
Statement details

Don’t commit
the data!

348 CHAPTER 10

Testing and JDBC
 public void testFindAllCoffee() throws Exception {
 Connection connection = getConnection();
 PreparedStatement findAllCoffeeStatement =
 connection.prepareStatement("select * from catalog.beans");

 registerStatement(findAllCoffeeStatement);

 ResultSet allCoffeeResults =
 findAllCoffeeStatement.executeQuery();
 registerResultSet(allCoffeeResults);

 int rowCount = 0;
 while (allCoffeeResults.next())
 rowCount++;

 assertEquals(3, rowCount);

 }

 private void insertCoffee(
 PreparedStatement insertStatement,
 String productId,
 String coffeeName,
 int unitPrice)
 throws SQLException {

 insertStatement.clearParameters();
 insertStatement.setObject(1, productId);
 insertStatement.setObject(2, coffeeName);
 insertStatement.setObject(3, new Integer(unitPrice));
 insertStatement.executeUpdate();
 }
}

If the JDBC code you test needs to commit data to the database—for example to
test transactional behavior—then in tearDown() replace Connection.rollback()
with the necessary JDBC code to remove the data you may have inserted, or undo
any updates you may have made. This “on-the-fly undo” can become complicated
very quickly, so do not go overboard. If it takes more than one minute to write the
data cleanup code for a test, then try something else, because the effort is not
worth it. Speaking from painful experience, once you have about 40 to 50 tests in
place, some with complex “undo changes” code, the maintenance cost begins to
outweigh the benefit of using the trick, and at that point you have trouble.14

Your best bet is to have a database instance that you can destroy and rebuild at
any time, so that in the worst case your tearDown() code can include deleting

14 A former colleague, with his distinctive accent, always liked to say, “You are going to have trouble!”

349Manage test data in a shared database
entire tables. As one reviewer wrote, “If rebuilding the database is not easy, then
make it easy.” Still, if you do not have this luxury, we will not leave you in the
dark—see recipe 10.7, “Manage test data in a shared database.”

◆ Discussion

Like many of the other live database testing recipes in this chapter, this technique
is most useful when you have legacy JDBC code that you cannot change or when
you want to create a refactoring safety net. If you have the opportunity to replace
your JDBC access code, we recommend applying the techniques we describe in the
opening of this chapter. Ideally, you would not write so many tests against a live
database, but rather isolate the code that needs the database, and test the rest
without one. The other recipes in this chapter discuss the relevant techniques.

Be aware of IDENTITY or auto-increment columns. The more you run your tests,
the higher and higher the next available row ID becomes. If you run your tests as
often as we hope you will, then you might eventually run out of IDs! If you think
this is a serious problem, then the simplest thing you can do is rebuild the data-
base schema periodically, which resets the next available row ID. If you do not
“own the plug”15 on your test database, then you need a more sophisticated strategy.
See recipe 10.7 for suggestions.

◆ Related

■ 3.4—Factor out a test fixture

■ 10.7—Manage test data in a shared database

10.7 Manage test data in a shared database

◆ Problem

You want to test against a database, but you do not have access to a dedicated data-
base against which to test.

◆ Background

There are a number of reasons why you are stuck sharing a test database.
Consider the cost issues around licenses for the database platform your project

uses. It may be quite expensive to procure additional licenses, and management is

15 See the end of recipe 10.7, “Manage test data in a shared database” for a discussion of “owning the plug.”

350 CHAPTER 10

Testing and JDBC
usually unclear on the cost/benefit trade-off, preferring to minimize the costs they
can easily quantify (the exact price of a license) rather than attempting to mini-
mize the costs they have difficulty quantifying (how much less productive the
team is because programmers have to share a database), even though the latter
cost may well be much higher than the former. We can complain all we want, but
until we can provide a definite cost/benefit analysis and convince management of
the accuracy of our analysis, things are not likely to change.

There may be political issues of “ownership” surrounding the database. There
are those managers who feel that if the database group does not maintain total
control over the database then there will be chaos. They are often afraid of pro-
grammers telling database administrators how to structure the database, which
has the tendency to create tension between the two groups. Past experience has
told these managers that, in order to keep the peace, the database group must
both own and tightly control the databases. It is unclear whether there is any
point to try to overcome this roadblock.

Whatever the reason, you may feel yourself stuck with a shared test database
and you would like to know how to deal with it.

◆ Recipe

Before diving into the painful world of bobbing and weaving around data you
absolutely cannot destroy, consider some alternatives.

■ Download a free database product and have your own database. You can
select from Mimer, MySQL, HSQLDB, and others. There are a number of
companies providing free database products (at least for development) that
give you the freedom to write the tests you need.

■ Create a separate tablespace or schema in the shared database for your
tests. Although you are sharing a database, you are really only sharing disk
space; other than that you can do what you need to do. This option has the
nice property of forcing your SQL code to be tablespace or schema indepen-
dent, which eliminates an implicit dependency on the identity of the
logged-in user, making it additionally worth the extra effort.

■ Execute your database tests during off hours, when there is less likelihood of
colliding with other testers. Here, we assume that you are sharing a test data-
base16 with other programming groups. By staggering your testing times, you

16 If your organization lets you test on the production database, frankly it deserves what it gets. Nothing is
worth that.

351Manage test data in a shared database
can share a license without incurring the cost of trampling on each others’
data. Restricting yourself to off hours reduces how often you can execute
your tests and makes it difficult to write them in the first place.

If you are forced to share a single database, tablespace, and schema with other
groups and need to run your tests while they are running theirs, then you do not
have much of an option left: every group must ensure that its test data does not
collide with any other group’s test data. This means things like “For customer
names, we’ll take A through D; and for coffee product IDs we’ll use 000-099.” You
will want to make sure to capture each of these decisions in a big chart and make
it visible, preferably on a web site. When some rogue programmer causes a con-
flict, calmly point them to the web site and politely ask him to be more careful. If
he does it a second time....17

◆ Discussion

Although carving up the database into slices is workable, there are a few con-
straints to consider:

■ Excluding large classes of data may lead to burying subtle defects—If you are writ-
ing tests for retrieving and processing contracts, you may have a special rule
for contracts that expire in the first quarter of the year. If your test data con-
sists only of contracts from October to December, then you will never test
that special rule.

■ You might run out of data—What happens when you want to write a stress test
with customers buying from among 1,000 coffee bean products? If you only
have 100 product IDs to choose from, then you cannot write that test—or at
a minimum, you have to coordinate with the other teams about executing
that test, probably only during off-peak hours.

■ You might run out of row IDs—If your database provides IDENTITY columns (also
known as auto-increment columns), then you may overflow the next available
row ID after executing your tests 10 to 20 times per day every day. Admittedly,
sharing a test database may force you to execute your tests less often, but even
if you manage to overcome that hurdle, this issue presents another one.

■ You cannot test certain edge cases—How can you verify your code in the presence
of an empty table if you cannot empty the table? You can take a mock objects
approach (see recipe 10.9, “Test legacy JDBC code without the database”) but
not everyone finds that solution satisfying. We do not mind so much.

17 http://c2.com/cgi/wiki?RolledUpNewspaper

352 CHAPTER 10

Testing and JDBC
■ Data collisions are notoriously difficult to diagnose—When two tests collide there
can only be chaos. The result is nearly impossible to diagnose beyond,
“Someone else is running tests right now.” Whom should you call? How bad
is the damage? Those questions are not readily answered, which wastes time
and effort that could be spent executing the tests and preventing defects.

We recommend having separate test databases by any means necessary. We feel
that it is impossible to understate its importance.

NOTE You need to own the plug—Ward Cunningham wrote about the importance
of “owning the plug” in his afterword to Kent Beck’s Sorted Collection,
which you can find at http://c2.com/doc/forewords/beck2.html. Ward
starts by writing, “While a program expresses intent, it is the computer,
the hardware, that brings that intent to life. In order to have full control
over your program’s expression you must control the computer that runs
it. Therefore: Write your program for a computer with a plug. Should
you be dissatisfied with the behavior of the computer, unplug it.” The
same is true with databases. In order to be best able to realize code that
talks to a database, you need to be able to “unplug”—or destroy—the
database. The resulting tests take longer to execute, but you save an
unbounded amount of time not having to deal with the problems you incur
by sharing a test database with others.

◆ Related

■ 10.9—Test legacy JDBC code without the database

10.8 Test permissions when deploying schema objects

◆ Problem

You have noticed a defect pattern when deploying any new schema object: the
first user that tries it tells you that it does not work.

◆ Background

We received this e-mail from Carl Manaster, describing the defect pattern in only
sixty words.

“I write a stored procedure in the development database, test it, and call it
good. I copy it into the production database, test it there, find it still good, and
release it. But I never granted regular users execute permission on it, so I get a
call from the first user to try it, telling me it doesn’t work.”

353Test permissions when
deploying schema objects
If you have this pattern,18 then you need more tests, and this recipe describes
the test you need.

◆ Recipe

It is common to forget to grant permission for users to actually use a schema
object, such as a stored procedure or table. Unfortunately, the SQL standard does
not provide a way to ask a database object whether a given user has sufficient
authority to perform an operation on that object. As a result, your test should just
try to use the object and fail only if there is a permissions problem. One question:
how does your database vendor report permission problems?

In order to find that out, start with a Learning Test. Create a stored procedure
(Carl’s particular problem), revoke your privilege to execute it, and then try to
execute it. Let the JDBC provider show you how it reports a permission problem.
Listing 10.13 shows the test.

public class StoredProcedurePrivilegesTest
 extends CoffeeShopDatabaseFixture {

 protected void setUp() throws Exception {
 super.setUp();

 Statement statement = getConnection().createStatement();
 registerStatement(statement);

 try {
 statement.executeUpdate("drop procedure NOT_ALLOWED");
 }
 catch (SQLException doesNotExist) {
 if ("42000".equals(doesNotExist.getSQLState()) == false) {
 throw doesNotExist;
 }
 }

 statement.executeUpdate(
 "create procedure NOT_ALLOWED() begin end");
 }

 protected void tearDown() throws Exception {
 Statement statement = getConnection().createStatement();
 registerStatement(statement);
 statement.executeUpdate("drop procedure NOT_ALLOWED");
 super.tearDown();
 }

18 Geek shorthand for “If you have noticed that this pattern also applies to you...”

Listing 10.13 Testing privileges on stored procedures

354 CHAPTER 10

Testing and JDBC
 public void testSeePermissionProblem() throws Exception {
 Connection connection =
 getDataSource().getConnection("programmer", "pr0grammer");
 Statement statement = connection.createStatement();
 registerStatement(statement);

 statement.execute("call NOT_ALLOWED()");
 }
}

We executed this test and received the message java.sql.SQLException: The

procedure NOT_ALLOWED does not exist (or no execute privilege), which told
us to catch an SQLException and look at the error code and SQL state. We added
that to the test, which you can see in listing 10.14.

public void testSeePermissionProblem() throws Exception {
 Connection connection =
 getDataSource().getConnection("programmer", "pr0grammer");
 Statement statement = connection.createStatement();
 registerStatement(statement);

 try {
 statement.execute("call NOT_ALLOWED()");
 fail("User 'programmer' allowed to call NOT_ALLOWED?!");
 }
 catch (SQLException e) {
 assertEquals(0, e.getErrorCode());
 assertEquals("", e.getSQLState());
 }
}

We are quite certain that the assertions we have just added will fail, but once they
do we can replace the expected values with the correct ones. This is a miniature
version of the Gold Master technique. After discovering the two values—both of
which are highly vendor dependent, so do not copy these into your code—we
fixed the catch block of the test.

try {
 statement.execute("call NOT_ALLOWED()");
 fail("User 'programmer' allowed to call NOT_ALLOWED?!");
}
catch (SQLException e) {
 assertEquals(-12743, e.getErrorCode());
 assertEquals("42000", e.getSQLState());
}

Listing 10.14 Adding code to expect an SQLException

Should throw
SQLException

Change expected values
after we see them

355Test permissions when
deploying schema objects
Now we have a test that fails if a user attempts to call the specified stored proce-
dure and they have permission. We did this to learn how Mimer (in this case)
reports permission problems. Now we can write the test we really want, which uses
this information to distinguish a test failure from the test “blowing up.”
Listing 10.15 shows a test that verifies a user has permission to call a stored procedure.

package junit.cookbook.coffee.jdbc.test;

import java.sql.*;

public class StoredProcedurePrivilegesTest
 extends CoffeeShopDatabaseFixture {

 // setUp and tearDown omitted

 public void testCanCall() throws Exception {
 Connection connection =
 getDataSource().getConnection("programmer", "pr0grammer");
 Statement statement = connection.createStatement();
 registerStatement(statement);

 try {
 statement.execute("call NOT_ALLOWED()");
 }
 catch (SQLException e) {
 if (isNoPrivilegesException(e))
 fail("User 'programmer' cannot call procedure "
 + "NOT_ALLOWED");
 else
 throw e;
 }
 finally {
 connection.close();
 }
 }

 private boolean isNoPrivilegesException(SQLException e) {
 return (-12743 == e.getErrorCode())
 && ("42000".equals(e.getSQLState()));
 }
}

This is one of those rare times that we decide to catch an unexpected excep-
tion—well, a reasonably unexpected one—and fail, rather than let the exception
be propagated up to the JUnit framework. This is really a question of taste: in
this case we would rather report simply that the user does not have the expected

Listing 10.15 StoredProcedurePrivilegesTest

Signal “unexpected exception”

Move to
reusable
library

356 CHAPTER 10

Testing and JDBC
permission. We could rely on Mimer’s error message to tell us that, but this way
if Mimer changes, our message remains as informative as it ever was.

The next step is to extract the bare test “engine” from this test and execute it
for all the stored procedures and against all the users you expect to have permis-
sion. The input to the test consists of a user name, a stored procedure, and your
expectation regarding their authority to execute it. You can see a short example
access control list in table 10.1. This is the data for your tests.

Now that you have tabular data you can create a Parameterized Test Case (see rec-
ipe 4.8, “Build a data-driven test suite”) where the data for each test is a row in this
table. Externalize the tabular data, such as to a file, in order to make it easy to
keep up to date alongside your evolving list of stored procedures.

◆ Discussion

The one large stumbling block in this recipe is that management may strictly for-
bid you from even attempting to execute these tests on the production server,
which is where you need to test them most! Frankly, we have no idea how to help
you here, because we still have much to learn about negotiating effectively. The
best you can do is to ask very nicely and emphasize the number of support calls
that these tests will save. Of course, if executing the test runs any risk whatsoever
of harming the database, then they are right to not let you execute it. This is a
case where it may be necessary to test the tests.

Although our example here was testing permissions on a stored procedure,
remember that you should test permissions on all your schema objects, not just
stored procedures.

◆ Related

■ 10.12—Test stored procedures

Table 10.1 Sample access control list for stored procedures

User Description Stored procedure Allowed to execute?

admin Administrator addProduct Yes

csr Customer service representative addProduct No

clerk Data entry clerk addProduct No

marketing Marketing professional addProduct Yes

357Test legacy JDBC code
without the database
10.9 Test legacy JDBC code without the database

◆ Problem

You have inherited legacy JDBC code and would like to test it without dragging a
database along with you.

◆ Background

Your big problem—and it’s not your fault, but it is your problem—is that you can-
not apply the refactorings that we have described in this chapter to the JDBC code
you need to test. We feel bad for you, but rather than just feel bad, we can help.19

This recipe describes how to use Mock Objects (www.mockobjects.com) to test
those JDBC calls without a database.

◆ Recipe

Before we begin, we would like to refer you to the Mock Objects article “Develop-
ing JDBC Applications Test First” (www.mockobjects.com/wiki/DevelopingJdbc
ApplicationsTestFirst). Even if you are not writing your application test-first, the
article provides good examples on the various parts of the Mock JDBC API that
Mock Objects provides. We have no desire to repeat good documentation in
print, where it may become stale. Instead, we will show you one example of testing
the JDBC implementation of our CatalogStore using the Mock JDBC API. After all,
you may not have the Web in front of you just now.

Let us reprise the example we used in recipe 10.2, “Verify your SQL commands.”
This time, rather than verifying just the SQL string, we will add assertions pertain-
ing to using the JDBC API correctly. We will also assume that the JDBC code we want
to test is not subject to change, being legacy code that management is deathly
afraid to touch.20 We submit a mock data source to the JDBC implementation of
our CatalogStore. This mock data source is primed with a mock connection and a
mock prepared statement, and despite all these mocks—which might eventually
make you wonder what exactly you are testing—the point is to verify that the JDBC
implementation of the CatalogStore knows how to talk to the classes in the JDBC
API. Listing 10.16 shows the test for adding a coffee bean product to the catalog.

19 That same colleague, in his distinctive accent, liked to say, “All you can do is cry.” In this case, you can
do more.

20 We hope that, as you continue reading this book, you realize—and perhaps are able to convince your man-
agement of the fact—that when you have tests as a safety net, change is not painful, but rather beneficial.

358 CHAPTER 10

Testing and JDBC
public void testAddProduct() {
 Product toAdd =
 new Product("999", "Colombiano", Money.dollars(9, 0));

 MockDataSource dataSource = new MockDataSource();

 MockConnection2 connection = new MockConnection2();
 connection.setExpectedCloseCalls(1);

 final MockPreparedStatement addProductStatement =
 new MockPreparedStatement();
 addProductStatement.setExpectedClearParametersCalls(1);
 addProductStatement.addExpectedSetParameters(
 new Object[] { "999", "Colombiano", new Integer(900)});
 addProductStatement.addUpdateCount(1);
 addProductStatement.setExpectedCloseCalls(1);

 dataSource.setupConnection(connection);
 connection.setupAddPreparedStatement(
 "insert into catalog.beans "
 + "(productId, coffeeName, unitPrice) values "
 + "(?, ?, ?)",
 addProductStatement);

 CatalogStore store = new CatalogStoreJdbcImpl(dataSource);
 store.addProduct(toAdd);

 addProductStatement.verify();
 connection.verify();
 dataSource.verify();
}

The majority of this test is setup work, which is common for mock objects-based
tests. We create a mock data source, mock connection, and mock prepared state-
ment. We tell the prepared statement to expect to be used in the following fashion:

1 The CatalogStore will invoke clearParameters() once.

2 The CatalogStore will set the parameters that correspond to the Product
object we want to add to the catalog. Notice the mapping of the unit price
property from a Money object to the equivalent amount of money in cents.

3 The CatalogStore will update one row, represented by the property Mock-
PreparedStatement.updateCount.

4 The CatalogStore will close the statement once.

Listing 10.16 A database test using the Mock Objects JDBC API

359Test legacy JDBC code
without the database
Similarly, we tell the connection how to expect to be used, and even the data
source itself. After we perform the operation—addProduct() in this case—that
uses these JDBC objects, we ask them to verify themselves and complain if their
expectations are not met. All this without involving a real database.

◆ Discussion

The one thing we do not like about these tests is that although the database is not
involved, the tests themselves remain brittle: each test depends on both the cor-
rectness of your JDBC client code and its ability to map the data correctly. Code
that tries to serve two masters is easily distracted.21 We prefer to test different
behaviors separately, but we understand that with true legacy code—code without
tests that you cannot change—you have no choice. Using mock objects provides a
coping mechanism for the problem, but if you have the opportunity, you ought
not to stop here.

We recommend that you take the JDBC client code and, if the design makes this
feasible, extract business-oriented interfaces from them. That is, extract interfaces
whose methods and parameters and return types only express domain concepts. For
example, if you have a data access object that finds all customers whose accounts
are 30 days past due, then extract the interface CustomerStore with method find-
PastDue(int days) and place your legacy JDBC client code inside an implementa-
tion of CustomerStore, perhaps called CustomerStoreLegacyImpl.22 You can then
treat your legacy implementation of the “Store” interfaces as a giant black box.
Over time you can replace parts of it with implementations you can actually test!
Moreover, you can do that at your leisure. No hurry. It may take a long time to
refactor completely away from the legacy code, but at least you know that you can
do it—that it is only a matter of time.

◆ Related

■ 10.2—Verify your SQL commands

■ Mock Objects project (www.mockobjects.com)

■ “Developing JDBC Applications Test First”
(www.mockobjects.com/wiki/DevelopingJdbcApplicationsTestFirst)

21 A liberal paraphrase of Irving Chernev, the great chess writer, in Logical Chess: Move by Move.
22 “Impl” is one of those rare times when we do not mind using an abbreviation. The exception proves the rule.

360 CHAPTER 10

Testing and JDBC
10.10 Test legacy JDBC code with the database

◆ Problem

You have inherited legacy JDBC code and would like to test it against a live database.

◆ Background

If you have decided to test your legacy JDBC code against a live database, be sure
you own the data. See recipe 10.7 for a discussion of the issues involved. Next, you
need a mechanism to cope with the complexity of test data setup. We have tried
setting up test data using JDBC code itself, and our experience was forgettable. We
needed to maintain so much code just for setting up fixtures that it was clearly an
unworkable situation. Fortunately we have learned from the experience, and we
would like to pass that wisdom on to you.

◆ Recipe

For this recipe we will assume that you want to test your JDBC code as is without refac-
toring and that you have a test database at your disposal. The approach is straightfor-
ward: create a data set for each suite of tests you would like to execute, and then use
DbUnit (http://dbunit.sourceforge.net) to organize that test data on the file system.

DbUnit provides the ability to store test data in simple file formats. This allevi-
ates the need to duplicate JDBC code just to set up the database with data, because
you only need one copy of the test data file. You can specify that data in XML doc-
uments or build up a dataset with code inside your test. Here is an example using
the “flat XML format”—that is, a simplified XML format where each tag represents
a table and the attributes represent column names.

<?xml version="1.0" ?>
<dataset>
 <catalog.beans productId="000"
 coffeeName="Sumatra"
 unitPrice="750" />

 <catalog.beans productId="001"
 coffeeName="Special Blend"
 unitPrice="825" />

 <catalog.beans productId="002"
 coffeeName="Colombiano"
 unitPrice="925" />
</dataset>

361Test legacy JDBC code with the database
This small example shows specifying three coffee products. Each product is a row
in the table catalog.beans with the columns productId, coffeeName, and unit-
Price. Your dataset is not limited in its size or complexity in any way, except (of
course) by your ability to understand it.

To use a DbUnit dataset in a JUnit test, you can write a test case class that
extends org.dbunit.DatabaseTestCase, and then override two methods to help
the framework extract your data: getConnection(), which returns a connection to
your database; and getDataSet(), which returns the description of your dataset.
Before executing each test in your test case class, DbUnit populates the database
with exactly those rows in your dataset. Listing 10.17 shows the DatabaseTestCase
to go with the example dataset.

public class FindProductsTest extends DatabaseTestCase {
 private DataSource dataSource;
 private JdbcResourceRegistry jdbcResourceRegistry;

 public FindProductsTest(String name) {
 super(name);
 }

 protected void setUp() throws Exception {
 jdbcResourceRegistry = new JdbcResourceRegistry();
 super.setUp();
 }

 protected void tearDown() throws Exception {
 jdbcResourceRegistry.cleanUp();
 super.tearDown();
 }

 private DataSource getDataSource() {
 if (dataSource == null)
 dataSource = CoffeeShopDatabaseFixture.makeDataSource();
 return dataSource;
 }

 private Connection makeJdbcConnection() throws SQLException {
 Connection connection = getDataSource().getConnection();
 jdbcResourceRegistry.registerConnection(connection);
 return connection;
 }

 protected IDatabaseConnection getConnection() throws Exception {
 Connection connection = makeJdbcConnection();
 return new DatabaseConnection(connection);
 }

 protected IDataSet getDataSet() throws Exception {

Listing 10.17 A test case using a DbUnit dataset

DbUnit methods

362 CHAPTER 10

Testing and JDBC
 return new FlatXmlDataSet(
 new File("test/data/datasets/findProductsTest.xml"));
 }

 public void testFindAll() throws Exception {
 Connection connection = makeJdbcConnection();
 CatalogStore store = new CatalogStoreJdbcImpl(connection);
 Set allProducts = store.findAllProducts();
 assertEquals(3, allProducts.size());
 }
}

For a discussion of the JdbcResourceRegistry see recipe 10.4, “Verify your tests
clean up JDBC resources.” The key methods are getDatabaseConnection(), which
asks our data source for a connection, and getDataSet() which loads the dataset
from disk in “flat XML” format. We recommend storing your datasets on disk if
the corresponding code to build a DefaultDataSet would exceed, say, ten lines.23

The forces that are in conflict are the desire to have the test data in the test and a
conflicting desire to keep “noise” out of the test. Although test data is decidedly
not noise, the code you need to write to express it may well be, so as always, we rec-
ommend that you try both and measure the difference. We think you will end up
on the side of pushing all but the simplest datasets to disk.

◆ Discussion

If you currently have tests that set up test data using JDBC code, we recommend
you change one of those tests to use DbUnit, then compare the two approaches. It
should be clear that DbUnit is the way to go, especially when you consider the
impact of not being able to refactor the JDBC code under test. The only way to
avoid duplication between the test setup code and the JDBC code under test is to
expose the production code’s SQL statements to your test classes, but if you are
unable to refactor the code under test then there is no direct way to make those
SQL statements available. This forces you to duplicate this SQL code, and the
accompanying JDBC code, in your tests! It is certainly not worth the effort.

NOTE DbUnit Limitation—If you have auto-increment or IDENTITY columns on
your database tables, you may need to disable those before using DbUnit
to prime your tables with data. At press time, DbUnit only supported
IDENTITY columns on MS SQL Server. For details, consult the DbUnit site’s
FAQ section.

23 We recommend consulting the DbUnit site for examples of building a DefaultDataSet in your test.

363Use schema-qualified tables
with DbUnit
◆ Related

■ 10.4—Verify your tests clean up JDBC resources

■ 10.7—Manage test data in a shared database

■ DbUnit (http://dbunit.sourceforge.net)

10.11 Use schema-qualified tables with DbUnit

◆ Problem

You want to use DbUnit to store data sets to test a legacy database with tables in
multiple schemas. When you execute the tests, DbUnit does not find your tables.

◆ Background

Although the solution to this is clearly posted on the DbUnit web site (http://
dbunit.sourceforge.net), your impatience may have gotten the better of you when
you first tried to use DbUnit on a database where tables are organized into multi-
ple schemas. It is also possible that after using DbUnit successfully on a database
with a single schema—the default schema—you may be moving to a database with
multiple schemas, and what used to work no longer appears to work.

◆ Recipe

You need to enable qualifying table schemas through a Java system property
called dbunit.qualified.table.names.24 You need to set this property to true
before the test retrieves your database connection, so we recommend placing this
in your test’s setUp() method, as follows:

public class FindProductsTest extends DatabaseTestCase {
 // other code omitted

 protected void setUp() throws Exception {
 System.setProperty("dbunit.qualified.table.names", "true");
 super.setUp();
 }

 protected IDatabaseConnection getConnection() throws Exception {
 return new DatabaseConnection(
 CoffeeShopDatabaseFixture.makeDataSource().getConnection());
 }

24 Unfortunately, DbUnit 2.0 no longer supports setting system properties for this feature. This recipe
works with DbUnit 1.5.6. The new version uses configuration parameters similar to XML parsers. See
the DbUnit site for details.

364 CHAPTER 10

Testing and JDBC
 protected IDataSet getDataSet() throws Exception {
 return new FlatXmlDataSet(
 new File("test/data/datasets/findProductsTest.xml"));
 }

 // tests omitted
}

You can now specify schema-qualified table names in your dataset, just as we did
here with our flat XML dataset.

<?xml version="1.0" ?>
<dataset>
 <catalog.beans productId="000"
 coffeeName="Sumatra"
 unitPrice="750" />

 <catalog.beans productId="001"
 coffeeName="Special Blend"
 unitPrice="825" />

 <catalog.beans productId="002"
 coffeeName="Colombiano"
 unitPrice="925" />
</dataset>

And for completeness, listing 10.18 shows a simple test that uses this dataset.

public class FindProductsTest extends DatabaseTestCase {
 private DataSource dataSource;
 private JdbcResourceRegistry jdbcResourceRegistry;

 public FindProductsTest(String name) {
 super(name);
 }

 protected voJcid setUp() throws Exception {
 System.setProperty("dbunit.qualified.table.names", "true");
 jdbcResourceRegistry = new JdbcResourceRegistry();
 super.setUp();
 }

 protected void tearDown() throws Exception {
 jdbcResourceRegistry.cleanUp();
 super.tearDown();
 }

 private DataSource getDataSource() {
 if (dataSource == null) {
 dataSource = CoffeeShopDatabaseFixture.makeDataSource();
 }

Listing 10.18 Using a schema-qualified dataset

Compatible with older
versions of JUnit

Tracks JDBC
resources
and cleans
them up

365Use schema-qualified tables
with DbUnit
 return dataSource;
 }

 private Connection makeJdbcConnection() throws SQLException {
 Connection connection = getDataSource().getConnection();
 jdbcResourceRegistry.registerConnection(connection);
 return connection;
 }

 protected IDatabaseConnection getConnection() throws Exception {
 return new DatabaseConnection(makeJdbcConnection());
 }

 protected IDataSet getDataSet() throws Exception {
 return new FlatXmlDataSet(
 new File("test/data/datasets/findProductsTest.xml"));
 }

 public void testFindAll() throws Exception {
 Connection connection = makeJdbcConnection();
 CatalogStore store = new CatalogStoreJdbcImpl(connection);
 Set allProducts = store.findAllProducts();
 assertEquals(3, allProducts.size());
 }
}

◆ Discussion

This is just one of those features that one encounters by accident. The longer you
have been using DbUnit successfully without having run into this problem, the
more annoying it is when you finally encounter it, because by that point you have
probably developed a certain sense of security in your knowledge of the package.
This is the kind of situation in which having a pair partner with whom to pro-
gram25 helps considerably: she challenges your assumptions about your working
environment, often leading you to discover the problem sooner than you would if
left to your own devices. We have all experienced “going down the rathole” as the
result of an all-consuming compulsion to find—on our own—the solution to a silly
problem. It is important to cultivate in yourself the ability to recognize when this
is happening and seek help immediately so that you can move from wallowing in
the problem to working towards a solution.

◆ Related

■ DbUnit (http://dbunit.sourceforge.net)

25 www.pairprogramming.com

366 CHAPTER 10

Testing and JDBC
10.12 Test stored procedures

◆ Problem

You want to test stored procedures.

◆ Background

When your application implements some of its business logic in stored proce-
dures then you need to test against a live database in order to test that business
logic. We recognize that this allows the database to optimize executing business
rules for improved response time; however, this makes it more difficult to test
business logic both by placing it in a difficult-to-test resource and potentially split-
ting business logic between the database and application objects. We recommend
keeping business logic where it can more easily be tested. It is, after all, one of the
most important aspects of your software.

If, instead, your application uses stored procedures only as a way to hide data-
base schema details through a CRUD-style interface, then we applaud the people
who made that decision. These stored procedures relieve the data access layer of
the burden of generating correct SQL commands, leaving only data mapping. We
think this is a wise choice, as it makes testing easier!

It may not be possible for you to do so at this time, but if you can refactor away
from the first case towards the second case, we recommend it.

◆ Recipe

If you can help it, do not test the behavior of a stored procedure with JUnit. We
find that JDBC is too verbose for such a simple task; instead, use shell scripts and
your vendor’s SQL command-line tool to run tests. Do not worry whether you have
a framework for your shell. Instead, simply start with a test that feeds some SQL into
your database, queries the result, compares against some known value, and uses
return codes or error levels to signal pass or fail. We recommend such books as
Timothy Hill’s Windows NT Shell Scripting and David Tansley’s Linux and Unix Shell
Programming for a thorough treatment of using shell scripts do to testing.

NOTE BashUnit?—Curtis Cooley tells the story of writing tests for a Unix shell.
The moral of the story is this: you do not need a framework; you need
tests. The framework will appear.

“I just got done with a fun experiment. I was working with a DBA who
groks [Extreme Programming]...and he was trying to get a bunch
of shell scripts working. The scripts were part of the install and
backup procedures for the database.

367Test stored procedures

e
ng
He was struggling with trying to figure out how they worked and
what their intent was. I joked, ‘We should unit test these. It shouldn’t
be that hard to write a shell framework.’

After a couple of minutes of frustration he said, ‘Let’s go for it.’
So for the next day and a half, we wrote unit tests for bash

scripts, developing a little (unit test) framework along the way.
The tests found many minor errors in the scripts that would have

taken quite a while to track down.
In a day and a half we completely rewrote and tested a bunch of

scripts that originally took another DBA a couple of weeks to write.

Should you be required for some reason to test your stored procedures from Java,
the best you can do is set up some data, invoke the CallableStatement, and then
check the results. See recipe 10.10, “Test legacy JDBC code with the database,” for
an example of such a test. Be careful to maintain your test data and clean up your
JDBC resources.

If you want to verify that your business logic invokes a stored procedure cor-
rectly, then we recommend testing with MockCallableStatement objects. Verify
that the callable statement receives the appropriate parameters and that the
invoking code was able to handle the different kinds of parameters the callable
statement passes back. Listing 10.19 shows an example, where we verify that the
CatalogStore adds a product by invoking the expected stored procedure.

public class AddProductTest extends TestCase {
 public void testHappyPath() {
 Product toAdd =
 new Product("999", "Colombiano", Money.dollars(9, 0));

 MockDataSource dataSource = new MockDataSource();

 final MockCallableStatement addProductStatement =
 new MockCallableStatement();
 addProductStatement.setExpectedClearParametersCalls(1);
 addProductStatement.setExpectedCloseCalls(1);
 addProductStatement.addExpectedSetParameters(
 new Object[] { "999", "Colombiano", new Integer(900)});
 addProductStatement.addUpdateCount(1);

 MockConnection2 connection = new MockConnection2() {
 public CallableStatement prepareCall(String sql)
 throws SQLException {

 Assert.assertEquals("call addProduct(?, ?, ?)", sql);

Listing 10.19 AddProductTest using a stored procedure

Check setting
parameters

correctly

Verify th
SQL stri

368 CHAPTER 10

Testing and JDBC
 return addProductStatement;
 }
 };
 connection.setExpectedCloseCalls(1);

 dataSource.setupConnection(connection);

 CatalogStore store =
 new CatalogStoreStoredProcedureImpl(dataSource);
 store.addProduct(toAdd);

 addProductStatement.verify();
 connection.verify();
 dataSource.verify();
 }
}

We can break this test up into three parts:

1 Set up the Data Source—Create a mock data source, preprogrammed to
return a mock callable statement. The statement is set up with the expected
parameters, which tests CatalogStoreStoredProcedureImpl’s ability to map
the domain object Product to the stored procedure parameters, including
converting the Money to an Integer. Notice that with mock objects, there is a
considerable amount of work to do here.

2 Execute the business logic—Invoke addProduct(). This eventually invokes
MockConnection2.prepareCall() which verifies the SQL string. In addition,
addProduct() should set the appropriate parameters on the MockCallable-
Statement we set up in the previous step.

3 Verify the JDBC objects—This is standard for mock objects: ask each one to
verify all the expectations you set at the beginning of the test.

The various expectations we set on the mock JDBC objects ensure that our catalog
store resets the callable statement parameters, executes the statement, updates one
row, and then closes both the statement and the connection.

◆ Discussion

We do not recommend using JUnit to test stored procedures, simply because writ-
ing them in Java at all puts an unnecessary layer of complexity between the tester
(you) and the code being tested. This extra layer of complexity takes effort to build,
as we have illustrated throughout this chapter. A JUnit test for a stored procedure
will include either: (1) inserting data into the database, calling the procedure, and

Execute business logic

Verify the
SQL string

369Test stored procedures
then cleaning up the database, or (2) setting up mock JDBC objects, calling the pro-
cedure, and then verifying the mock JDBC objects.

The resulting JDBC and mock objects code present nothing of value: just a ver-
bose layer around SQL that includes translating data types, handling null values,
and so on—all the things about JDBC that annoy many Java programmers. On the
whole, testing stored procedures is best left to database-centered tools and
approaches, such as shell scripting.

Hey, if you need to write the tests in Java because it is the path of least resistance,
then by all means go ahead, but we have experienced more return on investment
from implementing these tests as shell scripts.

Do not, however, mistake the preceding statement as “do not test your stored pro-
cedures.” Code is code and you need to test it; otherwise, when the application fails,
how will you know whether it is the application or the stored procedures at fault?
Test them with JUnit if you do not have the skill to do it through shell scripting, but
we believe you will save effort by learning to write shell scripts for these tests.

◆ Related

■ 10.10—Test legacy JDBC code with the database

■ Timothy Hill, Windows NT Shell Scripting. Sams, 1998.

■ David Tansley, Linux and Unix Shell Programming.
Toronto, Canada: Pearson Education, 2000.

Testing Enterprise
JavaBeans
This chapter covers
■ Testing session bean methods without the EJB container
■ Testing legacy session bean methods with MockEJB
■ Testing legacy session bean methods with Cactus
■ Testing entity beans both with and without the EJB container
■ Testing message-driven beans and JMS components
■ Verifying components deployed to a JNDI directory
370

371Testing Enterprise JavaBeans
It has become commonplace to design enterprise applications in accordance with
the Model View Controller design pattern, so our discussion generally assumes
the presence of this pattern. MVC advocates separating business logic and data
(the Model), screen-to-screen navigation rules (the Controller), and how to dis-
play information to the user (the View). Even though we agree that the benefits of
using MVC vary considerably from application to application, it is convenient to
talk about Enterprise JavaBeans as Model components, because for the most part,
that is how the J2EE community sees them. A typical J2EE application, then, does
much of its work in the Model components: executing business logic and provid-
ing access to business data. When adding features to your application, you will
likely do twice as much work building new Model component features than you will
building new View component features (such as JSPs or Velocity templates),
although this is only a rule of thumb and depends mostly on how “slick” the appli-
cation’s appearance needs to be. Because we will spend a majority of our effort on the
Model, we ought to make it as easy to test as we can. Beyond the effort to fix prob-
lems in the Model, those problems tend to have more of an impact on the system.

Consider the impact of a defect in a presentation object: if we display informa-
tion incorrectly, it is an inconvenience, but this kind of defect does not usually
corrupt business data. The business might receive angry phone calls from its cus-
tomers, but data is safe. When we programmers sit down to fix this kind of defect,
we tend not to worry about its impact on the rest of the system. By contrast, when
the Model shows incorrect behavior, the problem is more severe: the application
might make incorrect business decisions that could corrupt data and cost the
business money. Fixing the problem tends to involve correcting the corrupted
data (we hope the business performs frequent and thorough backups) as well as
changing a part of the system on which multiple units of business logic might
depend. These dependencies create enough uncertainty to make us uncomfortable
fixing something we know we must fix immediately. The result is a positive feed-
back loop of bad feelings: we are afraid to fix the problem, which worries the busi-
ness, so they put more pressure on us to fix the problem, which makes us even
more afraid to make a mistake. This is a recipe for ulcers, heart attacks, and early
graves for everyone involved. It should be clear, then, the importance of making
the Model as easy to test as possible.

It is common for J2EE application architects to choose Enterprise JavaBeans
(EJB) technology for implementing Model components. This book is not the appro-
priate forum to discuss the suitability of EJB to a given application,1 although we

1 Current suitable forums include www.theserverside.com and http://groups.yahoo.com/group/VirtualPair.

372 CHAPTER 11

Testing Enterprise JavaBeans
generally believe that a majority of projects using EJB would be better off without
it: they need only a small portion of EJB’s feature set, but have to contend with all
of EJB’s complexity in both design and deployment. Let us say that architects
ought to be certain that they need the special features that EJB provides before
deciding to integrate EJB into their application, because, as this chapter will show,
we have to work quite hard to make our EJB-based Model components easy to test.
That is not to say that the work we do is necessarily difficult, but the most flexible
design strategy for making EJB components easy to test is to make the EJBs them-
selves as “thin” as possible, just as one might do with View components. That is,
place most of the code in Plain Old Java Objects2 and use EJBs as simple wrappers
that do little more than plug in to the EJB container and delegate to other Java
objects. The overall strategy is to be able to execute as much Model component
code as possible without involving an EJB container, because that allows tests to be
simple and execute quickly. In spite of this general strategy, there are times when
testing an EJB does not make sense without the container. As this might be confus-
ing, let us provide you with some guiding principles for testing EJBs. The recipes
in this chapter elaborate on these principles and provide examples of implement-
ing tests that adhere to them.

Stateless session beans
One often implements each discrete unit of business logic as a method on a ses-
sion bean. Our “discrete unit” is usually the Transaction Script, as Martin Fowler
defines it in Patterns of Enterprise Application Architecture [PEAA, 110].3 Briefly, a
Transaction Script is a procedure the system invokes to handle a user request.
One usually builds a different Transaction Script for each different kind of
request—often one per form the user can submit. Because each Transaction
Script is meant to execute in isolation from the others, it makes sense to test each
session bean method independently. The general principles of EJB design dictate
that we should create stateless services where possible, so we consider stateless session
beans first. We recommend starting with a separate test fixture (see recipe 3.4,
“Factor out a test fixture”) for each Transaction Script. Write a test for every sce-
nario you can imagine and place them all in the same fixture. If you identify a spe-
cial case (or a number of them) that requires fixture objects that the other “main

2 This is commonly abbreviated as POJO. See www.martinfowler.com/bliki/POJO.html.
3 It is common, but it is not a universal solution. Read further on in PEAA about when and why to use Trans-

action Script, Domain Model or Table Model. Since Transaction Script is easy to implement, you will
encounter it often, and so you will need to know how to test it—and how to refactor away from it.

373Testing Enterprise JavaBeans
line” cases do not need, move those special case tests to a new fixture (see recipe 3.7,
“Move special case tests to a separate test fixture”). Organizing your tests this way
emphasizes the fact that stateless session bean methods are discrete and indepen-
dent units of business logic. The fact that these methods are implemented on the
same class is, mostly, a coincidence of where we happened to type them in,
although we do try to group them with more care than that—for example, meth-
ods with similar parameter lists might belong in the same session bean class.

Notice that we recommend creating a separate fixture for each method, rather
than for each class. You do not need to have a one-to-one correspondence between
test case classes and production classes. The fact that you might package several
Transaction Scripts into a single session bean class does not imply that their tests
should be similarly organized. The general rule of “one test case class per produc-
tion class” makes sense when the classes participate in object-oriented relation-
ships and implement cohesive objects; however, stateless session beans are not
really objects in the pure object-oriented sense—they are collections of proce-
dures. The only reason we implement session beans as classes is that the Java lan-
guage requires it. If this were C++, we might well consider implementing session
bean methods as global functions. Session bean classes are different, so we recom-
mend treating them differently. There is no natural way to group session bean
tests into a common test fixture. Instead, you should start with separate fixtures,
identify the identical ones as you build them, and then consider moving the corre-
sponding tests into a single fixture after you have built three or four fixtures.

Among the different types of Enterprise JavaBeans, stateless session beans may
well be the easiest to test. They are excellent candidates for refactoring: the goal is
to extract all the business logic out of the session bean method and into a Plain Old
Java Object. It then becomes possible to test that logic without involving a container
(see recipe 11.1, “Test a session bean method outside the container”). The session
bean in this case plays the role of a Bridge between EJB behavior and your business
logic, adding distributed computing services to objects without their being aware of
it. Objects that do not know about their environment—particularly when that envi-
ronment is as complex as an EJB container—are the easiest objects to test.

Some session beans invoke other objects they retrieve through JNDI lookups. For
these beans, first perform the lookup in the session bean method and then pass the
resulting object as a parameter to the newly extracted POJO’s business logic
method. This is another way to keep your business logic unaware of its environ-
ment. See the Discussion section of recipe 11.1 for an example of this technique.

If you have inherited “junk drawer” session beans—you know, everything
jammed in the method because that was the easiest place to put it—you need to add

374 CHAPTER 11

Testing Enterprise JavaBeans
tests to it either by simulating the container (see recipe 11.2, “Test a legacy session
bean”) or by deploying it in a real container (see recipe 11.3, “Test a session bean
method in a real container”). We highly recommend writing tests against a simu-
lated container, but if you prefer testing your session bean in a production-quality
environment, then by all means test the deployed session bean. Keep in mind that
the second technique leads to slower-to-execute tests than the first, and you might be
overestimating the value of testing your session bean in a real container, compared
to a simulated container. If you are unsure of the difference, then do the sensible
thing: try both, measure the difference, and let that help you decide.

Stateful session beans
We generally use stateful session beans only in those cases where we cannot assume
access to an HTTP session object, such as when building a rich client (Swing or
AWT) application that communicates with our business logic through RMI/IIOP
rather than over HTTP. If your application only requires a web-based presentation
layer, then we highly recommend implementing business logic as stateless session
bean methods that accept session data through method parameters. The Control-
ler is then responsible for providing that information when it invokes the business
logic. See chapter 12, “Testing Web Components” for information on testing web
components and their interaction with HTTP sessions. In general, testing a state-
ful session bean is not much different than testing a stateless session bean.

One fundamental difference between testing a stateful session bean and a state-
less session bean has to do with scale: we tend to treat each stateless session bean
method as a separate unit to test; whereas we tend to test a stateful session bean
(and all its methods together) as a separate unit to test. The techniques for writ-
ing these tests remain the same as for stateless session beans: decouple the busi-
ness logic from the session bean when possible, test by simulating the container
when needed, and test by deploying the session bean into a live container only
when nothing else will do. You can use the recipes we mentioned in the previous
section to test your stateful session beans as well.

Entity beans
First, we strongly recommend that you use container-managed persistence (CMP)
entity beans when possible and bean-managed persistence (BMP) entity beans only
where necessary. We make this recommendation because CMP entity beans are eas-
ier to build even though they are more expensive to test. This is one trade-off we make that
incurs additional testing costs, and we do not make this trade-off lightly. As you will
see in this chapter, we advocate testing CMP entity beans in a real container and only

375Testing Enterprise JavaBeans
in a real container. For BMP entity beans, we recommend the usual approach:
decoupling business logic from EJB services. The benefits of leveraging the con-
tainer’s services outweigh the benefits of making CMP entity beans easy to test.
Because CMP entity beans are more expensive to test than the rest of our applica-
tion, we have the tendency to execute those tests less frequently, using an “offline”
continuous integration tool such as Cruise Control. (Here we mean “offline” in the
sense that you do not execute these tests as part of your normal programming activ-
ity, unless you are working specifically on the CMP entity beans themselves.)

Next, if you have business logic in your entity beans, remove it immediately. In
order to maintain the flexibility of pluggable persistence—something very useful
for testing, at a minimum—you need to place all business logic in a single applica-
tion layer. If you insist on having simple business logic in your entity beans,
extract an abstract superclass of the bean implementation class and push the logic
up there. The goal is to have that business logic available to any implementation
of your entity class, whether it is an entity bean, a Hibernate component, or an
object in a prevalent system.4

In addition to these general entity bean guidelines, we have provided specific
recipes for testing CMP and BMP entity beans. We recommend testing CMP entity
beans mainly inside the container (see recipe 11.4, “Test a CMP entity bean”). If
your CMP entity bean also has business logic to test, extract that business logic to
its own method, then adapt the techniques in recipe 11.1 to test the new method.

If you use container-managed relationships (CMR) and test your CMP entity
beans in a live container, then the testing complexity increases considerably. The
issues mirror those of testing against a live database, as that is essentially what you
need in order to test container-managed relationships. See chapter 10, “Testing
and JDBC,” for a discussion of the issues in testing against a live database and why
we work so hard (well, not so hard as it turns out) to avoid it. We recommend
against testing container-managed relationships, because this service is provided
entirely within the EJB container itself, and we don’t test the platform. Instead, let
your End-to-End Tests catch any potential defects related to incorrectly specified
container-managed relationships. If you do not find this advice satisfying, or if you
have already been bitten by problems in this area, we recommend using XMLUnit
to verify the various parts of your container-managed relationship meta data. Use
the CMR specification—or a good book on EJBs—to help you decide what your
meta data ought to look like, and then write some XMLUnit tests to codify that.

4 That is, a system based on Prevayler (www.prevayler.org), an alternative to a database for object
persistence.

376 CHAPTER 11

Testing Enterprise JavaBeans
If you describe your relationships to the container correctly, then the container
cannot get them wrong.

Finally we come to BMP entity beans, which we test using a two-pronged attack:
we use the session bean recipes in this chapter to test the business logic and the
recipes in chapter 10 to test the persistence logic. A BMP entity bean consists only
of these two parts: hand-coded persistence logic and simple business logic, and we
do not much care for entity beans that contain their own business logic. We recom-
mend using BMP entity beans only as a Bridge between EJBs and persistence logic.
They ought to do little more than invoke persistence components (JDBC, Hiber-
nate, Torque, however you implement them) that you have tested—or will test—
separately. We show an example of this and discuss the fine points in recipe 11.6,
“Test a BMP entity bean.” Of course, if you have inherited “junk drawer”-designed
entity beans and need to test them as they are, then you might as well treat them
like CMP entity beans and test them that way. See recipe 11.4 for our recom-
mended approach.

Message-driven beans
Message-driven beans are just JMS message consumers (or message listeners, if you
prefer) wrapped inside an EJB. The EJB part of a message-driven bean is quite simi-
lar to a session bean, so many of the testing strategies you apply to session beans
also make sense for message-driven beans. The most notable of these strategies is
refactoring the message-driven bean so that it interacts directly with only the EJB
container by extracting a separate JMS message consumer class [Refactoring, 149].
This newly extracted class handles the message without needing access to EJB con-
tainer-related resources, such as a JNDI directory, so we can easily test the most
important behavior of the message-driven bean without involving an EJB container.

Because JMS is asynchronous by nature, it makes sense to test the message pro-
ducer and the message consumer separately. Because JMS is a framework and its
runtime is an expensive external resource (a JMS server), it makes sense to sepa-
rate the message-processing logic from the message-receiving logic. Put the two
together and you need this recipe: test JMS message processing without a JMS
server, and don’t worry about the JMS details.

If your web application sends JMS messages, you first ought to extract that capa-
bility from the Controller and isolate it in a separate component. This gives you
the flexibility to move away from a messaging architecture when the need arises. If
you have done this or are planning to do this, then you need to test the isolated
JMS message producer, and it is always more pleasant to do so without getting a
server involved. (See recipe 11.12, “Test a JMS message producer.”)

377Testing Enterprise JavaBeans
After extracting the JMS message consumer logic from your message-driven
bean, you can further separate reading the message (unmarshalling its contents)
from processing the message (performing the requisite action). There are three
kinds of behavior involved here, which are easier to test when separated:

1 Reading the message—You can test receiving and unmarshalling the message
contents without worrying about whether the corresponding application
logic works. As long as this logic turns the message into the correct message-
processing method parameters, you know you can read the message correctly.

2 Processing the message—There is some business logic method you need to
execute in response to the message you have received. You could process a
dummy message, but why build a message just to unmarshal it into Java
objects? Instead, directly create the Java objects corresponding to that
dummy message and use a mock objects approach to ensure that the mes-
sage-processing method chooses the correct business logic method.

3 Business logic—Eventually the application invokes some business logic
method in response to the message it has received, but you can easily test
the business logic method by simply invoking it directly. At this point, the
business logic has no idea that it is responding to a JMS message, so you do
not need JMS messages to test it.

Although this appears to be extra work, you are actually investing time writing
more tests that will pay off with faster, simpler tests that are easier to understand.
It may take twice as long to write them, but you will save time and energy every day
thereafter until the end of the project. In our experience, the return on invest-
ment is more than high enough to justify the effort.

When all else fails
It is possible that, due to design constraints or fear of the unknown, you cannot
test your EJBs in the manner we describe in these recipes. You are unable to refac-
tor the EJBs you need to test, or you are feeling pressure to start testing now. If that
is the case, then you can take the most straightforward approach to testing EJBs:
deploy them in a live container, and then write your tests directly against the EJB’s
home and component interfaces. These tests are easy to write, but require a live
environment, so they are slow to execute and might require complex configura-
tion for each machine that needs to execute them. We understand the pressure to
start getting results, so if you feel this pressure, or if you are otherwise unsure
where to start, then test your EJBs directly through their interfaces.

378 CHAPTER 11

Testing Enterprise JavaBeans
We provide the recipes in this chapter to make your EJB testing experience bet-
ter: faster tests that require less setup to execute and that lead to a more flexible
design. Some of these recipes mean extra work up front, but the effort pays off for
the rest of the project’s lifetime.

11.1 Test a session bean method outside the container

◆ Problem

You want to test a session bean method without involving the container.

◆ Background

If you have previous experience trying to test EJBs in a live container, you under-
stand the issues involved. It takes time to start and stop the container: we have
worked on projects where starting the EJB server took fifteen minutes! So even in
the days before we practiced Test-Driven Development, or indeed automated test-
ing at all, we were sometimes only able to test our EJB logic about three times per
hour. This constrained our ability to program incrementally and forced us to
write more code in between testing sessions, which made it difficult to know
where a newly injected defect was, slowing us down even more. This is a positive
feedback loop of negative feelings, and if nothing else, is bad for morale.

Next, there is the complexity of deployment. Especially in the days before we
understood EJBs (but were nevertheless expected to write them), deploying EJBs
happened as if by magic. It is quite similar to seeing public static void
main(String[] args) {} for the first time. If you did not have a background in the
C language when you learned Java, then this statement must have looked like a
strange way to say, “This is the entry point of my application.” There is also a fair
amount of strange machinery that one needs to use even to deploy the simplest
“Hello, World” session bean. This creates a barrier for the programmer trying to
take their first small step in building a new session bean method. Even when you
become experienced enough that deploying EJBs is a familiar task, it is slow, so
you would like to defer deploying your EJB to the last possible moment. This rec-
ipe can help.

◆ Recipe

The general strategy of this recipe, as with many of the J2EE-related recipes in this
book, is to refactor towards a more testable design. We recommend that you
extract your business logic from the session bean method and place it in a Plain

379Test a session bean method
outside the container
Old Java Object (POJO). The resulting session bean, with its business logic
removed, then plays the role of Remote Facade [PEAA, 388], and generally
becomes too simple to break (see the essay B.1, “Too simple to break”). At this point,
you can use the techniques in part 1 to test the business logic POJO entirely in
memory. You can achieve all this by applying a refactoring similar to Move
Method [Refactoring, 142].

Rather than move the session bean method, you move the implementation of the
method (but not the method itself) into a new Domain Model class, and then
change the session bean method to delegate its work to the new Domain Model
class. To illustrate this we return to our Coffee Shop application and the feature
that displays the shopcart, which has been implemented by a ShopcartOperations
session bean. We have a method that adds coffee to the shopcart and another
method that retrieves the shopcart on demand. The Controller is now blissfully
ignorant of where or how the shopcart is stored. Listing 11.1 shows the code for
the session bean implementation, with some of the irrelevant code omitted. The
create()method creates an empty shopcart and the methods addToShopcart()
and getShopcartItems() behave as their names suggest.

package junit.cookbook.coffee.model.ejb;

import java.util.*;
import junit.cookbook.coffee.model.CoffeeQuantity;

public class ShopcartOperationsBean
 implements javax.ejb.SessionBean {

 private Map coffeeQuantities;

 public void ejbCreate() throws javax.ejb.CreateException {
 coffeeQuantities = new HashMap();
 }

 public void addToShopcart(Vector requestedCoffeeQuantities) {
 for (Iterator i =
 requestedCoffeeQuantities.iterator();
 i.hasNext();
) {

 CoffeeQuantity each = (CoffeeQuantity) i.next();

 String eachCoffeeName = each.getCoffeeName();
 CoffeeQuantity currentQuantity;

 if (coffeeQuantities
 .containsKey(eachCoffeeName)) {

Listing 11.1 ShopcartOperationsBean

380 CHAPTER 11

Testing Enterprise JavaBeans
 currentQuantity =
 (CoffeeQuantity) coffeeQuantities.get(
 eachCoffeeName);

 }
 else {
 currentQuantity =
 new CoffeeQuantity(0, eachCoffeeName);

 coffeeQuantities.put(
 eachCoffeeName,
 currentQuantity);
 }

 coffeeQuantities.put(
 eachCoffeeName,
 currentQuantity.add(each));
 }
 }

 public Vector getShopcartItems() {
 return new Vector(coffeeQuantities.values());
 }
}

The test we have in mind simulates two transactions, adding coffees A and B to
the shopcart first, and then adding coffees A and C second. This is perhaps the
most complex test we can imagine for adding coffee to the shopcart, because the
second transaction adds a new product and adds more of a product already in the
shopcart. If this test passes, then we feel confident that the others will pass. This is
the test we want to write:

public void testComplexCase() throws Exception {
 // Create a shopcart somehow!

 Vector coffeeQuantities1 = new Vector();
 coffeeQuantities1.add(new CoffeeQuantity(2, "A"));
 coffeeQuantities1.add(new CoffeeQuantity(3, "B"));

 shopcart.addToShopcart(coffeeQuantities1);
 assertEquals(coffeeQuantities1, shopcart.getShopcartItems());

 Vector coffeeQuantities2 = new Vector();
 coffeeQuantities2.add(new CoffeeQuantity(1, "A"));
 coffeeQuantities2.add(new CoffeeQuantity(2, "C"));

 shopcart.addToShopcart(coffeeQuantities2);

 Vector expectedTotalQuantities = new Vector();
 expectedTotalQuantities.add(new CoffeeQuantity(3, "A"));
 expectedTotalQuantities.add(new CoffeeQuantity(3, "B"));

381Test a session bean method
outside the container
 expectedTotalQuantities.add(new CoffeeQuantity(2, "C"));

 assertEquals(expectedTotalQuantities, shopcart.getShopcartItems());
}

Notice that there is nothing in this test that mentions EJBs. Also notice that we
have not yet been able to write the line of code that creates the shopcart object we
want to test. This is the point at which we create a new Domain Model object rep-
resenting the shopcart business logic and add to it the appropriate methods. We
call this new class ShopcartLogic, which allows us to replace the opening com-
ment in the code with this line of code:

ShopcartLogic shopcart = new ShopcartLogic();

We now copy the two methods, addToShopcart() and getShopcartItems() from
the session bean implementation class into ShopcartLogic. When we do this, we
realize that we also need to copy the session bean’s client state (the variable
coffeeQuantities) into ShopcartLogic, or the latter does not compile. The result
is the class shown in listing 11.2.

package junit.cookbook.coffee.model;

import java.util.*;

public class ShopcartLogic {
 private Map coffeeQuantities;

 public void addToShopcart(Vector requestedCoffeeQuantities) {
 for (Iterator i =
 requestedCoffeeQuantities.iterator();
 i.hasNext();
) {

 CoffeeQuantity each = (CoffeeQuantity) i.next();

 String eachCoffeeName = each.getCoffeeName();
 CoffeeQuantity currentQuantity;

 if (coffeeQuantities
 .containsKey(eachCoffeeName)) {

 currentQuantity =
 (CoffeeQuantity) coffeeQuantities.get(
 eachCoffeeName);

 }
 else {
 currentQuantity =
 new CoffeeQuantity(0, eachCoffeeName);

Listing 11.2 ShopcartLogic

382 CHAPTER 11

Testing Enterprise JavaBeans
 coffeeQuantities.put(
 eachCoffeeName,
 currentQuantity);
 }

 coffeeQuantities.put(
 eachCoffeeName,
 currentQuantity.add(each));
 }
 }

 public Vector getShopcartItems() {
 return new Vector(coffeeQuantities.values());
 }
}

When we execute our test, it fails with a NullPointerException. We do not initial-
ize the coffeeQuantities collection in ShopcartLogic. To fix this problem, we
copy the body of the session bean’s ejbCreate() method into a new constructor
for ShopcartLogic. Here is the resulting constructor:

public ShopcartLogic() {
 coffeeQuantities = new HashMap();
}

We execute the test one more time and receive the following failure:

junit.framework.AssertionFailedError: expected:

 <[<3, A>, <3, B>, <2, C>]> but was:<[<3, A>, <2, C>, <3, B>]>

Looking at the failure, we see that the expected shopcart contents and the actual
shopcart contents are the same, but that the items appear in a different order.
This test should pass, but when we compare Vector objects for equality, the index
at which each element is stored affects whether the collections are equal (see rec-
ipe 2.9, “Let collections compare themselves”). We can immediately think of two
ways to fix this problem:

■ Compare the expected and actual shopcart contents in a way that ignores
the index of each element.

■ Return the shopcart items as a Set, rather than as a Vector.

When we implemented the session bean we chose Vector because Vector is serial-
izable, and the EJB specification requires all method parameters and return types
for remote EJB methods to be serializable at runtime.5 To keep confusion to a
minimum, we specified Vector rather than rely on ourselves to get the runtime

5 This is a slight simplification. These types may be String, primitives, implementations of javax.rmi.
Remote or of java.io.Serializable. See the EJB specification for details.

383Test a session bean method
outside the container
type right.6 The Set interface does not extend Serializable, so there is no guar-
antee that all Set implementations are serializable, in spite of the fact that HashSet
and TreeSet—the two basic implementations of Set in Java—are each serializable.
While deciding whether to change the return type of getShopcartItems() from
Vector to Set (which has a slight ripple effect in our design), we can get to a
“quick green” by wrapping both the expected and actual shopcart items in Set
objects and comparing those. This is one of those tricks that Java programmers
typically learn about through experience, rather than through a tutorial. We
change the final assertion of our test to the following:

assertEquals(
 new HashSet(expectedTotalQuantities),
 new HashSet(shopcart.getShopcartItems()));

Finally the test passes. We can now change the session bean method to delegate to
this Domain Model object. Listing 11.3 shows the final session bean implementation
code, or at least the relevant parts. We have highlighted the changes in bold print.

package junit.cookbook.coffee.model.ejb;

import java.util.Vector;
import junit.cookbook.coffee.model.ShopcartLogic;

public class ShopcartOperationsBean
 implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;
 private ShopcartLogic shopcart;

 public void ejbCreate()
 throws javax.ejb.CreateException {

 shopcart = new ShopcartLogic();
 }

 public void addToShopcart(Vector requestedCoffeeQuantities) {
 shopcart.addToShopcart(requestedCoffeeQuantities);
 }

 public Vector getShopcartItems() {
 return shopcart.getShopcartItems();
 }
}

6 If we were doing it all again, we would change the public interface to List or Collection, rather
than Vector. The good news is that we can always refactor.

Listing 11.3 The final version of ShopcartOperationsBean

384 CHAPTER 11

Testing Enterprise JavaBeans
This session bean implementation class is too simple to break: it does nothing more
than delegate method invocations to another object. Such a class cannot break
unless there is a defect in the class to which it delegates, which is ShopcartLogic in
our case. If it cannot break, why test it? Test the underlying business logic, instead,
as we have done.

Let us summarize what we did, so that you can apply this technique to your own
session beans:

1 We created a new Domain Model class that implements the same meth-
ods that are on the session bean’s remote component interface.

2 We wrote a test that uses the new Domain Model class rather than the
session bean implementation class.

3 We copied the body of the methods we wanted to test from the session
bean implementation class into the Domain Model class.

4 We copied the relevant instance variables (fields) into the Domain
Model class.

5 We copied the body of any relevant ejbCreate() method into a corre-
sponding constructor in the Domain Model class.

6 We tested the Domain Model methods until we were satisfied that
they work.

7 We removed the body of each session bean implementation method,
replacing it with a simple invocation of the Domain Model’s correspond-
ing method. Those session bean methods are now too simple to break.

From here we simply repeat this process until we have moved all business logic
from the session bean implementation classes into the Domain Model classes. You
can apply this same technique to all your session bean methods, whether stateless
or stateful. After you do, you can test all your business logic entirely outside the
container, with tests that execute at a rate of hundreds per second rather than a few
per second, as we have experienced in past projects.

◆ Discussion

If you use this technique to refactor an existing session bean layer, you might be
put off by the extra classes you begin to write. You will feel as though you are dou-
bling a large part of your code base “just for testing.” First, we feel that testing is
important enough to warrant the extra code: we would rather have twice as much
tested code than a smaller amount of untested code. Still, we recognize that extra

385Test a session bean method
outside the container
code of any kind introduces its own costs: the programmers need to read it and
understand it. All things being equal, less code is better. Can we avoid this extra
code somehow? Yes. In many cases it is possible to instantiate your session bean
implementation class directly and test its methods just as you test any other
method that returns a value. In particular, any session bean method that does not
invoke services the EJB container provides (such as a JNDI lookup) can be tested
this way. In our Coffee Shop example, we might write the test as follows:

package junit.cookbook.coffee.model.logic.test;

// import statements omitted

public class AddToShopcartSessionBeanTest extends TestCase {
 public void testComplexCase() throws Exception {
 ShopcartOperationsBean shopcart = new ShopcartOperationsBean();
 shopcart.ejbCreate();

 // Rest of the test as written previously
 }
}

If you choose this technique, do not forget to invoke ejbCreate()! This method acts
as the implementation class’s “second constructor,” so calling only its (Java) con-
structor is insufficient. One drawback to this approach is that the test now
depends on part of the J2EE interface: namely CreateException, which ejb-
Create() might throw. This makes it necessary to add a part of the J2EE library (in
our case it was j2ee.jar) to your class path when building and executing your tests.
Is this a small price to pay for a simpler design? We leave it up to you to try them
both and judge for yourself. If someone decides tomorrow that your business
logic layer ought to use Jini for object distribution rather than EJB, then you will
need to perform the refactoring this recipe suggests, anyway.

NOTE A testable design is a better design—George Latkiewicz, one of our most pro-
lific reviewers, emphasized to us the point underlying the previous para-
graph: this is yet another case where designing for testability naturally
improves the design in other ways. He wrote, “By following the refactor-
ing recommended in this recipe, the EJBs become what they should have
been all along—merely wrappers that provide the benefits and services of
the container to the guts of your application. Now an EJB guru can make
sure that the wrappers do the ‘right thing the right way’ without being
distracted by lots of application logic code, and similarly, the application
developer can inspect the domain classes without needing to understand
all the intricacies of EJB.

“If it weren’t for all the hype that led to the EJB bandwagon, one
wouldn’t have even considered a framework which required such an inva-

386 CHAPTER 11

Testing Enterprise JavaBeans
sive solution to the problems that EJB addresses (distribution, transac-
tions). So, what this recipe reminds us of is that EJB doesn’t really force us
to do what we shouldn’t be doing. It is interesting to note that many of the
new emerging frameworks (Spring, JDO, JBoss 4) have, as a central design
goal, the theme: “leave my POJO alone.”

We could not agree more.

Some of your session bean methods retrieve objects through JNDI. Because this is
a service that your application server provides, you cannot move this code into a
Plain Old Java Object and expect it to work outside the application server runtime
environment. We suggest you treat this object as a parameter to your business
logic, and it is up to your application (and the distributed objects services it uses)
to decide how to retrieve it. Add that object to the Domain Model business
method interface as a parameter, and then have the session bean retrieve the
object using JNDI and pass it into the Domain Model business method. Your test
can provide that object any way it likes, including passing in hard-coded values, an
in-memory implementation, or a mock object (see recipe 11.6). You will use this
technique when your session bean uses an entity bean to provide business data
persistence. The session bean retrieves the entity bean by JNDI and passes it as a
parameter to the Domain Model. In your test, provide some dummy implementa-
tion of the entity bean’s component interface (remote or local, depending on
your needs) so that you can test the business logic without worrying about the cor-
rectness of your persistence mechanism. Test your entity beans on their own,
using the other recipes in this chapter.

It is important to understand why we use EJB technology. We introduce EJBs
into our J2EE application designs to provide object distribution, declarative secu-
rity, and declarative transactions—and nothing more. When we incorporate EJBs
into an application, the goal is to add these features to existing business logic, so
we should be able to test the business logic without worrying about EJBs. Even if it
is “too late” for the session beans that someone has already written, if you decide
to write all new session beans to be mere Remote Facades, then you will find your-
self building those session beans more quickly than you did before.

That is all well and good when considering future session beans, but what if you
need to test existing session beans that you are not allowed to refactor? In that
case, you need to either simulate the container (see recipe 11.2) or test in a live
environment (see recipe 11.3). The resulting tests are slower to execute and often
more complex to write, but you have no choice. Good luck.

387Test a legacy session bean
◆ Related

■ 2.9—Let collections compare themselves

■ 11.2—Test a legacy session bean

■ 11.3—Test a session bean method in a real container

■ 11.6—Test a BMP entity bean

■ B.1—Too simple to break

11.2 Test a legacy session bean

◆ Problem

You need to test a legacy session bean, which appears to require being tested in a
container. You are hoping that there is a better way.

◆ Background

You have inherited session beans that you are not allowed to change, for whatever
reason. As a result, you need to test them in a container, but doing so is costly in at
least two ways:

■ The tests are slower to execute, costing you time every time you execute the tests.

■ The tests are more complicated to write, adding effort to writing the tests.

Nevertheless, if the session bean in question embeds the business logic directly
inside it, you have no choice but to test it within a container. The good news is
that it need not be a real container, saving you some time, if not effort.

◆ Recipe

If your session bean depends on other objects it obtains through a JNDI lookup—
and that is the most likely case—then your best option is to use the MockEJB
(www.mockejb.org) framework.7 This allows you to substitute fake implementa-
tions of those collaborators at runtime, which further isolates the session bean’s
behavior from the behavior of its collaborators. This way you can test just the ses-
sion bean. You will test its collaborators in isolation as well, but not right now.
(One thing at a time.) Consider the common example of a session bean that con-

7 There were some major changes between version 0.4 (August 2003) and 0.5 (December 2003) of Mock-
EJB. We use version 0.5 in this book.

388 CHAPTER 11

Testing Enterprise JavaBeans
tains some business logic and uses an entity bean for object persistence. Say that
we have inherited an implementation of a session bean to manage a shopper’s
shopcart, shown in listing 11.4. Here, LegacyShopcart is an entity bean represent-
ing a single shopcart.

package junit.cookbook.coffee.model.ejb;

import java.util.*;
import javax.ejb.CreateException;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import junit.cookbook.coffee.model.CoffeeQuantity;

public class LegacyShopcartOperationsBean
 implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;
 private LegacyShopcart shopcart;

 public javax.ejb.SessionContext getSessionContext() {
 return mySessionCtx;
 }

 public void setSessionContext(javax.ejb.SessionContext ctx) {
 mySessionCtx = ctx;
 }

 public void addToShopcart(Vector requestedCoffeeQuantities) {
 for (Iterator i = requestedCoffeeQuantities.iterator();
 i.hasNext();
) {

 CoffeeQuantity each = (CoffeeQuantity) i.next();

 String eachCoffeeName = each.getCoffeeName();

 int currentQuantity;
 if (shopcart.containsCoffeeNamed(eachCoffeeName)) {
 currentQuantity = shopcart.getQuantity(eachCoffeeName);
 }
 else {
 currentQuantity = 0;
 }

 shopcart.setQuantity(
 eachCoffeeName,
 currentQuantity + each.getAmountInKilograms());
 }
 }

 public void ejbCreate() throws javax.ejb.CreateException {
 try {

Listing 11.4 A session bean using an entity bean

389Test a legacy session bean
 Context context = new InitialContext();
 Object homeAsObject = context.lookup("ejb/legacy/Shopcart");

 LegacyShopcartHome home =
 (LegacyShopcartHome) PortableRemoteObject.narrow(
 homeAsObject,
 LegacyShopcartHome.class);

 shopcart = home.findByUserName("jbrains");
 }
 catch (NamingException e) {
 throw new CreateException(
 "Naming exception: " + e.getMessage());
 }
 }

 public void ejbActivate() {
 }

 public void ejbPassivate() {
 }

 public void ejbRemove() {
 shopcart = null;
 }
}

Unfortunately for us, this is legacy code, which we define as “code without tests.”8

Adding to our bad fortune, we have been instructed to test this code and not refac-
tor it, because of time constraints and project pressures. Here is our approach:

1 Use MockEJB and the Self-Shunt Pattern9 to “fake out” looking up a shop-
cart using LegacyShopcartHome. Without this, we would need test data and a
live database to execute this test. No thanks!

2 Use EasyMock to create a mock LegacyShopcart. Without this, the test
would depend on the correctness of the LegacyShopcart EJB, which we
plan to test separately, anyway. One thing at a time.

3 Use MockEJB to deploy our fake LegacyShopcartHome, which will return our
mock LegacyShopcart when our session bean invokes findByUserName().

8 Some people find this definition amusing, but others have commented how apt it is. You decide.
Apparently Alan Francis also defines legacy code this way, and said so at Agile Scotland 2003. Strictly
speaking, we wrote these words here before he spoke them there, but I suppose we can call it a draw.
(See www.scottishdevelopers.com/modules/news/article.php?storyid=11)

9 www.objectmentor.com/resources/articles/SelfShunPtrn.pdf, written by Michael Feathers.

390 CHAPTER 11

Testing Enterprise JavaBeans

ock to
ock

n

With these Test Objects in place, we can write our test. First, let us look at the
code that deploys all the objects we are not testing, shown in listing 11.5.

package junit.cookbook.coffee.model.ejb.test;

import java.util.*;

import javax.ejb.*;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;

import junit.cookbook.coffee.model.CoffeeQuantity;
import junit.cookbook.coffee.model.ejb.*;
import junit.framework.TestCase;

import org.easymock.MockControl;
import org.mockejb.*;
import org.mockejb.jndi.*;
import org.mockejb.jndi.MockContext;

public class AddToShopcartTest
 extends TestCase
 implements LegacyShopcartHome {

 private static final String SESSION_BEAN_JNDI_NAME =
 "ejb/legacy/ShopcartOperations";
 private static final String ENTITY_BEAN_JNDI_NAME =
 "ejb/legacy/Shopcart";

 private LegacyShopcart mockShopcart;
 private MockControl shopcartControl;
 private MockContainer mockContainer;

 protected void setUp() throws Exception {
 MockContextFactory.setAsInitial();
 Context context = new InitialContext();
 context.bind(ENTITY_BEAN_JNDI_NAME, this);

 shopcartControl =
 MockControl.createNiceControl(LegacyShopcart.class);
 mockShopcart = (LegacyShopcart) shopcartControl.getMock();

 mockContainer = new MockContainer(context);
 deployLegacyShopcartOperationsEjb(mockContainer);
 }

 private void deployLegacyShopcartOperationsEjb(
 MockContainer mockContainer)
 throws NamingException {

Listing 11.5 Deploying some objects with MockEJB

Mock-deploy test
case as entity
bean home

Use EasyM
generate m
entity bea

Mock-deploy
session bean

391Test a legacy session bean
 SessionBeanDescriptor shopcartOperationsBeanDescriptor =
 new SessionBeanDescriptor(
 SESSION_BEAN_JNDI_NAME,
 LegacyShopcartOperationsHome.class,
 LegacyShopcartOperations.class,
 LegacyShopcartOperationsBean.class);

 mockContainer.deploy(shopcartOperationsBeanDescriptor);
 }

 public LegacyShopcart findByUserName(String userName) {
 return mockShopcart;
 }

 public void remove(Object object)
 throws RemoveException, EJBException {

 // Intentionally do nothing
 }
}

We use the Self-Shunt pattern here so that we can easily substitute our mock Leg-
acyShopcart for the actual LegacyShopcart entity bean that the EJB container will
return in production. You might be tempted to write a small, in-memory version
of LegacyShopcartHome, complete with a Map of user names to shopcart objects,
but for this test there is no need. We do not care where the shopcart entity bean
comes from, or even if it is a real entity bean! Instead, we are concerned with test-
ing the session bean in isolation. That is the motivation for using MockEJB.
Now that we have all the Test Objects in place, let us look at the test, which we add
to class AddToShopcartTest:

public void testEmptyShopcart() throws Exception {
 final String coffeeName = "Sumatra";

 mockShopcart.containsCoffeeNamed(coffeeName);
 shopcartControl.setReturnValue(false);

 mockShopcart.setQuantity(coffeeName, 1);
 shopcartControl.setVoidCallable();

 shopcartControl.replay();

 LegacyShopcartOperationsHome home =
 lookupShopcartOperationsHome();

 Vector requestedQuantities = new Vector() {
 {
 add(new CoffeeQuantity(1, coffeeName));
 }
 };

Mock-
deploy
session

bean

“Self-
Shunt”
methods

392 CHAPTER 11

Testing Enterprise JavaBeans
 home.create().addToShopcart(requestedQuantities);

 shopcartControl.verify();
}

The majority of this test is concerned with setting expectations on the mock Lega-
cyShopcart entity bean. Because we do not have access to what the original pro-
grammer was thinking at the time she wrote this code, we are forced to treat the
code as the specification on which to base our tests. If you have access to a docu-
mented specification and can verify that that specification still makes sense for the
current needs of the project, then use that to write your tests. Here, we are trying
to add a single coffee product to an empty shopcart, so we expect LegacyShopcart-
OperationsBean to do the following:

■ Ask the shopcart if it contains any Sumatra coffee.

■ Set the current quantity of Sumatra to be 1 kg, since there was no Sumatra
in the shopcart.

Because the shopcart is empty, we need to tell the mock shopcart to return false
when asked whether it contains any Sumatra coffee, so we invoke setReturn-
Value(false) to do that. This is the way we simulate an empty shopcart, rather
than duplicate an empty shopcart using an in-memory implementation of a shop-
cart (probably just a wrapper around a Map of product names to quantities). It is a
bad idea to duplicate the essential logic of a shopcart—once in the test and once
in the production entity bean. We would use the production entity bean if we
could do so without dragging that big ugly EJB container with it.

As with most mock object approaches, we invoke mockShopcart.verify() at the
end of our test to verify that the expectations we set at the beginning of the test
are met by the production code. In this case, they are, and the test passes! First,
notice that we were able to test the session bean without changing any of its code,
but also notice the amount of effort that went into mocking the behavior of all the
session bean’s collaborators: its home interface, an entity bean, and the EJB con-
tainer. If we were able to separate the business logic from the session bean, we
would at least be able to eliminate the need to simulate the EJB container. Com-
pare this to recipe 11.1 to see how avoiding the EJB container (and JNDI service)
can simplify testing as well as improve the flexibility of your design.

◆ Discussion

If your session bean does not interact with the application server’s services at all,
then there is a more straightforward approach. In this case, just instantiate the EJB
implementation class in your test and invoke methods on it. With this approach,

393Test a legacy session bean
you need to simulate the container to a certain extent, invoking the EJB lifecycle
methods to ensure that each does what it should. The good news is that, for exam-
ple, you can test your bean’s passivation behavior by simply invoking ejbCreate()
followed by ejbPassivate(). There is no need for the complex test environment
setup of starting a container. You merely simulate that small part of the con-
tainer’s behavior germane to the current test. We recommend using the EJB life-
cycle diagrams in the EJB specification as a guideline in order to determine which
lifecycle methods to invoke for a given test. When you take this approach, you are
treating the EJB implementation class just like any other Java class, so you can
apply whatever testing techniques are appropriate. You can forget for the
moment that you are testing an EJB, and that just makes the tests easier.

If you are able to test your session bean using MockEJB, then keep in mind that
your job is not quite finished. In using MockEJB you are mocking up your session
bean’s collaborators, including how they are deployed into a JNDI directory. This
means that in spite of your good work, it is still possible for the session bean to fail
in production: if you incorrectly deploy the objects on which the session bean
depends, then the session bean will appear to fail. To avoid this rather unpleasant
problem—one which you usually discover after you think you have finished your
task—be sure to include those dependent objects in a test that verifies that they
are correctly deployed into the live JNDI directory. See recipe 11.13, “Test the con-
tent of your JNDI directory” for details.

At the time we write this, MockEJB supports session beans and message-driven
beans, but not yet entity beans. We do not fully understand the limits of testing
with MockEJB, but if you are testing legacy EJBs then you might be the one to find
those limits. If you find you cannot get past them, then your next choice is to test
the EJBs using Cactus, as we describe in 11.3 Test a session bean method in a real
container. We favor MockEJB over Cactus, but recognize that MockEJB does not solve
all our problems, so use MockEJB when you can and Cactus when you must.10

◆ Related

■ 11.1—Test a session bean method outside the container

■ 11.13—Test the content of your JNDI directory

■ MockEJB (www.mockejb.org)

■ Self-Shunt Pattern (www.objectmentor.com/resources/articles/SelfShunPtrn.pdf)

10 Do not mistake this to mean that we dislike Cactus. Rather, we dislike testing domain logic inside a con-
tainer, since domain logic should be separate from implementation details. We are glad that Cactus is
there when we need it!

394 CHAPTER 11

Testing Enterprise JavaBeans
11.3 Test a session bean method in a real container

◆ Problem

You want to test a session bean method inside a real target container.

◆ Background

There are a number of reasons why this might be necessary, including the possibil-
ity that your application server supports a particular feature or extension, or has a
particular defect that you need to take into account during testing. We refuse to
name names, but life can be interesting moving from application server to applica-
tion server, and it is possible to uncover production code “defects”—even when they
merely expose platform defects—running against a live container that you might
not find through simulation. You might also want to execute performance tests, the
results of which depend on being executed in a real environment.11 If you need to
test your session bean in a real container, then this recipe can help you do it.

◆ Recipe

Put simply, use Cactus (http://jakarta.apache.org/cactus). Cactus is a JUnit-based
test framework that executes tests in a J2EE application server. More than that,
Cactus allows you to pretend that you are executing tests on the client side—that
is, outside the application server—by executing them transparently on the server
side. It is an evolutionary step beyond the idea of simply executing server-side tests
on the server (see the Discussion section for more). Let us return to our Coffee
Shop application and the ShopcartOperations session bean. Recall that this ses-
sion bean performs shopcart-oriented operations, such as adding items to it. We
want to test adding a single coffee product to an empty shopcart. With Cactus, the
test is straightforward—almost indistinguishable from a plain-vanilla JUnit test
case. We show the test in listing 11.6.12

package junit.cookbook.coffee.model.ejb.test;

import java.util.Vector;

import javax.naming.*;

11 You can execute performance tests outside the application server; however, you would then only be able
to interpret the results relative to one another. Those results offer limited feedback.

Listing 11.6 A Cactus test for adding a product to a shopcart

12 This test requires Cactus on the class path. We recommend adding the entire contents of the Cactus
lib directory, just to be safe.

395Test a session bean method
in a real container
import javax.rmi.PortableRemoteObject;

import junit.cookbook.coffee.model.CoffeeQuantity;
import junit.cookbook.coffee.model.ejb.*;
import junit.cookbook.coffee.model.ejb.ShopcartOperationsHome;

import org.apache.cactus.ServletTestCase;

public class AddToShopcartTest extends ServletTestCase {
 public void testEmptyShopcart() throws Exception {
 Context context = new InitialContext();
 Object homeAsObject = context.lookup("ejb/ShopcartOperations");

 ShopcartOperationsHome home =
 (ShopcartOperationsHome) PortableRemoteObject.narrow(
 homeAsObject,
 ShopcartOperationsHome.class);

 Vector requestedCoffeeQuantities = new Vector() {
 {
 add(new CoffeeQuantity(2, "Sumatra"));
 }
 };

 ShopcartOperations shopcartOperations = home.create();
 shopcartOperations.addToShopcart(requestedCoffeeQuantities);

 Vector items = shopcartOperations.getShopcartItems();
 assertEquals(1, items.size());
 assertEquals(new CoffeeQuantity(2, "Sumatra"), items.get(0));
 }
}

The only real difference between this test and a regular JUnit test is that this test
case class extends Cactus’s ServletTestCase, rather than junit.framework.Test-
Case. The class ServletTestCase provides the transparent server-side test execu-
tion service, so you only need to write your test, deploy it into the application
server, and then execute the tests from any test runner. Cactus transparently dele-
gates executing the test to a server-side component—at least it is transparent
when your test passes. When your test fails, you receive an “Internal Error” mes-
sage, HTTP Status Code 500, followed by a description of the problem that
occurred on the server. Aside from this extra error message, though, test failure
reporting occurs as it does when executing tests locally. Cactus is truly a wonderful
tool for server-side testing.

We recommend deploying your tests in a separate J2EE application (*.ear file)
so that they remain isolated from your production web application resources, and are
not subject to any unnecessary security policies. This simplifies the test environment

Use Cactus’s server-
side TestCase class

396 CHAPTER 11

Testing Enterprise JavaBeans
considerably. In addition, you should read all about the integration between Cac-
tus and Ant on the Cactus web site. If you are using Ant to build your product and
run your tests, then it is easy to integrate Cactus into that environment.

◆ Discussion

This technique helps you cope with having to test session beans in a real con-
tainer. If you can, we recommend refactoring the session bean instead. Extract
the business logic and test it outside the container, as we describe in recipe 11.1.
We recognize that you are not always able to do this, but if you can, then you
should. Your next alternative is to simulate the container, as we describe in
recipe 11.2, using MockEJB.

If you need to test your EJB in the container, but do not wish to use Cactus,
then we suggest you write a simple servlet that executes tests on the server on your
behalf and reports the results as a web page. Before you run off and write that
yourself, keep in mind that this is exactly how Cactus began, so we recommend
you simply use it. Still, if you find that Cactus is more than you need, then you can
start with your own, simpler solution. When you reach the point where you realize
you are reimplementing Cactus, stop. There is little point in doing that.

One last comment about testing a session bean in a container: be aware of all
the costs of testing within the container, because they add up. First, you have the
complex test environment: you need to start and stop the application server as
needed, you have to configure the application server correctly and, in many cases,
you have to deal with licensing issues. Next, you have a slow test environment:
remote communications, JNDI lookups, database access; these things all add to test
execution time. When you consider that the goal of Programmer Testing is to exe-
cute the tests after every change to ensure you have not broken anything, it becomes
obvious that these tests are simply too slow to support this goal. Perhaps the most
insidious cost, though, is an indirect one: most session beans interact (eventually)
with the database. Testing these session beans in a live environment means setting
up test data for each and every test. We discussed in chapter 10, “Testing and
JDBC,” the cost of setting up test data, whether you try setting up fresh data for
each test or, worse, try to have all your tests share a common test data set. These are
costs that just keep climbing throughout the lifetime of the project, and which
grow superlinearly—that is, costs which accelerate. That is bad news. These are the
reasons we recommend that you limit the amount of EJB testing you do in a live
environment. The costs just add up far too quickly for our liking.

397Test a CMP entity bean
◆ Related

■ 11.1—Test a session bean method outside the container

■ 11.2—Test a legacy session bean

■ Chapter 10—Testing and JDBC

■ Cactus (http://jakarta.apache.org/cactus)

11.4 Test a CMP entity bean

◆ Problem

You would like to test a container-managed persistence (CMP) entity bean.

◆ Background

Part of the point of using container-managed persistence is to let the application
server—specifically the EJB container—provide the vast majority of entity bean
code for you. Because we recommend that you don’t test the platform, it seems quite
reasonable not to test CMP entity beans at all. It seems reasonable, but it is not.
Even though you might not need to write much code for CMP entity beans—
simply declare interfaces and methods—you still need to specify your CMP entity
bean at least in enough detail that the container can fill in the rest. This is why we
recommend that you try testing the CMP entity bean meta data, rather than the
bean itself (see recipe 11.5, “Test CMP meta data outside the container”). We have
found that, much of the time, this is enough, but we recognize that there are
times when you need more confidence than that.

If you have encountered specific, recurring defects with CMP entity beans, then
we recommend writing at least some tests to guide future work. You might be work-
ing with a slightly defective application server, you might be working with CMP
entity beans that someone else wrote (and for which there are no tests), or per-
haps you are learning to write CMP entity beans and would like to use tests to pro-
vide ongoing feedback while you learn.13 Whatever the reason, we understand
that some programmers want to test “the real thing” and not “just the meta data.”
If you fall into that category, then this recipe is for you.

13 This is an excellent technique for learning a new programming language. When J. B. took his first steps in
Squeak Smalltalk, he wrote Learning Tests using SUnit, the Smalltalk equivalent to (and predecessor of) JUnit.

398 CHAPTER 11

Testing Enterprise JavaBeans
◆ Recipe

The most direct way to test a CMP entity bean is to test it inside the container. If
you wish to do this, then we highly recommend using Cactus. In this recipe we will
describe the kinds of tests you likely need to write. To write them, use the same
techniques we describe in recipe 11.2. To test a CMP entity bean requires testing
these features:

■ The mapping between the entity bean class and the database table

■ The mapping between the entity bean container-managed fields and the
table columns

■ Container-managed relationships, if any

■ All the finder methods

We discuss testing security and transaction attributes elsewhere (chapter 13, “Testing
J2EE applications”) because these issues apply to more than just CMP entity beans.

You can test both levels of mappings (class/table and field/column) by storing
a few objects and loading them back. Be sure to exercise each field of the entity
bean at least once. You can test relationships by storing an empty collection of
related objects, loading it back, adding an object or two, and then storing it once
again. As for the finder methods, unfortunately there is no substitute for setting
up test data, invoking the finder, and verifying the results.

In chapter 10 we discussed the exorbitant cost of testing against live data from a
database, so we implore you to keep this in mind as you test your CMP entity bean
finder methods. Once you gain some confidence writing EJBQL queries—or even
if you have that confidence already—move your live-container tests to a separate
test suite. Execute those tests using a background automated build tool such as
Cruise Control. When someone changes a finder method, he must execute those
tests to verify the change; otherwise, let Cruise Control run them in the background
as a safety net against unexpected changes.

Finder methods are the one part of CMP entity beans that are the most prone
to error, so we recommend that you test them thoroughly. At the same time, we
recognize that those tests are expensive to execute, which is why we recommend
executing them in the background. Aside from finder methods, though, we rec-
ommend testing just CMP entity bean meta data, since that is what you write. See
recipe 11.5 for details.

399Test a CMP entity bean
◆ Discussion

You will notice that this list of tests does not include, for example, verifying the
entity bean in the presence of null values, its unique indices, duplicate keys, or
invalid foreign keys. The application server writes code to handle those situations,
and not you, so you ought to focus on testing how you react to these conditions.
Presumably you have session beans that invoke this CMP entity bean. Rather than
test whether the EJB container correctly throws DuplicateKeyException (which is
outside your control, anyway), test how your session bean reacts when the entity
bean throws a DuplicateKeyException.14 Don’t test the platform.

We have been on projects where it has been suggested to test CMP entity beans
“through the End-to-End Tests.” This would mean using black-box—“from the
GUI, to the back end, and back”—tests to verify that the entity beans fit into the
overall application correctly. We strongly recommend that you resist the urge to do
this. First, End-to-End Tests are not well-suited to isolate defects, as they involve the
entire application. These tests are meant to show that you have implemented fea-
tures the way they were specified. Next, consider the variety of tests you might want
to write for a single entity bean, checking all the finder methods for various bound-
ary conditions and so on. Imagine how slow a test suite you would have if you tested
all these boundary conditions with a web container, an EJB container, EJB-to-EJB
communication, and all the business logic executing around it. Do not go down
that road, as it will only lead you to pain and misery. We have been that way. If you
are going to test CMP entity beans in a live container, then test them in isolation.

One more note, related to deployment: if your tests themselves are going to set up
and tear down test data in the database, be careful with your choice of entity bean
commit options. If your test uses JDBC (whether directly, or indirectly through a
tool such as DbUnit) to create and remove test data while your EJBs are running,
then do not deploy your entity beans using “exclusive database access,” also known
as “commit option A.” Certainly your entity beans do not have exclusive access to
the database, so especially if your tests change the live data in the middle of a
transaction, you will not be able to assume exclusive access to the database for
your entity beans. You can detect this problem if your tests fail because of unex-
pected duplicate key or foreign key problems, or your entity beans appear to have
stale data during your tests but not in production. Consult the EJB specification or

14 We recommend using MockEJB and deploying a crash test dummy version of the entity bean that always
throws the desired exception. See recipe 11.1 for details.

400 CHAPTER 11

Testing Enterprise JavaBeans
an EJB-specific book such as Mastering Enterprise JavaBeans15 for details on the vari-
ous commit options.

◆ Related

■ 11.1—Test a session bean method outside the container

■ 11.5—Test CMP meta data outside the container

■ Chapter 10—Testing and JDBC

■ Chapter 13—Testing J2EE Applications

11.5 Test CMP meta data outside the container

◆ Problem

You want to test a CMP entity bean, but outside the container.

◆ Background

There was a project on which J. B. worked that used a database overrun with refer-
ential integrity. There were foreign key chains—that is, I have a foreign key to you,
you have a foreign key to him, who has a foreign key to her, and so on—spanning
seven or eight tables. The end result was absolute chaos for testing: to populate
the data to test one entity bean required populating dozens of rows in eight differ-
ent tables. Not only did this make tests slow to execute, but they were a nightmare
to maintain. The team had to choose between isolated test data for each test—and
the 45 seconds-per-test execution speed that came with it—and one big suite of
test data for a large number of tests, whose cost of change turned out to be aptly
modeled by an exponential curve—and a steep one at that. If this sounds like your
situation, and if you absolutely must use entity beans, and if you absolutely cannot
do away with a majority of those referential integrity constraints,16 then you need
another plan. This recipe is your other plan.

15 Ed Roman, Scott Ambler and Tyler Jewell. Mastering Enterprise JavaBeans, 2nd Edition. John Wiley & Sons,
2001. This book is freely available online at www.theserverside.com/books/wiley/masteringEJB/index.tss.

16 Show this sentence to the nearest Database Administrator. He may find it funny... or upsetting. Either
way, you are sure to get a reaction.

401Test CMP meta data
outside the container
◆ Recipe

If testing the entity bean in a live container is taking too much time, then what
you can do is test the entity bean meta data instead. The good news is that this
meta data is typically expressed in XML, so it is quite easy to test. For a typical CMP
entity bean, you can test any of the following without the container:

■ The container-managed fields are specified correctly.

■ The mapping between the entity bean class and a database table is correct.

■ The mapping between container-managed fields and table columns is correct.

■ A table column mapping exists for each container-managed field.

■ The entity bean uses the correct data source.

■ EJBQL queries are correctly specified.

■ Container-managed relationships are correctly specified.

There are probably others, but this list is a good place to start. You can use XML-
Unit (see chapter 9, “Testing and XML”) to write tests for all the various deploy-
ment descriptors and server configuration files. Note that the way you test your
server configuration depends on how your application server stores that informa-
tion. For example, JBoss stores it all in XML documents, making it easy to test with
XMLUnit. Specifically, we could test the mapping between our CoffeeCatalogItem
entity bean, representing an item in the Coffee Shop’s catalog, and the catalog.
beans database table that provides persistent storage for it. Listing 11.7 shows the
test we would write for JBoss 3.2.4.17 Note that it extends XMLTestCase, part of the
XMLUnit package.

package junit.cookbook.coffee.model.ejb.test;

import java.io.FileReader;
import org.custommonkey.xmlunit.*;
import org.w3c.dom.Document;
import org.xml.sax.InputSource;

public class CoffeeCatalogItemEntityBeanMetaDataTest
 extends XMLTestCase {

17 This test uses an XML document that declares a DTD, so you’ll either need a network connection to
execute it, or you’ll have to edit the XML document to point to your local copy of the JBoss DTD in
question.

Listing 11.7 CoffeeCatalogItemEntityBeanMetaDataTest

402 CHAPTER 11

Testing Enterprise JavaBeans
 private static final String META_DATA_FILENAME =
 "../CoffeeShopEJB/ejbModule/META-INF/jbosscmp-jdbc.xml";

 private static final String ENTITY_BEAN_XPATH =
 "/jbosscmp-jdbc/enterprise-beans/"
 + "entity[ejb-name='CoffeeCatalogItem']/";

 private Document metaDataDocument;

 protected void setUp() throws Exception {
 XMLUnit.setIgnoreWhitespace(true);

 metaDataDocument =
 XMLUnit.buildTestDocument(
 new InputSource(new FileReader(META_DATA_FILENAME)));
 }

 public void testTableMapping() throws Exception {
 assertXpathEvaluatesTo(
 "catalog.beans",
 ENTITY_BEAN_XPATH + "table-name",
 metaDataDocument);
 }

 public void testFieldMapping() throws Exception {
 assertXpathEvaluatesTo(
 "productId",
 ENTITY_BEAN_XPATH
 + "cmp-field[field-name='productId']/column-name",
 metaDataDocument);

 assertXpathEvaluatesTo(
 "coffeeName",
 ENTITY_BEAN_XPATH
 + "cmp-field[field-name='coffeeName']/column-name",
 metaDataDocument);

 assertXpathEvaluatesTo(
 "unitPrice",
 ENTITY_BEAN_XPATH
 + "cmp-field[field-name='unitPrice']/column-name",
 metaDataDocument);
 }

 public void testDataSource() throws Exception {
 assertXpathEvaluatesTo(
 "java:/jdbc/mimer/CoffeeShopData",
 "/jbosscmp-jdbc/defaults/datasource",
 metaDataDocument);
 }
}

403Test CMP meta data
outside the container
All the XPath expressions in this test come from reading the Document Type Defi-
nition (DTD) for configuring container-managed persistence for JBoss. You need
to consult the corresponding documentation for your application server of choice
to obtain the same results—and that assumes that your vendor stores that informa-
tion in XML as JBoss does. For those of you using JBoss, after you write this test, you
might not be clear what the XPath expressions in the test mean. We decided to
apply a few refactorings to this example. Here is a summary of what we did:

1 We revealed the intent behind the XPath expressions by introducing appro-
priately named methods.

2 We removed duplication in the XPath-based assertions, particularly involv-
ing substrings that the XPath expressions have in common.

3 We introduced a new class named EntityBeanMetadataTest and made it
part of Diasparsoft Toolkit.18

4 We pulled up [Refactoring, 322] all the newly created, generic methods
into the new class, leaving only the original tests behind, and with much
less “noise” to distract the programmer.

The end result is the test case class in listing 11.8. Notice that setUp() invokes
setEntityBeanUnderTest() so that the tests do not need to duplicate the name of
the entity bean under test throughout. We tend to test each entity bean in its own
test fixture, so this makes the most sense to us at the moment. We have shown the
changes highlighted in bold print.

package junit.cookbook.coffee.model.ejb.test;

import java.io.FileReader;
import javax.xml.transform.TransformerException;
import org.custommonkey.xmlunit.XMLUnit;
import org.w3c.dom.Document;
import org.xml.sax.InputSource;
import com.diasparsoftware.util.jboss.testing.EntityBeanMetaDataTest;

public class CoffeeCatalogItemEntityBeanMetaDataTest
 extends EntityBeanMetaDataTest {

 protected void setUp() throws Exception {
 setMetaDataFilename(
 "../CoffeeShopEJB/ejbModule/META-INF/jbosscmp-jdbc.xml");
 setEntityBeanUnderTest("CoffeeCatalogItem");

18 www.diasparsoftware.com/toolkit

Listing 11.8 The refactored test

404 CHAPTER 11

Testing Enterprise JavaBeans
 super.setUp();
 }

 public void testTableMapping() throws Exception {
 assertBeanMappedToTable("catalog.beans");
 }

 public void testFieldMapping() throws Exception {
 assertFieldMappedToColumn("productId", "productId");
 assertFieldMappedToColumn("coffeeName", "coffeeName");
 assertFieldMappedToColumn("unitPrice", "unitPrice");
 }

 public void testDataSource() throws Exception {
 assertDefaultDataSource("java:/jdbc/mimer/CoffeeShopData");
 }
}

What about EntityBeanMetaDataTest? Listing 11.9 shows an early version of this
class. It will evolve over time to meet the needs of whoever might use it. As you
write tests for other types of J2EE meta data, you might find yourself extracting
classes [Refactoring, 149] similar to this one. If you do, please make those classes
available to the rest of the J2EE programming community. We would appreciate it!

package com.diasparsoftware.util.jboss.testing;

import java.io.FileReader;
import javax.xml.transform.TransformerException;
import org.custommonkey.xmlunit.*;
import org.w3c.dom.Document;
import org.xml.sax.InputSource;

public abstract class EntityBeanMetaDataTest extends XMLTestCase {
 private String metaDataFilename;
 private Document metaDataDocument;
 private String entityBeanName;

 protected void setUp() throws Exception {
 parseMetaData();
 }

 protected void setMetaDataFilename(String metaDataFilename) {
 this.metaDataFilename = metaDataFilename;
 }

 protected void setEntityBeanUnderTest(String entityBeanName) {
 this.entityBeanName = entityBeanName;
 }

 protected void parseMetaData() throws Exception {

Listing 11.9 An early version of EntityBeanMetaDataTest

405Test CMP meta data
outside the container
 XMLUnit.setIgnoreWhitespace(true);

 metaDataDocument =
 XMLUnit.buildTestDocument(
 new InputSource(new FileReader(metaDataFilename)));
 }

 protected void assertBeanMappedToTable(String expectedTableName)
 throws TransformerException {

 assertXpathEvaluatesTo(
 expectedTableName,
 getXpathRelativeToEntityBean(entityBeanName, "table-name"),
 metaDataDocument);
 }

 protected void assertFieldMappedToColumn(
 String fieldName,
 String expectedColumnName)
 throws TransformerException {

 assertXpathEvaluatesTo(
 expectedColumnName,
 getColumnMappingForField(entityBeanName, fieldName),
 metaDataDocument);
 }

 protected void assertDefaultDataSource(
 String expectedDataSourceJndiName)
 throws TransformerException {

 assertXpathEvaluatesTo(
 expectedDataSourceJndiName,
 "/jbosscmp-jdbc/defaults/datasource",
 metaDataDocument);
 }

 private String getColumnMappingForField(
 String entityBeanName,
 String fieldName) {

 return getXpathRelativeToEntityBean(
 entityBeanName,
 "cmp-field[field-name='" + fieldName + "']/column-name");
 }

 private String getXpathRelativeToEntityBean(
 String entityBeanName,
 String relativeXpath) {

 return getEntityBeanXpath(entityBeanName) + relativeXpath;
 }

 private String getEntityBeanXpath(String entityBeanName) {
 return "/jbosscmp-jdbc/enterprise-beans/"
 + "entity[ejb-name='"

406 CHAPTER 11

Testing Enterprise JavaBeans
 + entityBeanName
 + "']/";
 }
}

◆ Discussion

We should emphasize at this point that implementing referential integrity in the
database is not necessarily everything people claim it is. In fairly specific circum-
stances it is more of a hindrance than an aid. In particular, if there is only one
application accessing the database, then it is possible to place all referential integ-
rity rules in the application and leave them out of the database. Aside from purist
arguments against this practice, it makes testing easier by reducing the size and
complexity of the data sets you need for testing. This is a sizable benefit and
should not be discounted right away. Referential integrity constraints do help
keep invalid data out of the database—data which could come from places
entirely out of your control—but they come at a cost, and you need to balance
that cost against the benefits. There is no free lunch. (See the post script to this
recipe for an opposing view.)

Another way to reduce the cost of testing entity beans against a live database is
to execute those tests (and only those tests) against a version of the database
schema without referential integrity rules. This gives you the best of both worlds:
the safeguard of referential integrity in production without the shackles of too
much referential integrity during testing. If you choose this direction, do be care-
ful of any defects that “slip through” as a result. If you find that this strategy leads
to defects that only occur because you are using the strategy, then either rethink
the strategy or try to learn from your mistakes. Every benefit has its price.

You might wonder about using this technique to test EJBQL queries; after all,
the only way to be certain that an EJB query works is to try it against a live applica-
tion server. We agree with this, but that does not necessarily make it a good idea
to test every query against a live application server. This is another case where you
need to balance cost and benefit. One maxim among test-oriented programmers
(such as those who practice Test-Driven Development) is “test until fear turns to
boredom.” That is, keep writing tests until you are confident that the code works,
then stop. On the other hand, if you are afraid that the code does not work, then
keep writing tests until the fear subsides. When we follow this guideline we tend to
work in cycles: we test everything down to the smallest detail, and then boredom
(even complacency!) sets in, we relax our guard, a defect pops up that embar-
rasses us, and we turn the testing knob back up to 11. This appears to hit the sweet
spot in the trade-off between the cost and benefit of testing.

407Test CMP meta data
outside the container
You should apply this principle to testing EJBQL queries. You want to minimize
the number of these tests and execute them less frequently, such as in a back-
ground continuous build process using Cruise Control or Anthill. At the begin-
ning, write in-container tests for all EJBQL queries. Over time, as you become more
comfortable, write fewer tests for those queries; however, and this is the important
part, whenever you introduce a defect through an EJBQL query you must write a test
for it. Without this important feedback, you will begin to feel as though you never
make a mistake, and if you truly felt that way, then we would wonder why you need
this book!19 Remember that the goal is still to produce defect-free code, so if you
introduce a defect because you forgot to write a test, then write the test. Over time,
this will occur less frequently. When a problem arises, your End-to-End Tests will
catch them (or QA if you are less lucky) and alert you to the problem. You can then
execute your in-container tests to isolate the problem and help you fix it.

◆ Post script

Our intrepid reviewer, George Latkiewicz, dislikes databases without referential
integrity constraints. “If I had a choice I wouldn’t shake a stick at a database that
didn’t have RI. I have personally worked on a project where a whole team spent
over a year attempting to reverse engineer the RI that should have been defined
in a DBMS and cleaning up the data that violated those constraints (‘What do we
do when there is no matching person for the transaction and no matching prod-
uct, but the accounting information records that the amount was actually paid?’
and ‘Can you figure out the person from the credit card number?’). Literally mil-
lions of dollars and thousands of hours spent because of a handful of missing RI
constraints.” Obviously we ought to take George’s experience to heart, but we
tend to take an extreme position on these issues because that is usually when we
learn the most, and the more we know, the better for our clients. Here, we ask,
“How much are these constraints helping us, anyway? Let us get rid of them all
and see.” We have worked on several projects that use referential integrity spar-
ingly, if at all, and have walked away from them unharmed. Whose position is bet-
ter—George’s or ours? As usual, even better would be someplace in between,
which is why we recommend you try both and measure the results. If nothing else,
this recipe reminds us not to bear the cost of referential integrity (or anything
else, for that matter) without understanding the benefit.

◆ Related

■ Chapter 9—Testing and XML

19 Just kidding. Thank you for picking up this book. No hard feelings.

408 CHAPTER 11

Testing Enterprise JavaBeans
11.6 Test a BMP entity bean

◆ Problem

You want to test a bean-managed persistence (BMP) entity bean.

◆ Background

If you are using entity beans, then why would you choose to use bean-managed
persistence? Whereas there might in the past have been performance- or design-
related reasons to use BMP entity beans, we have seen those issues melt away for
the most part. You might have inherited an application that uses BMP entity beans
because it has survived from the days before CMP began to perform acceptably on
most application servers. Now nobody wants to change those entity beans because
“they work.”20 It is also possible that you have inherited a newer application, but
one written by programmers that fell victim to the myth that CMP entity beans
were “too slow.” Whatever the reason, a BMP entity bean has many more moving
parts in it than a CMP entity bean, making it considerably more difficult to test. As
a result, this recipe is among the most involved in the book. That just reflects the
complexity of BMP: you have an EJB using JDBC to talk to a database. That means
two layers of complexity to contend with, so it is no surprise that there is essen-
tially double the work involved in building isolated tests around BMP entity beans.

◆ Recipe

The strategy you can use to test a BMP entity bean depends on your ability to move
the persistence code out of the entity bean and into other classes. First, we will
consider what to do when you can refactor the BMP entity beans you need to test.
This makes testing BMP entity beans much simpler, because a BMP entity bean
consists of little more than JDBC client code, JNDI lookups, and primary key man-
agement. To that end, here is the general strategy:

1 Create a new class, which we will call the Bean Logic class.

2 Pick an EJB lifecycle method and identify the places where it performs a
JNDI lookup or obtains the primary key.

3 Create a new method in the EJB that takes as parameters the primary key
(if needed) and any objects the EJB looks up with JNDI.

20 As soon as you are afraid of changing code, throw it away. You may not always be able to do this, but if
you do it when you can, you will notice an improvement in the code you write. Trust us.

409Test a BMP entity bean
4 Move this new method into the Bean Logic class and name it appropri-
ately. You can make the code easier to read by naming the new method
after the lifecycle method.

5 Presumably the Bean Logic class now contains mostly JDBC client code,
which you can test using the techniques in chapter 10, “Testing and JDBC.”

6 Use a mock objects approach to verify that the BMP entity bean correctly
supplies the primary key to any Bean Logic method that requires it. This
recipe relies rather heavily on mock objects, so if you are not already
familiar with them, read essay B.4, “The mock objects landscape,” and
then visit the EasyMock site (www.easymock.org) to help you get started.

7 Create a Deployment Test—which will have to run within the container—
to verify that the BMP entity bean retrieves its data source correctly.

8 Use a mock objects approach to test any programmatic security the bean
might perform. The most direct approach is to instantiate the entity bean,
give it a mock EntityContext and a fake version of the Bean Logic class,
and then invoke the various lifecycle methods and verify that they per-
form the appropriate security checks.

To illustrate this strategy, let us return to our Coffee Shop application. We have a
BMP entity bean that represents order information: an order has an ID and
belongs to a customer. (An order also contains order items, but we ignore that for
now to simplify the example.) Imagine that you have inherited a “junk-drawer”
BMP entity bean: one that does everything directly inside its lifecycle methods.
(See solution A.7, “Test a BMP entity bean,” for the complete source of the origi-
nal entity bean.) Testing this bean requires a live container, Cactus, setting up live
test data in a database—all this is much more complex than it needs to be. Apply-
ing the technique of this recipe, we move the vast majority of the entity bean code
into a new class, which we name OrderBmpBeanLogic. To illustrate how little is left
in the entity bean, here is what remains of the method ejbLoad():

public void ejbLoad() throws EJBException, RemoteException {
 logic.ejbLoad(getOrderId());
}

It really does not get much simpler than that. The variable logic stores an
instance of the class OrderBmpBeanLogic. The method getOrderId() reveals the
intent behind retrieving the primary key, because the primary key is the order ID:

private Integer getOrderId() {
 return (Integer) context.getPrimaryKey();
}

410 CHAPTER 11

Testing Enterprise JavaBeans
Returning to ejbLoad(), notice the difference between this method’s signature and
that of the Bean Logic class’s ejbLoad() method: the Bean Logic class’s version of
the method takes the order ID as a parameter. Managing the primary key remains
the entity bean’s job, so that code stays with the entity bean. This makes it easier
to test the Bean Logic class because the test can provide the order ID directly,
rather than use an EntityContext, something else the EJB container instantiates
(and not us). As it stands, the Bean Logic class—despite the fact that it is called a
bean logic class—does not depend at all on EJBs or an application server. We
merely call it the “Bean Logic class” in the absence of a better name.21 As it stands,
OrderBmpBean.ejbLoad() looks to be too simple to break, so we do not need to test it.
The only way it can fail is if either the primary key is incorrect or if OrderBmpBean-
Logic.ejbLoad() is broken.

Now the only way the primary key could be incorrect would be if the EJB con-
tainer were broken. The EJB container provides the entity context, so unless we
forget to invoke EntityContext.getPrimaryKey(), we will have our primary key.
Well, then, our next test should verify that we do not forget to invoke that method.
Listing 11.10 shows the test.

package junit.cookbook.coffee.model.ejb.test;

import javax.ejb.EntityContext;
import javax.naming.*;
import javax.naming.Context;
import javax.sql.DataSource;

import junit.cookbook.coffee.model.ejb.OrderBmpBean;
import junit.framework.TestCase;

import org.easymock.MockControl;
import org.mockejb.jndi.MockContextFactory;

public class OrderBmpBeanTest extends TestCase {
 private OrderBmpBean bean;
 private Object actualPrimaryKey;

 protected void setUp() throws Exception {
 MockContextFactory.setAsInitial();

 new InitialContext().bind(
 "java:comp/env/jdbc/OrderData",
 mockDataSource);

21 If you think of a better name, then use it. Do not inherit our laziness.

Listing 11.10 OrderBmpBeanTest

411Test a BMP entity bean
 bean = new OrderBmpBean();
 }

 public void testGetOrderId() throws Exception {
 Integer orderId = new Integer(0);

 MockControl entityContextControl =
 MockControl.createNiceControl(EntityContext.class);

 EntityContext mockEntityContext =
 (EntityContext) entityContextControl.getMock();

 mockEntityContext.getPrimaryKey();
 entityContextControl.setReturnValue(orderId);

 entityContextControl.replay();

 bean.setEntityContext(mockEntityContext);
 assertEquals(orderId, bean.getOrderId());

 entityContextControl.verify();
 }
}

Here we have used EasyMock to create a mock EntityContext. We then instanti-
ate the EJB implementation class (OrderBmpBean), invoke setEntityContext()
passing in our mock entity context, and then verify the value returned by getOr-
derId(). To be certain that this value is not just hard coded somewhere, we take
advantage of EasyMock’s API for verifying method invocation sequences. We set
up the mock entity context, “record” the expected invocation of getPrimaryKey(),
and then pass the mock entity context to our entity bean. When we invoke ver-
ify() at the end of the test, the mock entity context verifies that its getPrima-
ryKey() method was indeed invoked once. When we execute this test, it passes, so
we can conclude that OrderBmpBean correctly retrieves the primary key from its
entity context. We can further conclude that as long as OrderBmpBeanLogic.ejb-
Load() works, then so will OrderBmpBean.ejbLoad(), as the latter merely invokes
the former. You can test OrderBmpBeanLogic entirely outside the container, using
the techniques in the first part of this book. Rather than complicate this discus-
sion, we refer you to solution A.7, “Test a BMP entity bean,” to see the final refac-
tored version of our entity bean and its collaborators, including some of its tests.
The next step is to verify that our entity bean correctly finds the data source in a
JNDI directory.

If the data source is bound to part of the global JNDI namespace, then we can
use MockContext, part of MockEJB, to verify that that entity bean looks up the data
source using the correct JNDI name. This would be the test:

412 CHAPTER 11

Testing Enterprise JavaBeans
public void testLookupDataSource() throws Exception {
 assertSame(mockDataSource, OrderBmpBean.lookupDataSource());
}

We deploy a MockDataSource at the expected JNDI name so that the entity bean
will retrieve it, rather than be forced to check the contents of the live JNDI direc-
tory. Yes, we do need to verify that the production JNDI directory has the data
source, but not for this test. See recipe 11.13 for details on testing the production
JNDI service. Finally, we make lookupDataSource() publicly available so we can eas-
ily test it. This is one advantage of EJBs: we can make methods public at will; and as
long as they do not show up on an EJB interface, only our tests will ever invoke
them. There is a slight problem, however, if our entity bean uses a resource refer-
ence to look up the data source. See the Discussion section of this recipe for how
to test looking up JNDI resources outside the global JNDI namespace.

That would appear to be all for this entity bean. To summarize our approach,
we extracted from the entity bean all the code except the code that depended
directly on the EJB container: using the EntityContext and looking up resources
in the JNDI directory. We tested the remaining EJB code using various mock object
techniques, incorporating a mock entity context and a mock JNDI directory. What
is left now is to test the Bean Logic class, a flexibly designed class that makes it easy
to use Test Objects to test it in isolation from the database. See solution A.7, “Test
a BMP entity bean,” if you are interested in seeing all the code involved.

◆ Discussion

If your entity bean uses resource references, then you need to know a couple of
extra details to use MockEJB properly. The first is relatively simple: deploy your
mock object at the resource reference address, and not the JNDI name to which
the reference resolves. For example, our entity bean might use the resource refer-
ence jdbc/OrderData to refer to the data source deployed at jdbc/mimer/Coffee-
ShopData in the global JNDI namespace. The entity bean would then look up the
data source with the JNDI name java:comp/env/jdbc/OrderData. To deploy a mock
data source for the entity bean, you must add your deploy at this address, and not
at jdbc/mimer/CoffeeShopData. A future version of MockEJB will support resolving
this resource reference for you, but in the meantime, it is not much of a problem.22

The second extra detail you need to know relates to a defect in J2EE 1.3.
We tried to use MockContext to deploy a mock data source to java:comp/env/

jdbc/OrderData, and then let the entity bean find the mock data source with this

22 That is, a version after 0.5, which still does not support resolving resource references.

413Test a BMP entity bean
JNDI name. It did not work. We asked MockEJB author Alexander Ananiev if there
was anything we could do, and he told us about an apparently well-known defect in
J2EE 1.3 that affects JNDI lookups outside the global namespace. The file j2ee.jar,
part of the J2EE distribution, contains a copy of jndi.properties, the properties file
used to configure the InitialContextFactory. This file specifies the property
java.naming.factory.url.pkgs, and even if you try to override that property by
invoking System.setProperty(), the initial context factory insists on delegating all
nonglobal namespace lookups to the system default initial context factory, rather
than the MockEJB context factory. This causes the test to look up resource refer-
ences in a live JNDI directory, rather than the MockContext. To work around this
problem, which has been fixed in J2EE 1.4, delete the file jndi.properties from your
copy of j2ee.jar. You need to apply this workaround to any machine that might
execute your tests. It is a drastic measure, but once we did it, our tests passed!
Because the file was removed in J2EE 1.4, it is safe to remove the file from your dis-
tribution. Your application server vendor will use its own j2ee.jar with its own ven-
dor-specific jndi.properties, anyway.

We admit that to someone new to JUnit, this looks like much more work than
simply deploying the EJB and testing it in the container. We ought to mention
that the merciless refactoring we performed to make the EJB easier to test did
yield some utility classes that we can reuse for any entity bean, making it easier to
create new ones and reducing the complexity of all BMP entity beans consider-
ably. If, after reading this recipe, you remain unconvinced, then all we can do is
say, “We tried,” and encourage you to try testing your BMP entity beans in a live
container, against live data. We have spent a considerable amount of space (and
time) in this book enumerating the drawbacks of testing all your database-aware
code against a live database. The drawback to running tests inside a container
should be equally clear. What you have not seen, however, are the hours of effort it
took to write this recipe, due to problems with Cactus (a defect that had already
been fixed in a more recent unreleased version), hot redeployment in JBoss
(dynamic class-loading problems are difficult to recognize), and the other techni-
cal challenges intrinsic to a complex test environment. The lesson is obvious:
keep it simple. Design your system so that the vast majority of your tests can run in
a plain-vanilla JVM. Following this one piece of advice for all your testing is guar-
anteed to save you a sizable amount of grief. Trust us.

◆ Related

■ 11.13—Test the contents of your JNDI directory

■ Chapter 10—Testing and JDBC

414 CHAPTER 11

Testing Enterprise JavaBeans
■ A.7—Test a BMP entity bean

■ B.1—Too simple to break

■ MockEJB (www.mockejb.org)

■ EasyMock (www.easymock.org)

■ jMock (www.jmock.org), an alternative to EasyMock

11.7 Test a message-driven bean inside the container

◆ Problem

You want to test a message-driven bean as it executes in production: inside a live
EJB container.

◆ Background

The asynchronous nature of message-driven beans makes it difficult for the test to
make assertions on the result. A typical test follows the three A’s: arrange, act,
assert. Because that typical test has access to all the objects involved, writing asser-
tions is not difficult: simply invoke methods on the object and verify their return
values. In recipe 2.2, “Test a method that returns nothing,” we discuss how to
cope with testing a method that returns no value. The same issues there also apply
to testing a message-driven bean, as the message-handling method onMessage()
returns no value; but, in the case of a message-driven bean, you do not even
invoke the method under test—you send the container a message, and then the
container invokes the appropriate message-driven bean. There is no way to obtain
a reference to the message-driven bean through a JNDI lookup, so there is no way
to observe the side effects onMessage() has. The object under test is in another
JVM, executing on another thread, and there is no way for you to obtain a refer-
ence to it. This is the severest kind of testing blind.

◆ Recipe

This is perhaps the worst case scenario for Object Testing. We know of no way to
write an isolated object test for a message-driven bean running in a live container.
All you can do is send a message to the appropriate destination, wait long enough
for the message to be delivered and processed, and then observe whatever exter-
nal side effect comes from processing the message. If your message-driven bean
updates the database, then you need to test against a live database. If your mes-
sage-driven bean sends e-mail, then you need to test against a live e-mail server.

415Test a message-driven bean
inside the container
This brings with it all the problems inherent in testing with expensive, external
resources. We strongly recommend you test message-driven beans outside the
container (see recipe 11.8, “Test a message-driven bean outside the container”).
There are some coping mechanisms that you can try, but sometimes the cure is
worse than the disease.

You could try substituting a simpler implementation of the external resource in
your JNDI directory. As an example, you could extract a MailService interface
[Refactoring, 341], and then implement that interface twice: once with a File-
System implementation that writes incoming messages to the file system, and once
with a JavaMail implementation that sends messages over a real SMTP transport
(see figure 11.1). Your message-driven bean looks up the MailService object in
your JNDI directory, and your deployment descriptors decide which implementa-
tion of MailService it finds: a production deployment includes the JavaMail imple-
mentation and a test deployment includes the FileSystem implementation. The
details depend entirely on your application server, so we do not present them here.

Now your tests can verify that the message-driven bean has processed a message
by waiting for a given file to appear on the file system. The test remains coupled to
an expensive, external resource (the file system), but at least you do not need a
fully functioning SMTP and POP server. This is a case of introducing a separating
interface to hide the implementation details of the service you want to use.23 We
ought to mention at this point that if you are happy to do that, then you could save
yourself a considerable amount of headache by simply factoring out the message-
processing logic from the message-receiving logic and testing each separately, as
we suggest in recipe 11.8.

23 Robert C. Martin, “The Interface Segregation Principle.” (www.objectmentor.com/publications/
isp.pdf) When an object depends on another, it should depend on the narrowest interface possible.

Message-
driven Bean

<<interface>>
MailService

FileSystemTest JNDI
directory

Both JNDI
directories

JavaMail
implementation

Production
JNDI directoryimplementation

Figure 11.1 Implement MailService differently for tests and for production

416 CHAPTER 11

Testing Enterprise JavaBeans
Assuming you perform these refactorings, here is the kind of test you would
write. The test in listing 11.11 submits an order to the appropriate message queue,
waits for the ProcessOrderSubmissionBean to process the incoming message and
write a reply to the file system, and then the test looks at the file system for the
reply and analyzes it.

package junit.cookbook.coffee.model.ejb.test;

import java.io.*;

import javax.jms.*;
import javax.naming.*;
import org.apache.cactus.ServletTestCase;
import com.diasparsoftware.java.io.ReaderUtil;

public class ProcessOrderSubmissionBeanTest extends ServletTestCase {
 private File tmpDirectory;
 private FilenameFilter testMailFilenameFilter;

 protected void setUp() throws Exception {
 tmpDirectory = new File(System.getProperty("java.io.tmpdir"));

 testMailFilenameFilter = new FilenameFilter() {
 public boolean accept(File dir, String name) {
 return (name.startsWith("test-mail"));
 }
 };

 File[] testMailFiles =
 tmpDirectory.listFiles(testMailFilenameFilter);

 for (int i = 0; i < testMailFiles.length; i++) {
 testMailFiles[i].delete();
 }

 super.setUp();
 }

 public void testHappyPath() throws Exception {
 String jbossQueueConnectionFactoryJndiName =
 "ConnectionFactory";

 String orderQueueJndiName = "queue/Orders";

 Context context = new InitialContext();
 QueueConnectionFactory queueConnectionFactory =
 (QueueConnectionFactory) context.lookup(
 jbossQueueConnectionFactoryJndiName);

 QueueConnection connection =
 queueConnectionFactory.createQueueConnection();

 Queue orderQueue =

Listing 11.11 ProcessOrderSubmissionBeanTest

417Test a message-driven bean
inside the container
 (Queue) context.lookup(orderQueueJndiName);

 QueueSession session =
 connection.createQueueSession(
 false,
 QueueSession.AUTO_ACKNOWLEDGE);

 connection.start();

 MapMessage message = session.createMapMessage();
 String customerEmailAddress = "jbr@diasparsoftware.com";
 message.setString("customer-email", customerEmailAddress);

 QueueSender sender = session.createSender(orderQueue);
 sender.send(message);

 connection.stop();
 session.close();
 connection.close();

 Thread.sleep(500);

 File[] testMailFiles =
 tmpDirectory.listFiles(testMailFilenameFilter);

 assertEquals(
 "Too many test files. I don't know which one to look at.",
 1,
 testMailFiles.length);

 File testMailFile = testMailFiles[0];
 String testMailText =
 ReaderUtil.getContentAsString(new FileReader(testMailFile));

 assertTrue(
 "Cannot find customer's e-mail address in the reply: "
 + testMailText,
 testMailText.indexOf(customerEmailAddress) >= 0);
 }
}

In the middle of this test we invoke Thread.sleep(500) just to give the message-
driven bean enough time to finish its work. We dislike having to pause like this,
partly because it introduces an unnecessary delay, but mostly because there is no
guarantee that 500 milliseconds is enough time. No amount of “sleep time” is
guaranteed to be enough. As a result, this test’s behavior is somewhat random: it
is possible for the production code to behave correctly and for this test to fail,
because perhaps garbage collection occurs on the application server JVM at
exactly the wrong moment. This is another small issue that leads us away from
testing message-driven beans in the container. The little things, given enough
time, can really add up.

418 CHAPTER 11

Testing Enterprise JavaBeans
◆ Discussion

This test is rather brittle, which is the nature of in-container testing. Here are
some of the things that could go wrong with the test:

■ Someone could move the Orders queue to another JNDI name. This would
stop the message-driven bean from receiving the message. You would not
know that this was the problem until you looked at the application server
log and saw that the bean had not done anything.

■ Someone could incorrectly configure the FileSystemMailService. You would
not know that this was the problem until you looked at the application
server log and perhaps saw nothing! Of course, if you test with a real e-mail
address, you will know the production system works when you see the e-mail
pile up in that address’ inbox.

■ Someone could change the directory to which the FileSystemMailService
writes the e-mails and forget to change the tests. This is one problem whose
symptoms are clear, although the cause might not be so obvious. With so
many things to go wrong, you might check five different configuration set-
tings before thinking of this particular problem.

■ The message-driven bean could slow down momentarily, due either to gar-
bage collection or other machine activity. This is the worst kind of problem,
because of the potential for false failures. There are two big problems with
false failures: first, they waste your time, hunting down nonexistent problems;
and second, the more false failures you handle, the less sensitive you become
to test failures, and this second problem is by far more serious than the first. If
a failing test becomes nothing to get excited about, then why test at all?

NOTE Be careful testing against “the real thing”—If you want to test code that
sends a fax, be careful testing with a real fax machine. Imagine injecting
an infinite loop into your production code, sending the same fax over
and over again. Now imagine the fax machine is not nearby and no one
notices the problem for hours! We found it funny, but some people defi-
nitely did not find it funny. (It was not our fax machine.)

You can see now why we emphasize testing outside the container. For message-
driven beans in particular, it is very important, because your test is not a direct cli-
ent of the object it tests. This means that there is no direct way for the message-
driven bean to communicate its behavior back to the test, unless, of course, you
consider adding a response message just for testing. We really do not think that is
a good idea. If there is absolutely no other reason to return a response message

419Test a message-driven bean
inside the container
from your message-driven bean, then it makes little sense to add one simply to
examine the response. This is one case where the cost outweighs the benefit.

We have suggested in other parts of this book that testing is so important that it
is worth adding methods to an interface (as an example) just for testing. We stand
by that statement, mostly because creating methods “just for testing” tends to
mask a deeper design problem that you might wish or need to solve. We agree
that an ideal design can be tested as is, but if we all created ideal designs, there
would be no need for this book! The methods we tend to add to these interfaces,
though, are “query” methods in the sense of the Command/Query Separation
Principle.24 As such, they have no potential side effects to disturb the system.
Sending a response message when the system did not originally require one has
the potential to significantly disturb the system.

At a minimum, using this practice for all message-driven beans could double the
overall message traffic, which might have strong performance implications. You
would also need to configure an extra message queue, and set the JMSReplyTo and
CorrelationID properties on your outgoing messages. This is too much to add just to
write tests. Because writing tests is important, the only option left is to do some refac-
toring without a safety net. This is one case where we believe the rewards outweigh
the risk. We would even be tempted to test-drive the message-driven bean from
scratch, but that would depend on the specific situation. We would rather test-drive a
new class than try to refactor one without tests. See recipe 11.8 for the details.

This book is little more than a snapshot of what we know at this particular time.
Since we first wrote this recipe, we discovered an article that described integrating a
Simple SMTP server into a test environment.25 If you like their approach, then you
can integrate it into your system by creating a custom JavaMail Provider—assuming
your application server supports this feature—and having it ask the Simple SMTP
server for a JavaMail Session. As long as both the message-driven bean and the test
use the default Session instance, the message-driven bean can send messages to
that Session and the test can verify the messages using that Session. As always, we
recommend you try out the various approaches and use what works well for you.

◆ Related

■ 11.8—Test a message-driven bean outside the container

■ Command/Query Separation
(http://c2.com/cgi/wiki?CommandQuerySeparation)

24 http://c2.com/cgi/wiki?CommandQuerySeparation
25 www.javaworld.com/javaworld/jw-08-2003/jw-0829-smtp_p.html.

420 CHAPTER 11

Testing Enterprise JavaBeans
11.8 Test a message-driven bean outside the container

◆ Problem

You would like to test a message-driven bean without involving the container.

◆ Background

Message-driven beans are notoriously difficult to test, mostly because the EJB con-
tainer hides them entirely from clients wanting to use them. We describe these
issues in detail in recipe 11.7, “Test a message-driven bean inside the container.”
Beyond this visibility problem, message-driven beans fall victim to the same testing
difficulties for any container-bound component. We explore these issues in sev-
eral of the recipes in this chapter. It would appear that in the case of message-
driven beans there is a kind of “double whammy”—two different kinds of road-
blocks to testing, each merely making the other worse. This is enough to convince
us to test message-driven beans outside the container, and we hope it is enough to
convince you.

◆ Recipe

A message-driven bean is two things at once: a JMS message consumer and an EJB.
For that reason, this recipe essentially refers you to two other recipes to find the
solution.26 The first thing you should do is identify code that requires the con-
tainer—code that performs a JNDI lookup, for example—and separate it from the
rest of the code. Keep the container-specific code in the message-driven bean and
move the rest into a new class. The remaining code either performs a JNDI lookup
or uses the MessageDrivenContext object provided by the container. You can use
MockEJB to test the JNDI lookups and a take a mock objects approach to testing
whatever the message-driven bean does with the MessageDrivenContext. See rec-
ipe 11.6 for an example of both this overall refactoring and of the remaining EJB
behavior to test. The newly created class is now only a JMS message consumer, and
you can use it entirely outside the EJB container.

The next step is to separate the JMS message consumer’s behavior into three
main tasks: receiving the message, processing the message, and replying to the
message. Here, by “replying,” we specifically mean replying with another JMS message.
If your bean processes the incoming message and writes information out to the

26 We even avoid duplication in writing, when we can.

421Test a message-driven bean
outside the container
database, then we consider that act part of processing the message and not reply-
ing to it. Extract the message-processing code into a separate class and leave the
rest behind [Refactoring, 110]. The newly created class has methods that are
entirely unaware of messaging or EJBs—it is just a Plain Old Java Object, so you
can test it like one, using all the techniques from part 1. We discuss this in detail
and provide an example in recipe 11.10, “Test a JMS message consumer without
the messaging server.”

The resulting design is essentially a paper-thin EJB wrapper around a medium-
sized JMS wrapper around the message-receiving logic. See figure 11.2 for a sequence
diagram showing the overall flow of control.

◆ Discussion

The JMS message consumer, although merely a wrapper around the message-pro-
cessing logic, is almost never too simple to break. The most common case has the JMS
message consumer casting the Message to the appropriate type and unpacking

handleMessage(message,

jndiObject1, jndiObject2, ...)

Message
producer

send message

onMessage(message)

perform
JNDI lookups

unmarshal
message

doSomething(arg1,

arg2, arg3, ...)

EJB
container

Message-
driven Bean

JMS
consumer

Message
processor

Figure 11.2 A layered approach to sending a JMS message

422 CHAPTER 11

Testing Enterprise JavaBeans
data from the message. If you are afraid that the type-cast will fail, then test the mes-
sage producer and not the consumer—after all, the consumer is saying, “I only pro-
cess messages of this type,” so it is up to the message producer to comply. If you
are afraid that unpacking the data might fail, then test that logic by invoking
YourMessageConsumer.handleMessage() and passing in a Spy version of the mes-
sage-processing logic class. Verify that the JMS message consumer invoked the
message-processing logic method with the expected parameters. If many JMS mes-
sage consumers unpack the same kind of message, then of course we recommend
moving that code into a separate class and testing it separately: create some mes-
sages, invoke YourMessageUnmarshaler.unmarshal(), and verify the object it returns.
This approach nudges you in the direction of having an object model for your
messages, which lays the groundwork for future refactorings that ultimately sim-
plify your asynchronous messaging design. Less code means fewer tests to write,
which is always a good thing.

◆ Related

■ 11.6—Test a BMP entity bean

■ 11.7—Test a message-driven bean inside the container

■ 11.10—Test a JMS message consumer without the messaging server

11.9 Test a legacy message-driven bean

◆ Problem

You want to test a message-driven bean outside the container, but do not want to
refactor it (yet).

◆ Background

Throughout this chapter we have discussed the forces that lead you to testing a
legacy J2EE component as is—that is, without refactoring it towards a more test-
able design. The most notable ones are fear of the unknown and creating the
safety net. The first is a manifestation of the common fear, “It works and I don’t
understand how, so I won’t touch it.” The second is the chicken-and-egg problem
of, “I don’t know how to test it without refactoring; I ought not to refactor without
tests.” A message-driven bean, being an EJB, requires an EJB container to test in its
natural habitat, and we have already described the difficulties inherent in testing
an EJB in a live container. The good news is that if the message-driven bean itself

423Test a legacy message-driven bean
is simple, then the fact that it is an EJB does not make it any more difficult to test
than it already is.

The complexity of the tests you need depends only on the complexity of the
message-driven bean itself. Being an EJB does not make the matter worse. The EJB
machinery for a message-driven bean is quite simple, but because the EJB con-
tainer maintains the message-driven bean’s lifecycle, the bean has to obtain its
collaborators either by instantiating them (see recipe 2.11, “Test an object that instan-
tiates other objects”) or retrieving them from a JNDI directory (see recipe 11.13).
This latter issue is the source of most of the testing complexity and is the key stum-
bling block to testing a message-driven bean. This recipe tells you how to cope with
the EJB container-related complexity, but you need to find other recipes to help
you deal with the rest. The good news is that this book is full of them.

◆ Recipe

We recommend using MockEJB to simulate deploying your message-driven bean
and to provide a mock JNDI directory. With this in place, you simply need to
instantiate a Message object and invoke onMessage() directly. For most message-
driven beans, this is the easy part. Returning to our order-processing example, list-
ing 11.12 shows a MockEJB-based test for processing an order submission.

package junit.cookbook.coffee.model.ejb.test;

import javax.jms.*;
import javax.naming.InitialContext;

import junit.cookbook.coffee.model.ejb.ProcessOrderSubmissionBean;
import junit.cookbook.coffee.service.MailService;
import junit.framework.TestCase;
import org.mockejb.*;
import org.mockejb.jndi.*;
import com.sun.jms.MapMessageImpl;

public class ProcessOrderSubmissionLegacyBeanTest
 extends TestCase
 implements MailService {

 private MessageListener processOrderSubmissionBean;
 private boolean invoked;

 protected void setUp() throws Exception {
 invoked = false;

 MockContextFactory.setAsInitial();
 InitialContext rootContext = new InitialContext();
 rootContext.bind("java:comp/env/service/Mail", this);

Listing 11.12 Testing order submission with MockEJB

424 CHAPTER 11

Testing Enterprise JavaBeans
 MockContainer mockContainer = new MockContainer(rootContext);
 MockEjbObject mockEjbObject =
 mockContainer.deployMessageBean(
 ProcessOrderSubmissionLegacyBean.class);

 processOrderSubmissionBean =
 mockContainer.createMessageBean(mockEjbObject);
 }

 public void testHappyPath() throws Exception {
 final MapMessage message = new MapMessageImpl();
 message.setString(
 "customer-email",
 "jbr@diasparsoftware.com");

 processOrderSubmissionBean.onMessage(message);

 assertTrue("Did not invoke MailService", invoked);
 }

 public void sendMessage(
 String fromAddress,
 String toAddress,
 String subject,
 String bodyText) {

 invoked = true;
 assertEquals("jbr@diasparsoftware.com", toAddress);
 }
}

This test uses MockEJB to deploy and create the message-driven bean. The test
simply instantiates a MapMessage (using the standard implementation from the
J2EE library, MapMessageImpl),27 adds data to it, and then invokes onMessage(). To
explain the rest requires looking at the code for the message-driven bean itself.
Because onMessage() is the only interesting part, we show it in listing 11.13 and
omit the rest.

package junit.cookbook.coffee.model.ejb;

import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

27 Sadly, com.sun.jms.MapMessageImpl is not part of J2EE 1.4. We wanted to reuse someone else’s
POJO-style implementation of MapMessage to avoid having to build our own. If you are running J2EE
1.4 then you will have to look for an alternative, or build one yourself. Sorry about that.

Listing 11.13 ProcessOrderSubmissionLegacyBean

425Test a legacy message-driven bean
import junit.cookbook.coffee.service.MailService;

public class ProcessOrderSubmissionLegacyBean
 implements MessageDrivenBean, MessageListener {

 // Lifecycle methods omitted

 public void onMessage(Message message) {
 try {
 MapMessage incomingMessage = (MapMessage) message;

 Context rootContext = new InitialContext();
 Object object =
 rootContext.lookup("java:comp/env/service/Mail");

 MailService mailService = (MailService) object;

 String customerEmailAddress =
 incomingMessage.getString("customer-email");

 mailService.sendMessage(
 "ordering@coffeeShop.com",
 customerEmailAddress,
 "We received your order",
 "Hello, there! We received your order.");
 }
 catch (NamingException logged) {
 logged.printStackTrace();
 }
 catch (JMSException logged) {
 logged.printStackTrace();
 }
 }
}

Here, onMessage() tells us that it expects a MapMessage, that it retrieves a MailSer-
vice object from JNDI, and then invokes MailService.sendMessage() using the
e-mail address it retrieved from the message. We can use MockEJB to deploy a spy
MailService object with the appropriate JNDI name, and then verify that the “To
address” parameter passed in to the MailService is the same as the one retrieved
from the incoming message. Because MailService is an interface, we applied the
Self-Shunt Pattern (see recipe 11.2) and had the test case class implement
MailService itself. The Spy implementation of this method verifies two things:
that the message-driven bean invoked the MailService at all, and that it invoked
sendMessage() with the appropriate “To address.”

As we wrote previously, using MockEJB to deploy the message-driven bean is
the easy part. The difficult part—and it only gets worse as your message-driven
beans become more complex—is dealing with the fact that the object under test

426 CHAPTER 11

Testing Enterprise JavaBeans
manages its own collaborators. You need to attack this testing problem on a case-
by-case basis using perhaps any technique from the rest of this book.

◆ Discussion

MockEJB makes it simple to simulate deploying and to invoke your message-
driven bean, and for simple beans that is enough; but, most message-driven beans
need to collaborate with other objects, which complicates matters. To cope with
that complexity, we recommend moving the remaining message-consuming and
message-processing logic out to separate classes, as we describe in recipe 11.8. The
alternative is to test the message-driven bean in a live container, with all the addi-
tional issues that it raises (see recipe 11.7).

One thing you will notice about our MockEJB test is that it does not actually
depend on the message-driven bean class ProcessOrderSubmissionLegacyBean.
Instead, it treats the message-driven bean as just a MessageListener. As the test
only ever invokes onMessage(), part of the generic MessageListener interface,
there is no need to cast the object to the specific message-driven bean class.
Unusual perhaps, but true. Anything to make the tests simpler.

◆ Related

■ 2.11—Test an object that instantiates other objects

■ 11.7—Test a message-driven bean inside the container

■ 11.8—Test a message-driven bean outside the container

11.10 Test a JMS message consumer
without the messaging server

◆ Problem

You would like to test a JMS message consumer without running the messaging server.

◆ Background

You can overcome one of the major difficulties in testing a message-driven bean by
testing it in isolation as a JMS message consumer. Simply instantiate the message lis-
tener directly, and use a mock objects approach to substitute Test Objects in place
of the message consumer’s collaborators. Even with this simplification, there are
some issues with message consumers that you need to be aware of during testing:

427Test a JMS message consumer
without the messaging server
■ Communication via JMS is still entirely asynchronous—This means that, for
example, a message consumer cannot throw an exception and expect the
message producer to receive it. Error handling is trickier with JMS message
consumers, so it is important to focus more energy on ensuring that the
message producers never send invalid messages.

■ JMS message consumers are typically deployed in a J2EE application as message-driven
beans—Although it is not strictly necessary to do so, wrapping your message
consumer in a message-driven bean helps you leverage the EJB container’s
services, such as participating in transactions, guaranteed delivery, and so
on. Even if you are building a standalone JMS message consumer class, the
odds are good that you will (eventually) wrap it in a message-driven bean.

Testing a JMS message consumer carries with it essentially the same issues as test-
ing a message-driven bean, so it is no accident that this recipe resembles the mes-
sage-driven bean recipes in this chapter.

◆ Recipe

Most message-driven beans are 95% JMS message consumer and 5% EJB. Perhaps
the most EJB-like thing your message-driven beans do is implement ejbCreate()
to lookup collaborators in a JNDI directory and cache them. Aside from that,
though, you can test a message-driven bean and a JMS message consumer in essen-
tially the same way. For that reason, the tests in this recipe are similar in approach
to the ones in recipe 11.9, “Test a legacy message-driven bean.”

In recipe 11.8 we described an overall design for a message-driven bean. It
describes a kind of Decorator-like approach, starting with message-processing
logic, wrapping that in a JMS message consumer, and then finally wrapping that in
a message-driven bean (see figure 11.2 for the relevant sequence diagram). You
can apply that design pattern here, ignoring the last layer of wrapping. This allows
you to test the message-receiving logic—interaction with the JMS API—without
having to rely on the correctness of the business logic that responds to the mes-
sage. Returning to our order-processing example, our JMS message consumer,
ProcessOrderSubmissionMessageListener, retrieves a collaborator from the JNDI
directory, unmarshals the message, and then executes a ProcessOrderSubmission-
Action. Because we instantiate the message listener in our test, we can substitute a
Spy version of the action. This allows us to verify that the message consumer
invokes the action with the parameters it received from the message. Listing 11.14
shows the relevant test.28

28 This test uses com.sun.jms.MapMessageImpl, which is not part of J2EE 1.4. See the end of listing 11.13
for an explanation.

428 CHAPTER 11

Testing Enterprise JavaBeans
package junit.cookbook.coffee.model.jms.test;

import javax.jms.MapMessage;
import javax.naming.InitialContext;
import

junit.cookbook.coffee.model.jms.ProcessOrderSubmissionMessageListener;
import junit.cookbook.coffee.model.logic.ProcessOrderSubmissionAction;
import junit.cookbook.coffee.service.MailService;
import junit.framework.TestCase;
import org.mockejb.jndi.MockContextFactory;
import com.sun.jms.MapMessageImpl;

public class ProcessOrderSubmissionMessageListenerTest
 extends TestCase
 implements MailService {

 private boolean invoked;

 protected void setUp() throws Exception {
 invoked = false;

 MockContextFactory.setAsInitial();
 new InitialContext().bind("java:comp/env/service/Mail", this);
 }

 public void testHappyPath() throws Exception {
 ProcessOrderSubmissionAction spyAction =
 new ProcessOrderSubmissionAction() {
 public void processOrder(
 MailService mailService,
 String customerEmailAddress) {

 invoked = true;
 assertEquals(
 "jbr@diasparsoftware.com",
 customerEmailAddress);
 }
 };

 ProcessOrderSubmissionMessageListener consumer =
 new ProcessOrderSubmissionMessageListener(spyAction);

 MapMessage message = new MapMessageImpl();
 message.setString(
 ProcessOrderSubmissionMessageListener
 .CUSTOMER_EMAIL_PARAMETER_NAME,
 "jbr@diasparsoftware.com");

 consumer.onMessage(message);
 assertTrue("Did not invoke the processing action.", invoked);
 }

 public void sendMessage(

Listing 11.14 ProcessOrderSubmissionMessageListenerTest

429Test a JMS message consumer
without the messaging server
 String fromAddress,
 String toAddress,
 String subject,
 String bodyText) {

 fail("No-one should ever invoke me.");
 }
}

The test creates a Spy version of the “process submitted order” action, passes it to
the JMS message consumer, simulates sending a message, and then verifies that
the message consumer invoked the action with the correct customer e-mail
address. We decided to use the Self-Shunt pattern to implement MailService,
because we find the resulting test to be a little easier to read. The alternative is to
create a separate DoNotUseMeMailService that simply throws an exception when-
ever some tries to invoke it (a crash test dummy). We have the MailService
behave this way to emphasize the point that we are overriding the message-process-
ing logic and therefore do not expect to actually try to use the MailService passed
into it. If it did, then our test would not be testing what we think it would be test-
ing, and we would want to know that so we can correct it.

To substitute our Spy version of the message-processing logic we used the tech-
nique we described in recipe 2.11, “Test an object that instantiates other objects.”
We could have extracted an interface [Refactoring, 341] around the action, but
given how simple the class is, we felt it was sufficient to merely subclass it and over-
ride its only method.

We have verified that our message consumer sends the correct parameters to
the message-processing logic. We still need to test that logic itself, which we
describe in recipe 11.11, “Test JMS message-processing logic.”

◆ Discussion

The test in this recipe is very similar to the one we wrote in recipe 11.9, except
that we substitute a Spy version of the message-processing logic, rather than a Spy
version of the MailService. The distinction is subtle, but important. This test does
not rely on the correctness of the business logic that the application wants to
invoke in response to the message, whereas our legacy message-driven bean test
does. This is common in testing legacy code: it is typically more tightly coupled to
its environment, making it more difficult to write the kind of focused, isolated test
we generally prefer to write. Part of this is a perception problem: project manag-
ers, architects, and technical leads often see EJBs as complicated components that

430 CHAPTER 11

Testing Enterprise JavaBeans
are best left alone as much as possible. We have observed a kind of psychological
barrier to refactoring EJBs that we do not see as strongly when we suggest refactor-
ing other kinds of components. Even though message-driven beans are quite sim-
ilar to their JMS message consumer counterparts, it is common to think of
message-driven beans as more complex, simply because they are EJBs. Whatever
the reason, we find it easier to convince others to let us refactor a JMS message
consumer than a message-driven bean. This allows us to write simpler tests, such
as the one in this recipe, which verifies that the message consumer specifies the
correct e-mail address for processing. This is simpler than the legacy message-
driven test, which verifies that an e-mail was sent to the correct e-mail address. The
test in this recipe is more focused and less easily perturbed by, say, a failure in the
JNDI directory or a temporary problem with the mail server. Your deployment
tests can check the contents of the JNDI directory (see recipe 11.13).

◆ Related

■ 2.11—Test an object that instantiates other objects

■ 11.9—Test a legacy message-driven bean

■ 11.11—Test JMS message-processing logic

■ 11.13—Test the content of your JNDI directory

■ Self-Shunt pattern
(www.objectmentor.com/resources/articles/SelfShunPtrn.pdf)

11.11 Test JMS message-processing logic

◆ Problem

You want to test the logic for processing a JMS message without worrying about
how that message is delivered.

◆ Background

The JMS API is complicated, or at least, verbose. It takes several lines of code just to
send a simple text message using a live JMS server. If you try to mock all the objects
involved, a single test can run between 50 and 100 lines, depending on your code
formatter—all that just to test the business logic triggered by a specific kind of mes-
sage. When discussing how to test J2EE applications we have emphasized the
importance of testing business logic entirely in isolation from J2EE components.

431Test JMS message-processing logic
This affords you maximum flexibility in your design as well as making it much eas-
ier to test the most important part of your application: how well it solves your busi-
ness problem. For that reason, it is important to test your business logic
separately—the logic that you plan to execute when you receive a particular JMS
message. This recipe describes how to do that.

◆ Recipe

In recipe 11.8 we describe the design we recommend: the EJB container delivers
the message to a message-driven bean, which performs JNDI lookups, and then
passes the message to a JMS message consumer, which unmarshals the message
and passes it to a message processor. This recipe focuses on the message proces-
sor. There is one key principle to make these tests simple: the message processor
should have no knowledge of JMS or messaging. If you can refactor towards that
design, then you can treat your message processor like any other Plain Old Java
Object and test it in a straightforward manner.

Returning to our example of receiving and processing an order, we want to
send e-mail to the customer saying that we have received her order. Fortunately,
we have already isolated the e-mail feature into an interface named MailService.
(See recipe 11.7 for a description of when and why we created this interface.) This
simplifies the corresponding tests. The test in listing 11.15 verifies that we used
the correct (customer’s) e-mail address for the “To” address in our “We received
your order” e-mail.

package junit.cookbook.coffee.model.logic.test;

import junit.cookbook.coffee.model.logic.ProcessOrderSubmissionAction;
import junit.cookbook.coffee.service.MailService;
import junit.framework.TestCase;

public class ProcessOrderSubmissionActionTest extends TestCase {
 private boolean spyMailServiceInvoked = false;

 public void testToAddress() throws Exception {
 ProcessOrderSubmissionAction action =
 new ProcessOrderSubmissionAction();

 MailService spyMailService = new MailService() {
 public void sendMessage(
 String fromAddress,
 String toAddress,
 String subject,
 String bodyText) {

Listing 11.15 Verifying the “To” address in an e-mail

432 CHAPTER 11

Testing Enterprise JavaBeans
 assertEquals("jbr@diasparsoftware.com", toAddress);
 spyMailServiceInvoked = true;
 }
 };

 action.processOrder(spyMailService, "jbr@diasparsoftware.com");
 assertTrue(spyMailServiceInvoked);
 }
}

Here we decided to use a hand-coded Spy implementation of MailService, rather
than an all-out EasyMock mock object. This test is only concerned with whether
we get the “To” address right; we will write other tests to verify the content of the
e-mail and what happens if MailService.sendMessage() throws an exception. For
this test, however, the simplest approach is the one you see here. We need to
check a flag representing “the Spy mail service was invoked” to avoid a false posi-
tive29 in the case where nothing invoked sendMessage(). If it did not invoke our
Spy mail service’s method, then nothing would execute its assertion either.

The key point to note is that these tests have nothing to do with EJBs, JMS, or any-
thing else. We are merely testing a Plain Old Java Object—the easiest tests to write.

◆ Discussion

This test is very simple—almost too simple. Fear not: it is this way on purpose. The
idea is to test the action, and not the objects with which the action collaborates!
Elsewhere we have tested our production implementation of MailService, the one
that uses JavaMail to send e-mail. We do not even need to concern ourselves with
which MailService implementation is passed into our action class—that is up to
the object that invokes this action, and we will test that too. (See the JMS message
consumer and message-driven bean recipes in this chapter for examples.) The sim-
plicity of the test comes from the simplicity of the action, and that is good design.

One note on the test itself: because MailService is an interface, we could have
used the Self-Shunt pattern and had the test case implement MailService itself,
rather than use an anonymous implementation bound to the test method. If
many tests want to use the same Spy MailService implementation, then we recom-
mend moving those tests into a separate fixture and using the Self-Shunt pattern.
This removes duplication from the tests.

29 That is, a test that passes even though the production code does not behave correctly. Such tests are very
bad for you: they give you a false sense of progress, and problems jump up at you unexpectedly, and
much later on.

433Test a JMS message producer
◆ Related

■ 11.7—Test a message-driven bean inside the container

■ 11.8—Test a message-driven bean outside the container

11.12 Test a JMS message producer

◆ Problem

You want to test a JMS message producer.

◆ Background

The vast majority of the code you write to send a JMS message is what we some-
times call “JMS noise.” There is this large, repetitive structure of code to write
before you can send a simple text message such as “Hello.” Especially for novice
JMS programmers writing code with an open book next to the keyboard, it is easy
to start practicing “copy and paste reuse,” which does nothing except duplicate
this JMS noise throughout an application. The most direct way to test a JMS producer
is to start a messaging server, connect a listener to the appropriate queue, create a
message, send it, and then verify that the listener received it. Although this kind
of test is excellent for verifying that you have configured your JMS messaging
server correctly, it gets in the way of testing the important part: what you do with the
messaging server—the messages you send. After writing one small set of deploy-
ment and configuration tests, you ought to focus on the key questions: are we
sending the right messages? Are we sending them to the right place? After that,
you can trust your application server’s JMS server implementation to work. If not,
then we recommend that you do not use it. Either way, don’t test the platform.

◆ Recipe

There are essentially two parts to this recipe. First, we strongly recommend you
refactor the JMS noise out to a separate class [Refactoring, 149, 345]. There really
ought to be a simpler API for sending simple messages—convenience methods set
up for just that purpose. If it were up to us, the JMS API would include a conve-
nience API that allows the programmer to send a message with a single method
invocation. As there is no such standard API, you either need to find someone
who has implemented one or build your own.30 We built the interface MapMessage-

30 You may be tempted to build a utility class with class-level methods for sending the various kinds of mes-
sages you need. We recommend avoiding class-level methods. See recipe 14.4, “Test a Singleton’s client.”

434 CHAPTER 11

Testing Enterprise JavaBeans
Sender which does just that: it sends a MapMessage to a particular destination—in
our case, a Queue. Listing 11.16 shows the result.

package com.diasparsoftware.javax.jms;

import java.util.Map;

public interface MapMessageSender {
 void sendMapMessage(
 String destinationQueueJndiName,
 Map messageContent)
 throws MessagingException;
}

This is a simplifying interface: its job is to hide some of the details—the “JMS
noise”—behind simpler method invocations. To send a MapMessage we only need
to indicate the JNDI name of the destination Queue and provide a Map containing
the message contents. An implementation of this interface does the rest for us.
Although we omit it here for brevity, we implemented MapMessageSender for JBoss
to use the JBoss JMS server. By inserting an interface between our message produc-
ers and our JMS server, we remove the potential for duplicating JMS client code
throughout the application. This is the first step in testing a JMS message producer.

In order to test your message producer without running the messaging server, you
need to separate its key responsibilities: creating the message content (not the Mes-
sage object, but what it contains), specifying the message’s destination, and using the
JMS server. Here is a quick summary of how to test each of these responsibilities.

Creating the message content
We prefer testing message content-generating code separately; the more complex
the content, the more important this testing becomes. With a MapMessage, for
example, you could extract the ability to add data to a MapMessage from a Map into
a separate method (or class), test it once, and use it forever [Refactoring, 110].
You will want to test this behavior in isolation for all but the simplest cases. With
MapMessage, for example, it is easy to forget that MapMessage.setObject() only
supports the primitive wrapper classes (Integer, Long, and so on) and String, but
not arbitrary objects. This is enough to get wrong, so it is enough to test on its
own. Listing 11.17 shows an example of such a test, which tries to add an Array-
List object to a MapMessage.

Listing 11.16 MapMessageSender

435Test a JMS message producer
package com.diasparsoftware.javax.jms.test;

import java.util.*;
import javax.jms.*;
import junit.framework.TestCase;
import com.diasparsoftware.javax.jms.*;
import com.sun.jms.MapMessageImpl;

public class BuildMapMessageTest extends TestCase {
 private MapMessageImpl mapMessage;
 private MessageBuilder messageBuilder;

 protected void setUp() throws Exception {
 mapMessage = new MapMessageImpl();
 messageBuilder = new MessageBuilder();
 }

 public void testGenericObject() throws Exception {
 Map singleton = Collections.singletonMap("b", new ArrayList());
 try {
 messageBuilder.buildMapMessage(mapMessage, singleton);
 fail("Added a generic object to a MapMessage!");
 }
 catch (MessagingException expected) {
 Throwable throwable = expected.getCause();
 assertTrue(
 "Wrong exception type",
 throwable instanceof MessageFormatException);
 }
 }
}

You will find similar tests useful, depending on what types of messages you use in
your system. When building an ObjectMessage, be sure the Object is Serializ-
able. When building a StreamMessage, be sure you are streaming the contents in
the expected order. These are the kinds of tests you ought to write for the differ-
ent kinds of messages you build. The test we have written here helps us be sure
that we can build a MapMessage correctly. All that is left is to verify that each mes-
sage producer passes in the correct content (Map object) depending on the con-
tent of the message they want to send. Listing 11.18 shows the “happy path” test.

package junit.cookbook.coffee.model.logic.test;

import java.util.*;
import junit.cookbook.coffee.model.*;

Listing 11.17 BuildMapMessageTest

Listing 11.18 The “happy path” test for submitting an order

436 CHAPTER 11

Testing Enterprise JavaBeans
import junit.cookbook.coffee.model.logic.SubmitOrderCommand;
import junit.framework.TestCase;
import org.easymock.MockControl;
import com.diasparsoftware.javax.jms.MapMessageSender;

public class SubmitOrderTest extends TestCase {
 private MockControl mapMessageSenderControl;
 private MapMessageSender mapMessageSender;
 private Customer jbrains;
 private Order order;

 protected void setUp() throws Exception {
 mapMessageSenderControl =
 MockControl.createControl(MapMessageSender.class);

 mapMessageSender =
 (MapMessageSender) mapMessageSenderControl.getMock();

 jbrains = new Customer("jbrains");
 jbrains.emailAddress = "jbr@diasparsoftware.com";

 Set orderItems =
 Collections.singleton(
 new CoffeeQuantity(3, "Special Blend"));

 order = new Order(new Integer(762), jbrains, orderItems);

 }

 public void testHappyPath() throws Exception {
 Map expectedMessageContent =
 Collections.singletonMap(
 "customer-email",
 jbrains.emailAddress);

 mapMessageSender.sendMapMessage(
 "queue/Orders",
 expectedMessageContent);
 mapMessageSenderControl.setVoidCallable();

 mapMessageSenderControl.replay();

 SubmitOrderCommand command = new SubmitOrderCommand();
 command.setOrder(order);
 command.execute(mapMessageSender);

 mapMessageSenderControl.verify();
 }
}

Here we use EasyMock to mock the MapMessage sender, because we have already
tested it separately. We verify the message content (the Map object) by examining
the parameter that the SubmitOrderCommand passes to the MapMessageSender.

437Test a JMS message producer
Of course, we should add other tests to cover various error cases, such as an
invalid Order object.

Verifying the message destination
The previous test killed two birds with one stone, as it were: in addition to verify-
ing the message content parameter, we used EasyMock to verify the destination
queue for the message. Once again, we have already tested whether MapMessage-
Sender uses that destination parameter when sending a message, so all the mes-
sage producer needs to do is to specify the destination correctly. This is one area
where error-case testing is important: JMS implementations have a large number
of moving parts, so you want to be sure that you handle JMS exceptions properly.
In our design, the implementations of MapMessageSender wrap JMS exceptions in a
more general MessagingException. The latter is an unchecked exception, which
reduces unnecessary coupling between message clients and our JMS-integration
objects. We may, for example, want to verify that if the destination we specify does
not exist, then the SubmitOrderCommand reports the exception in a useful way.
Here is such a test. We use EasyMock to simulate MapMessageSender throwing a
MessagingException:

public void testQueueDoesNotExist() throws Exception {
 Map expectedMessageContent =
 Collections.singletonMap(
 "customer-email",
 jbrains.emailAddress);

 mapMessageSender.sendMapMessage(
 "queue/Orders",
 expectedMessageContent);

 MessagingException destinationNotExistException =
 new MessagingException(
 "Unable to send message",
 new JMSException("Destination does not exist"));

 mapMessageSenderControl.setThrowable(
 destinationNotExistException);

 mapMessageSenderControl.replay();

 try {
 SubmitOrderCommand command = new SubmitOrderCommand();
 command.setOrder(order);
 command.execute(mapMessageSender);
 fail("Did not throw exception?");
 }
 catch (CommandException expected) {
 assertEquals(

438 CHAPTER 11

Testing Enterprise JavaBeans
 "Unable to submit order " + order,
 expected.getMessage());

 assertSame(
 destinationNotExistException,
 expected.getCause());
 }

 mapMessageSenderControl.verify();
}

Here we verify that the SubmitOrderCommand reports the problem from the
domain’s perspective: “unable to submit order.” If it were merely to report “Queue
does not exist: queue/Orders,” then it might or might not be clear to the person
reading the message where the problem lies. Yes, the stack trace would help, but
in a production environment there might not be any line numbers to help, even if
one could retrieve that particular revision of the source code!31 The more the
errors communicate, the better. This test helps improve the way in which the sys-
tem communicates this kind of problem.

Using the messaging server
Now we need to verify that the JMS-integration code works as we would expect. In
our case, this is an implementation of MapMessageSender that actually sends the
message using the JMS API. We recommend testing this behavior with a live con-
tainer, as only then can you be certain that the results are meaningful. The tests
can be simple, they have nothing to do with your problem domain and you can
use them almost exclusively to help isolate defects reported from outside the pro-
gramming team. Best of all, the MapMessageSender is something you can use across
projects, and so if you test it once, you can treat it as a trusted component on
future projects. If you can get the same quality with fewer tests, then so much the
better. The technique is straightforward: start the JMS server, register a Message-
Listener, send the message, and verify that it was received. There are few enough
of these tests that you can accept the cost of testing against an expensive, external
resource. This is another case in which we choose simpler tests over faster tests.

◆ Discussion

If you are adamant about testing the message-sending behavior without a messag-
ing server, then you can use EasyMock and MockEJB’s JNDI implementation
(MockContext) to verify that your message-sending code invokes the appropriate

31 Many organizations we have worked with have not been disciplined in their configuration management.
How quickly could you get the source for the third-to-last release of your product?

439Test the content of your JNDI directory
API methods. Just be aware that this requires five mock objects: the queue connec-
tion factory, queue connection, queue session, queue sender, and the queue
itself. Not only that, the test virtually duplicates the underlying code, so it proves
little and is easy to get wrong. Using the JMS API correctly is the point of the entire
test: invoking the correct methods in the correct order to make the JMS server
send your message. The process is complex enough that we recommend against
this kind of test. When an external resource requires that much code to simulate
its behavior, take it as a sign that too much can go wrong to make it worth writing
a simulator. The more you need to mock, the more risk you run in getting the test
wrong—after all, how would you know? If you set up your mock JMS objects incor-
rectly, how would you discover the problem? Probably not until you tried to run
your JMS-integration code against a live messaging server. If that is the case, then
test against the live server, but keep the integration as small as possible. This is the
approach we take in this recipe and a general approach we have recommended
elsewhere in this book. See chapter 10, “Testing and JDBC,” for details on mini-
mizing the size of a JDBC integration layer.

By the way, although we have focused the discussion on map messages and
queues, the underlying principles apply just as well to the other message types and
topics. We would not want to make you feel as though they need to be handled
any differently.

◆ Related

■ Chapter 10—Testing and JDBC

■ 14.4—Test a Singleton’s client

11.13 Test the content of your JNDI directory

◆ Problem

You want to test the content of your JNDI directory as part of a Deployment Test suite.

◆ Background

Many of the J2EE testing techniques that we recommend throughout this part of
the book have one goal: to minimize the amount of testing you do inside J2EE con-
tainers. The logic is straightforward: the less you test inside the container, the more
quickly the tests execute and the less complex your testing environment. In partic-
ular, if fewer of your tests require a container, then the complexity of in-container

440 CHAPTER 11

Testing Enterprise JavaBeans
testing affects you less. If you have a problem with the in-container tests, then they
do not block progress as much as they would if you did, say, all your business logic
testing in the container. The idea is to minimize the impact of this complexity. In
spite of this, you still eventually need to verify that you have configured the con-
tainer correctly.

Suppose you use the MockEJB approach to testing a session bean that uses an
entity bean, as we described in recipe 11.2. That recipe recommends using an
in-memory JNDI directory so that your test can deploy a mock entity bean for the
session bean to use. This way you avoid the complexity of deploying several EJBs
just to test the one session bean. We like this approach; however, it is not enough
to ensure that your session bean will work in production. It is a fact of J2EE-based
software development that the JNDI directory is nothing more than a big, glorified
Singleton, and that J2EE components use this Singleton all over the place. The
fact that you can override this Singleton by setting JVM properties (as MockEJB
does) does not change the fact that you need to verify that the production Single-
ton is configured correctly. That is the problem we are trying to solve here.

◆ Recipe

Write a single test that verifies the content of the production JNDI directory by
connecting to it and looking up all the objects you expect to find. This part is
easy. Doing this effectively is the hard part, and we will get to that. First, let us con-
sider an example from our Coffee Shop application. An early version of the appli-
cation had only two objects in the JNDI directory: the business data source and a
session bean for performing shopcart-based operations. We first wrote a simple
test to perform the JNDI lookup on the JNDI name for our business data source,
narrowed the object the directory returned, and then verified that it is indeed a
DataSource object. Next we wrote a second test to do the same thing for the Shop-
cartOperations EJB. We extracted what the tests had in common into a method
named doTestObjectDeployed(). Listing 11.19 shows the resulting code.

package junit.cookbook.coffee.deployment.test;

import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import javax.sql.DataSource;

import junit.cookbook.coffee.model.ejb.ShopcartOperationsHome;

import org.apache.cactus.ServletTestCase;

Listing 11.19 JndiDirectoryContentsTest

441Test the content of your JNDI directory
public class JndiDirectoryContentsTest extends ServletTestCase {
 public void testBusinessDataSource() throws Exception {
 doTestObjectDeployed(
 "business data source",
 "java:/jdbc/mimer/CoffeeShopData",
 DataSource.class);
 }

 public void testShopcartOperationsEjb() throws Exception {
 doTestObjectDeployed(
 "shopcart operations EJB",
 "ejb/ShopcartOperations",
 ShopcartOperationsHome.class);
 }

 public void doTestObjectDeployed(
 String jndiObjectDescription,
 String jndiName,
 Class expectedClass)
 throws Exception {

 Context context = new InitialContext();
 Object jndiObject = context.lookup(jndiName);

 String failureMessage =
 "Unable to find "
 + jndiObjectDescription
 + " at "
 + jndiName;

 assertNotNull(failureMessage, jndiObject);

 Object narrowedObject =
 PortableRemoteObject.narrow(jndiObject, expectedClass);

 assertTrue(expectedClass.isInstance(narrowedObject));
 }
}

This is a Cactus test, as it extends ServletTestCase. We did not need to make this
a Cactus test in particular, but it does need to run inside the container, as not all
objects are deployed to the global JNDI namespace. When we consulted the JBoss
documentation, we learned that any data source we configure is only available
inside the application server JVM, so to obtain the data source from the JNDI
directory, we need to execute the test inside the application server JVM. Cactus is
an easy way to make that happen—indeed, that is the point of Cactus. You could
certainly just deploy this test and execute it from within a hand-crafted servlet, if
you decided that you did not want to use Cactus, but we usually try to reuse the
good work of others.

442 CHAPTER 11

Testing Enterprise JavaBeans
◆ Discussion

We included the JNDI object description to make the failure message more infor-
mative. We will typically run this test right after deploying to a live application
server, and if any object is not correctly deployed, we will want to know exactly
which object with which the JNDI name is missing. Especially when we deploy to
production, we want to be able to solve any configuration problems as quickly as
possible, so we want as much information as we can get.

You will notice that as you add more tests to this test suite, each test is a one-
liner: it invokes doTestObjectDeployed() with different parameters. You may
think, “This ought to be a Parameterized Test Case,” as we described in recipe 4.8,
“Build a data-driven test suite.” Yes, it ought to be; however, Cactus 1.5 does not
allow us to use the Parameterized Test Case technique. Cactus instantiates test
cases on the server side, rather than using the test case objects we specify in the
suite() method; there is no way to pass the test parameters into the server-side
test objects. Perhaps by the time you read this, Cactus will have changed to accom-
modate this approach, but if it has not, then your next best alternative is perhaps
to generate the source code for this kind of test.

Remember, if you employ a mock objects approach to testing any J2EE compo-
nent that uses JNDI, then all you have to do is verify that those objects are bound
to the correct names in your JNDI directory, and those components will just work.
This is another example of isolating the expensive external resource to make test-
ing easier.

◆ Related

■ 4.8—Build a data-driven test suite

■ Chapter 10—Testing and JDBC

Testing web components
This chapter covers
■ Testing HTTP session data
■ Testing static and dynamic web pages
■ Testing JSP components
■ Testing servlet code
■ Testing dynamic data before it is displayed
■ Using ServletUnit to simulate the web container
443

444 CHAPTER 12

Testing web components
In this chapter we provide recipes for testing web components in isolation, rather
than testing the web application as a whole. We divided the chapters this way
because we use different technologies and approaches to test a web application
than we do to test its components—the servlets, JSPs, Velocity templates, and what
have you that make up the application. In short, we test web applications from
end to end using HtmlUnit, something described in detail in chapter 13, “Testing
J2EE Applications,” but we use plain old JUnit and ServletUnit1 to test web compo-
nents in isolation—that is, without a container and, if we can, without invoking
any business logic. How do we do it?

We test business logic entirely outside the context of the web components that
invoke it. It does not matter how complex this business logic is, nor which tech-
nologies this business logic uses; we can test it without any mention whatsoever of
a servlet or a JSP, so we do. As Mark Eames wrote to us, “If business logic is placed
in Java objects that are tied to the web container or any container service, then
that logic is only accessible within that container.” There is no good reason for
business logic—by definition, something that belongs to the business—to be tied
down to a particular application or its technology. We already implement the busi-
ness logic in Java, constraining the business’s ability to use it in another context, so
we prefer not to make it any worse than that.

To test business logic separately from the web components that invoke it
requires some refactoring. Our general approach is as follows:

1 Write business logic entirely in terms of business objects.

2 Move business logic into an object that can execute outside the context of
a servlet (the usual web application Controller).

3 Change the servlet to invoke the new, separate business logic object.

If you have existing servlet code whose business logic you need to test, extracting
the business logic out of the servlet makes it possible to apply the “building block”
techniques we have discussed in part 1 without having to mess about with web com-
ponent-related test tools. Keep those tools for the jobs they are designed to do. See
recipe 12.1, “Test updating session data without a container,” for an example of the
testing approach you can take when one extracts the business logic from a servlet.

1 Part of the HttpUnit project (http://httpunit.sourceforge.net). Do not confuse this with the defunct
project of the same name.

445Testing web components
Once you have isolated your business objects from the web components that
use them you can use web component-related test tools to test them. At this point
there are at least three viable options.

Test the components in a container
Your tests initialize a web container and invoke servlet methods as needed. These
servlet methods are small and decoupled enough from the business logic that you
can test what they do without invoking the business logic. If you want to use the
business logic in your test, then please consult chapter 13, “Testing J2EE Applica-
tions,” as those recipes involve testing the application more from end to end,
rather than testing its parts in isolation.

Simulate the container
Rather than use a live web container, your tests can use lightweight container simu-
lation to manage your web components. The two primary benefits of this approach
are faster tests and more control. The tests execute more quickly because the simu-
lated container does not provide all the same value-added features that an indus-
trial-strength container provides. You have more control because the simulated
container provides you with access to the HTTP objects that a production container
would not provide. You can use these objects both to set up your test fixture and to
verify the results. We generally prefer this approach to test handling a request and
rendering a response.

Avoid the container
The web components we use in our web applications are just Java objects, so we can
certainly test them without a container. The tricky part is knowing which parts of a
servlet are easy to test without a container and which parts are just not worth the
effort. The same is true of presentation layer technologies such as JSP or Velocity.
Our first instinct is to try to test a web component in isolation, but our experience
told us when to throw in the towel and reach for a simulated container.

Our simulated container of choice is ServletUnit, which provides ServletRun-
ner as its lightweight container, capable of processing your web deployment
descriptor and registering servlets programmatically. In this chapter, whenever we
identify the need to simulate the container we will use ServletUnit. The recipes
are organized according to the component you need to test and the problems you
might encounter along the way.

Finally, if you are stuck testing web components that you cannot refactor, but
still want to write out-of-container tests, all is not lost. You can still use ServletUnit,
and we provide some recipes that describe how.

446 CHAPTER 12

Testing web components
12.1 Test updating session data without a container

◆ Problem

You have logic that updates an HTTP session and you would like to test it.

◆ Background

You have chosen to store temporary, client data in the HTTP session, as opposed
to a stateful session bean or some other mechanism. You would like to verify that
the session is updated correctly, without involving the entire web application in
the process. End-to-End Tests are typically quite long, as they can require many
steps just to get the application to the desired point. Once you reach that point,
you have to rely on the application to correctly interpret the session data just to
verify that the session data is correct. What if there is a defect when displaying ses-
sion data? How do you know which part works?

The real problem is that many applications scatter their interaction with the ses-
sion all over the place, either duplicated within the servlet or in a variety of places
outside the servlet. Duplication, as always, is the enemy. The question is how to
refactor to make this logic available outside the container, yet allow it to interact
with the session.

◆ Recipe

There are two key responsibilities at play in this interaction: updating session data
and then updating the HTTP session object. The distinction between the session
and its data is the key point for this recipe. Your business logic does not need to
know where the data comes from: some from the request, some from the session,
some from a hole in the wall—to the business logic it is not important. Therefore,
we recommend you do the following:

1 Move the logic that updates the session data to its own class, usually called
an action.

2 Keep the logic that updates the HTTP session with the session data in the servlet.

3 At each request, have the servlet take a snapshot of the session data and
pass that to the action for processing.

To illustrate this, we will follow a time-honored tradition: implementing a shop-
ping cart with an HTTP session. Of course, in a real e-commerce application you
would never store the shopping cart in a user’s session; but much as “Hello, World”

447Test updating session data
without a container
is the obligatory example of a first program, so is the shopping cart the obligatory
HTTP session example. Our store is a coffee shop, selling coffee beans of different
varieties and, one hopes, in copious quantities. You can surf our online store and
purchase coffee beans by the kilogram.2 When you submit the form to add a few
kilograms of Sumatra to your shopcart, this code takes over:

HttpSession session = request.getSession(true);

for (Iterator i = requestedQuantities.iterator(); i.hasNext();) {
 CoffeeQuantity each = (CoffeeQuantity) i.next();
 Integer currentQuantityInKilograms =
 (Integer) session.getAttribute(each.getCoffeeName());

 if (currentQuantityInKilograms == null) {
 session.setAttribute(
 each.getCoffeeName(),
 new Integer(each.getAmountInKilograms()));
 }
 else {
 int newQuantityInKilograms =
 currentQuantityInKilograms.intValue()
 + each.getAmountInKilograms();

 session.setAttribute(
 each.getCoffeeName(),
 new Integer(newQuantityInKilograms));
 }
}

This codes lives inside the servlet3 and is invoked by the method doPost(). Here,
requestedQuantities is a collection of CoffeeQuantity objects, each of which
describes the amount of a certain type of coffee. For example, if you ask for 3 kg
of Special Blend, the corresponding CoffeeQuantity object has the values in
table 12.1.

2 With a Canadian author, you get kilograms. If you want pounds, multiply by 2.2.
3 We are talking about a hypothetical servlet that stores session information this way. The actual servlet in

our Coffee Shop application, CoffeeShopController, has already been refactored according to this recipe.

Table 12.1 Sample CoffeeQuantity properties

Property name Property value

amountInKilograms 3

coffeeName “Special Blend” (java.lang.String)

448 CHAPTER 12

Testing web components
Then when it is time to display your shopcart, this code takes over:

public static ShopcartBean create(
 HttpSession session,
 CoffeeCatalog catalog) {

 ShopcartBean shopcartBean = new ShopcartBean();
 for (Enumeration e = session.getAttributeNames();
 e.hasMoreElements();
) {

 String eachCoffeeName = (String) e.nextElement();
 Integer eachQuantityInKilograms =
 (Integer) session.getAttribute(eachCoffeeName);

 ShopcartItemBean item =
 new ShopcartItemBean(
 eachCoffeeName,
 eachQuantityInKilograms.intValue(),
 catalog.getUnitPrice(eachCoffeeName));

 shopcartBean.shopcartItems.add(item);
 }

 return shopcartBean;
}

This code lives within the ShopcartBean, the object that contains all the shopcart data
to be displayed on a web page. Notice that it too interacts directly with the HTTP ses-
sion, in spite of the fact that this object has the potential to be used outside the con-
text of a web application. This is an indicator of high coupling in the design. If you
are not in a position to extract the business logic from this code, then you can use
ServletUnit to test it, which we describe in recipe 12.2, “Test updating the HTTP ses-
sion object.”

We want to test the logic that updates the shopcart, pure and simple. We want
to write this test:

public void testAddToEmptyShopcart() {
 String coffeeProductId = "0";
 String coffeeName = "Sumatra";
 int requestedQuantity = 5;

 CoffeeCatalog catalog = new CoffeeCatalog();
 catalog.addCoffee(
 coffeeProductId, coffeeName, Money.dollars(7, 50));

 ShopcartModel model = new ShopcartModel();

 List requestedQuantities =
 Collections.singletonList(
 new CoffeeQuantity(
 requestedQuantity,

449Test updating session data
without a container
 catalog.lookupCoffeeById(coffeeProductId)));

 model.addCoffeeQuantities(requestedQuantities);

 assertEquals(5, model.getQuantity("Sumatra"));
 assertEquals(5, model.getTotalQuantity());
}

This test primes the catalog with data, creates a new shopcart, adds a certain quan-
tity of coffee to the shopcart, then verifies both the amount of Sumatra coffee and
the amounts of all coffees. The last assertion ensures that the Sumatra is the only
coffee in the shopcart. This is much more to the point. To write this test, we need
to make the design change indicated in figure 12.1.

Notice that the preceding test says nothing whatsoever about HTTP session,
requests, or servlets. It is a pure test of business logic. You can see the final Shop-
cartModel code in listing 12.1:

package junit.cookbook.coffee.model;

import java.io.Serializable;
import java.util.*;

import com.diasparsoftware.java.util.Quantity;

public class ShopcartModel implements Serializable {
 private Map coffeeQuantities = new HashMap();

 public void addCoffeeQuantities(List requestedQuantities) {
 for (Iterator i = requestedQuantities.iterator();
 i.hasNext();
) {

CoffeeShop
Controller

(HttpServlet)

ShopcartModel
getQuantity(coffeeName)

addQuantity(coffeeQuantity)

CoffeeShop
Controller

(HttpServlet)

HttpSession

Map of coffee
names to
shopcart
quantities

Figure 12.1
Changing the design to encapsulate
session data in a model object

Listing 12.1 ShopcartModel

450 CHAPTER 12

Testing web components
 CoffeeQuantity each = (CoffeeQuantity) i.next();

 String coffeeName = each.getCoffeeName();
 CoffeeQuantity currentQuantity
 = getCoffeeQuantity(coffeeName);

 Quantity sum = each.add(currentQuantity);
 coffeeQuantities.put(coffeeName, sum);
 }
 }

 private CoffeeQuantity getCoffeeQuantity(String coffeeName) {
 CoffeeQuantity currentQuantity =
 (CoffeeQuantity) coffeeQuantities.get(coffeeName);

 return (currentQuantity == null)
 ? new CoffeeQuantity(0, coffeeName)
 : currentQuantity;
 }

 public int getQuantity(String coffeeName) {
 return getCoffeeQuantity(coffeeName)
 .getAmountInKilograms();
 }

 public int getTotalQuantity() {
 int totalQuantity = 0;
 for (Iterator i = coffeeQuantities.values().iterator();
 i.hasNext();
) {

 CoffeeQuantity each = (CoffeeQuantity) i.next();
 totalQuantity += each.getAmountInKilograms();
 }
 return totalQuantity;
 }

 public Iterator items() {
 return coffeeQuantities.values().iterator();
 }

 public boolean isEmpty() {
 return coffeeQuantities.isEmpty();
 }

 public boolean equals(Object other) {
 if (other != null && other instanceof ShopcartModel) {
 ShopcartModel that = (ShopcartModel) other;
 return this.coffeeQuantities
 .equals(that.coffeeQuantities);
 }
 else {
 return false;
 }
 }

451Test updating session data
without a container
 public int hashCode() {
 return coffeeQuantities.hashCode();
 }

 public String toString() {
 return "a ShopcartModel with " + coffeeQuantities;
 }
}

We have changed the servlet so that interaction with the HTTP session is reduced
to a single method.

public ShopcartModel getShopcartModel(HttpServletRequest request) {
 HttpSession session = request.getSession(true);

 ShopcartModel model =
 (ShopcartModel) session.getAttribute("shopcartModel");

 if (model == null) {
 model = new ShopcartModel();
 session.setAttribute("shopcartModel", model);
 }

 return model;
}

This is the entire interface between your business logic and HTTP session, and
although it is not too simple to break, it is so simple that defects in your business
logic will not affect your interaction with the session. To test your interaction with
the session, you only need the following tests:

■ Start with an empty session. Issue a request. Expect a shopcart model in the session.

■ Start with a session containing a shopcart model. Issue a request. Expect the
shopcart model to be there.

With these two tests in place, you can ignore HTTP session interaction when test-
ing the rest of your application.

◆ Discussion

The original design was simple from one perspective, but there were two proper-
ties of the design preventing us from writing the test we wanted to write.

■ The logic to update the shopcart was tightly coupled to the Controller—the servlet.

■ The logic to update the shopcart was in a different place than the logic to
retrieve the shopcart.

452 CHAPTER 12

Testing web components
The first design property made it difficult to execute the update logic on its own,
forcing us to drag the servlet along for the ride. We should be able to test the
update logic no matter how the application delivers the data to it, and our final
test reflects that statement, because the test provides the data.

The second design property made it difficult to have confidence in the servlet’s
ability to update the session correctly with the session data. Keeping the HTTP ses-
sion up to date after changing the underlying session data should almost be auto-
matic. At a minimum, it should only occur in one place. If you find that your
session data object works correctly, but you still have session problems, then the
problem lies in the code that takes your single session model object (like our
ShopcartModel) and stuffs it into the HTTP session. In this case, we recommend
writing a few tests to ensure that your session data object makes it into the
HttpSession properly (see recipe 12.2 for details on how to do this). You can then
refactor to a design where this “glue code” appears in only one place. After that,
you can concentrate on having the right session data object without worrying
about whether it actually gets into the session.

◆ Related

■ 12.2—Test updating the HTTP session object

■ B.1—Too simple to break

12.2 Test updating the HTTP session object

◆ Recipe

You want to verify the contents of an HTTP session, but the code that triggers
updating the session is not available to invoke directly from a test.

◆ Background

You will most typically arrive at this situation if you have inherited servlet code
that was not designed to be tested easily. The methods that update a servlet ses-
sion could be anywhere in the system, rather than refactored into a centralized
service. This makes writing these tests a little more difficult than it needs to be.
Still, even if updating servlet session is done entirely within the servlet class itself,
it might be hidden in non-public methods, meaning that you would need to either
move those methods into another class or use some means of getting around the
Java visibility rules in your tests.

453Test updating the HTTP session object
◆ Recipe

Fortunately, ServletUnit provides a way to gain access to the servlet session so that
you can verify its contents. Returning to our Coffee Shop application, listing 12.2
shows the test we write to verify the contents of the HTTP session when putting
5 kilograms of Sumatra coffee beans into an empty shopcart.

package junit.cookbook.coffee.test;

import javax.servlet.http.*;

import junit.cookbook.coffee.CoffeeShopController;
import junit.cookbook.coffee.model.ShopcartModel;
import junit.framework.TestCase;

import com.diasparsoftware.java.util.Money;
import com.meterware.HttpUnit.*;
import com.meterware.servletunit.*;

public class AddToShopcartControllerTest extends TestCase {
 private static final String webApplicationRoot =
 "../CoffeeShopWeb/Web Content";

 public void testAddToEmptyShopcart() throws Exception {
 ServletRunner servletRunner =
 new ServletRunner(
 webApplicationRoot + "/WEB-INF/web.xml",
 "/coffeeShop");

 String coffeeName = "Sumatra";
 String coffeeProductId = "1";
 int expectedQuantity = 5;

 CoffeeShopController coffeeShopController
 = new CoffeeShopController();
 coffeeShopController.init();

 coffeeShopController.getCatalog().addCoffee(
 coffeeProductId,
 coffeeName,
 Money.dollars(7, 50));

 WebRequest addToShopcartRequest = makeAddCoffeeRequest(
 coffeeProductId, expectedQuantity);

 ServletUnitClient client = servletRunner.newClient();

 InvocationContext invocationContext =
 client.newInvocation(addToShopcartRequest);

 coffeeShopController.service(
 invocationContext.getRequest(),
 invocationContext.getResponse());

Listing 12.2 Verifying the contents of the HTTP session

E

F

B

C

D

454 CHAPTER 12

Testing web components
 ShopcartModel shopcartModel =
 checkShopcartModel(invocationContext.getRequest());

 assertEquals(
 expectedQuantity,
 shopcartModel.getQuantity(coffeeName));
 }

 public ShopcartModel checkShopcartModel(
 HttpServletRequest request) {

 HttpSession session = request.getSession();
 assertNotNull(session);

 ShopcartModel shopcartModel =
 (ShopcartModel) session.getAttribute("shopcartModel");
 assertNotNull(shopcartModel);

 return shopcartModel;
 }

 private static WebRequest makeAddCoffeeRequest(
 String coffeeProductId,
 int expectedQuantity) {

 WebRequest addToShopcartRequest = new PostMethodWebRequest(
 "http://localhost/coffeeShop/coffee");

 addToShopcartRequest.setParameter(
 "quantity-" + coffeeProductId,
 String.valueOf(expectedQuantity));

 addToShopcartRequest.setParameter(
 "addToShopcart-" + coffeeProductId,
 "Buy Now!");

 return addToShopcartRequest;
 }
}

The general steps for writing such a test are:

Initialize the container—the ServletRunner—with your web deployment descriptor.

Instantiate and initialize the servlet, so that you can invoke its methods directly.
You might wonder why one does not ask the container for the servlet, as that is the
container’s job. The “container” in this case provides context information, such as
the servlet context root path, but it does not actually handle servlet requests. It is
in this respect that it is a container simulator, rather than a lightweight container.

Create a request, for which you use HttpUnit’s WebRequest hierarchy: usually either
a GetMethodWebRequest or a PostMethodWebRequest.

G

Always use local-
host and port 80
with ServletUnit

B

C

D

455Test updating the HTTP session object
Ask the container for a ServletUnitClient from which you obtain an InvocationCon-
text. It is this invocation context that provides access to the raw HTTP request and
response that the servlet processes.

Invoke the servlet’s service() method passing the raw HTTP request and response
as parameters, just as though the container were doing the work.

Ask the invocation context for the raw HTTP request, retrieve the HttpSession
object, then verify its contents.
It is really only this last step that is specific to the needs of this test; you can use the
others to build any servlet-based test with ServletUnit.

◆ Discussion

If you are testing a servlet that you cannot change, then we recommend writing
End-to-End Tests with HtmlUnit rather than Object Tests with ServletUnit. To jus-
tify our recommendation, here are a few things we experienced while writing the
test in this example, compared to the corresponding HtmlUnit test.

Because the ServletUnit test deals with raw HTTP requests, we entered some of
the HTML element names incorrectly. When we read the test code to determine
the problem, it was not clear which element name corresponded to which HTML
form element. We find the corresponding HtmlUnit test (see chapter 13, “Testing
J2EE Applications”) is clearer because we code it in terms of text fields and but-
tons, rather than request parameters.

When we first tried to execute this test we found that we needed to involve Jas-
per (a JSP compiler) and Ant (which shocked us). We needed this because our serv-
let forwards to a JSP. We think that this is only more complexity without much
gain, so we recommend you separate the act of choosing which JSP to forward to
from the act of executing that forward operation. Doing so allows you to avoid the
work (and expense) of actually compiling and “displaying” the JSP. Your test only
needs to examine the HTTP session, so it might not even look at the rendered
page, anyway.

The fact that the servlet forwards to a JSP also meant that we needed a real web
deployment descriptor, rather than being able to register the servlet programmat-
ically in the test. This separates test data from the test itself, which can make the
test difficult to understand. If you do not need to forward or redirect to another
URI/URL then you can invoke ServletRunner.registerServlet() to register your
servlet. ServletUnit still provides you with the necessary invocation context to
check your session object, but none of the web component-to-URL mapping you
might expect would work. If your test does not need it, then do not worry about it.

E

F

G

456 CHAPTER 12

Testing web components
The test is still quite long: almost fifty lines. Some of that is code that can be
extracted into a test fixture (see recipe 3.4, “Factor out a test fixture”), and that
includes statements stretching onto multiple lines, but even conceptually the test
is “long.” It would be nice to focus on the one aspect of the test we really care
about—updating the session.

Do not take this to mean that we dislike ServletUnit. Far from it. We intend
these comments to mean that one should use ServletUnit judiciously, to test those
aspects of web container interaction that cannot be extracted along with business
logic. In other words, to test the “glue code” between your servlet and the code
around it. When you first reach for ServletUnit, ask yourself whether you can
extract the code in question and test it separately. If you honestly answer “no,”
then that is the time to use ServletUnit.

Before we leave this discussion, here is an advisory from the ServletUnit docu-
mentation on using the invocation context feature. “Note first that you must do
all of the processing that the service() method would have done if you take this
approach. You may either call the service() method itself, or a combination of
other calls that will prepare the response in the fashion you wish to test.” The pat-
tern we have found most useful is to have doGet() or doPost() invoke process-
Request(), then format the request (forward to JSP or write raw HTML). The
method processRequest(), which we add, does all the real work. Using this little
implementation pattern avoids rendering the JSP, which we leave to a different
test (see recipe 12.3, “Test rendering a JavaServer Page”).

◆ Related

■ 3.2—Create a separate source tree for test code

■ 3.3—Separate test packages from production code packages

■ 3.4—Factor out a test fixture

■ 12.3—Test rendering a JavaServer Page

12.3 Test rendering a JavaServer Page

◆ Problem

You want to verify the output of a JavaServer Page.

457Test rendering a JavaServer Page
◆ Background

Testing JSPs in isolation—that is, without simply writing End-to-End Tests—is one
of those activities that many people find too difficult to be worth the effort. We
find that strange, especially in light of the way many people write JSPs in the first
place. It is commonplace for a web author to start with a static web page contain-
ing dummy data. This makes it easy to work on both layout and general look-and-
feel using web authoring tools such as Dreamweaver. After the page looks good, it
is time to replace the static content with placeholders for dynamic content which
the application will provide. These placeholders correspond to JavaBean proper-
ties, so now the “only way” to see the rendered JSP is to get real data from the
application, which is most easily done by executing the application end to end.

◆ Recipe

Rather than test your application from end to end, we recommend hard coding
some data for the JSP, then rendering it directly using a JSP engine. You can com-
pare the JSP engine’s output with a Gold Master—a version of the JSP output that
you have checked by hand once and then filed away as “correct.”

The general strategy is to use ServletUnit along with Jasper4 to render the JSP in
question. ServletUnit also allows you to intercept the request on the way to the JSP
so that you can add data to it in the form of request or session attributes. Finally,
you will apply the Gold Master technique, comparing the current JSP output to
known, correct output.5

The example that follows consists of a fair amount of code, so we will explore it
in pieces. Much of this code is reusable, and so represents a one-time effort, leav-
ing surprisingly little code to write for the dozens of tests you need to test all your
JSPs. In listing 12.3 we start with the “easy” part: the tests themselves.

package junit.cookbook.jsp.test;

import java.io.File;

import javax.servlet.http.HttpServletRequest;

import junit.cookbook.coffee.display.*;
import junit.cookbook.coffee.presentation.test.JspTestCase;

4 Here we are using the Apache Tomcat web container, which includes Jasper as its JSP engine.
5 We discuss the Gold Master technique in recipe 10.2, “Verify your SQL commands.”

Listing 12.3 RenderShopcartJspTest

458 CHAPTER 12

Testing web components
import com.diasparsoftware.java.util.Money;
import com.diasparsoftware.javax.servlet.ForwardingServlet;
import com.diasparsoftware.util.junit.GoldMasterFile;
import com.meterware.servletunit.*;

public class RenderShopcartJspTest extends JspTestCase {
 private ShopcartBean shopcartBean;
 private ServletRunner servletRunner;
 private ServletUnitClient client;

 protected void setUp() throws Exception {
 shopcartBean = new ShopcartBean();

 servletRunner =
 new ServletRunner(
 getWebContentPath("/WEB-INF/web.xml"),
 "/coffeeShop");
 servletRunner.registerServlet(
 "/forward",
 ForwardingServlet.class.getName());

 client = servletRunner.newClient();
 }

 public void testEmptyShopcart() throws Exception {
 checkShopcartPageAgainst(
 new File(
 "test/gold",
 "emptyShopcart-master.txt"));
 }

 public void testOneItemInShopcart() throws Exception {
 shopcartBean.shopcartItems.add(
 new ShopcartItemBean(
 "Sumatra",
 "762",
 5,
 Money.dollars(7, 50)));

 checkShopcartPageAgainst(
 new File(
 "test/gold",
 "oneItemInShopcart-master.txt"));
 }

 // Helper code omitted for now
}

The superclass JspTestCase provides some useful methods for locating JSPs
on the file system and deciding where on the file system the JSP engine should
generate servlet source code. If you are interested in the details, see the Discussion

JspTestCase
contains some
convenience
methods

Register an entire Web
Deployment Descriptor

A dummy servlet to
help serve up JSPs

Check against
the Gold Master

459Test rendering a JavaServer Page
section of this recipe, but we recommend reading on first, and then coming back
to the details when the rest of this recipe is in focus.

The tests are tiny: add some items to a shopcart (or not, in the case of the empty
shopcart case) then check the resulting page against a Gold Master. This method
—checkShopcartPageAgainst()—is where all the magic happens, but before we get
to that, we first look at ForwardingServlet. This is a simple servlet that does two
things: lets a test put data into a request (or session) and forwards the request to
the URI we specify. This simulates what our CoffeeShopController does in produc-
tion after all the business logic and database updates are complete. Our strategy
here is to eliminate the business logic because what we want has nothing to do with
business logic: we simply want to verify that a JSP “looks right.” We write the For-
wardingServlet once—or hope that someone else provides one for us6—then use
it for the rest of these kinds of tests. Listing 12.4 shows the result.

package com.diasparsoftware.javax.servlet;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.*;

public class ForwardingServlet extends HttpServlet {
 private String forwardUri = "";

 protected void doGet(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 handleRequest(request, response);
 }

 protected void doPost(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 handleRequest(request, response);
 }

 protected void handleRequest(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

6 Diasparsoft Toolkit (www.diasparsoftware.com/toolkit) includes ForwardingServlet for use in tests.

Listing 12.4 ForwardingServlet

460 CHAPTER 12

Testing web components
 getServletContext().getRequestDispatcher(
 getForwardUri()).forward(
 request,
 response);
 }

 public void setForwardUri(String forwardUri) {
 this.forwardUri = forwardUri;
 }

 public String getForwardUri() {
 return forwardUri;
 }
}

The next part is rendering the JSP and retrieving its content—that is, using the For-
wardingServlet in combination with ServletUnit, then reading the JSP output as text.

public String getActualShopcartPageContent()
 throws Exception {

 InvocationContext invocationContext =
 client.newInvocation(
 "http://localhost/coffeeShop/forward");

 ForwardingServlet servlet =
 (ForwardingServlet) invocationContext.getServlet();

 servlet.setForwardUri("/shopcart.jsp");

 HttpServletRequest request =
 invocationContext.getRequest();

 request.setAttribute("shopcartDisplay", shopcartBean);
 servlet.service(request, invocationContext.getResponse());
 return invocationContext.getServletResponse().getText();
}

This is a direct translation of the steps we needed to test the JSP: put data in the
request, render the JSP, and look at the resulting web page. Notice that we do not
worry about where the data comes from—we just hard code the data we want to
display and stuff it into the request, where the JSP expects it to be. We know that
the shopcart data comes from the user’s session object and we know that we have
to translate that session object into a ShopcartBean, but we do not care about those
details for this test. Tomorrow, when it turns out we need to store shopcart data in
the database and retrieve it using a ShopcartStore (see chapter 10, “Testing and
JDBC”), this test remains unaffected. That is one indicator of a good design: no ripple
effect. Good work!

Specify which URI
to forward to when
invoking service()

We created the
ServletUnitClient
in setUp()

Put the shopcart
data on the request

Invoke the
Forwarding-
Servlet

Get the
JSP output
as text

461Test rendering a JavaServer Page
The last piece of the puzzle comes in two parts: the Gold Master. We say two parts
because to use the Gold Master technique requires first creating the Gold Master
and checking it by visual inspection, then verifying future output against that Gold
Master. To create the Gold Master you need to write the JSP text out to a file:

public void generateGoldMaster(File goldMasterFile)
 throws Exception {

 String responseText = getActualShopcartPageContent();
 new GoldMasterFile(goldMasterFile).write(responseText);
 fail("Writing Gold Master file.");
}

When you first code your test, have it invoke generateGoldMaster(). This method
creates the Gold Master file and fails the test as a reminder that you have not fin-
ished yet. This last point is important. If you let the test pass it is possible for some-
one to run the test, believe it is actually testing something, and not realize that
there is work to do. You can ignore a passing test, but not a failing test!7 So your
test will look like this the first time you execute it:

public void testEmptyShopcart() throws Exception {
 generateGoldMaster(
 new File(
 "test/gold",
 "emptyShopcart-master.txt"));
}

Execute the test, then inspect the output yourself:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=ISO-8859-1" />
<meta name="GENERATOR" content="IBM WebSphere Studio" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<link href="theme/Master.css" rel="stylesheet" type="text/css" />
<title>shopcart.jsp</title>
</head>
<body>
<h1>your shopcart contains</h1>
<table name="shopcart" border="1">
 <tbody>
 <tr>
 <td>Name</td>

7 Some people might use this opportunity to “ignore” the test (see recipe 6.6, “Ignore a test”) rather than
have it fail. We recommend the latter, but it is largely a question of personal taste. Do what works for you.

462 CHAPTER 12

Testing web components
 <td>Quantity</td>
 <td>Unit Price</td>
 <td>Total Price</td>
 </tr>

 <tr>
 <td colspan="3">Subtotal</td>
 <td>$0.00</td>
 </tr>
 </tbody>
</table>

<form action="coffee" method="POST"><input type="submit"
 name="browseCatalog" value="Buy More Coffee!" /></form>
</body>
</html>

This looks right: displaying an empty shopcart means no items in the cart and a zero
subtotal. There is your Gold Master file. Now that you have written it to disk, change
the test so that it checks the response from the server against the Gold Master:

public void testEmptyShopcart() throws Exception {
 checkShopcartPageAgainst(
 new File(
 "test/gold",
 "emptyShopcart-master.txt"));
}

such that checkShopcartPageAgainst() looks like this:

public void checkShopcartPageAgainst(File goldMasterFile)
 throws Exception {

 String responseText = getActualShopcartPageContent();
 new GoldMasterFile(goldMasterFile).check(
 responseText);
}

The class com.diasparsoftware.util.junit.GoldMasterFile is also part of Dias-
parsoft Toolkit and provides convenience methods for generating and checking
against a Gold Master. Listing 12.5 shows the source for this class.

package com.diasparsoftware.util.junit;

import java.io.*;
import junit.framework.Assert;

public class GoldMasterFile extends Assert {
 private File file;

 public GoldMasterFile(String directory, String file) {

Listing 12.5 GoldMasterFile

463Test rendering a JavaServer Page
 this(new File(directory, file));
 }

 public GoldMasterFile(File file) {
 this.file = file;
 }

 public void write(String content) throws IOException {
 file.getParentFile().mkdirs();
 FileWriter goldMasterWriter = new FileWriter(file);
 goldMasterWriter.write(content);
 goldMasterWriter.close();
 }

 public void check(String actualContent)
 throws IOException {

 assertTrue(
 "Gold master [" + file.getAbsolutePath() + "] not found.",
 file.exists());

 StringWriter stringWriter = new StringWriter();
 PrintWriter printWriter = new PrintWriter(stringWriter);

 BufferedReader goldMasterReader =
 new BufferedReader(new FileReader(file));
 while (true) {
 String line = goldMasterReader.readLine();
 if (line == null)
 break;
 printWriter.println(line);
 }

 assertEquals(stringWriter.toString(), actualContent);
 }
}

So that is everything: to write a new test, simply add items to the shopcart, write
the JSP output to disk, inspect the results by hand, make it a Gold Master, then
change the test to check against that Gold Master. If the test ever fails—and it will
whenever you change the JSP—just inspect the Gold Master by hand again.

◆ Discussion

We tried to find a standalone JSP engine that we could use to execute these tests
and came up empty. We did try to use Jasper—the JSP engine embedded in
Apache Tomcat—but we had to write a considerable amount of code, mostly fak-
ing context objects, just to get to the point where we could compile a JSP, let alone
execute it. For that reason we abandoned this approach, preferring instead to use

464 CHAPTER 12

Testing web components
an actual container to process the JSPs. Perhaps by the time you read this there
will be a standalone JSP engine that you can use in its place. If so, you can compile
and execute the JSP directly rather than going through a web container. So much
the better.

Test performance is always an issue to consider, so we feel it is important to
mention the cost of executing these tests. In terms of time expense, the cost to
execute these tests is approximately 2 seconds of startup cost and 2 seconds per
test. These numbers are based on a P4-2.4 GHz machine with all operations occur-
ring in memory (no swapping). This means that a site with 100 JSPs might need a
total of 10 minutes (3 test scenarios per JSP times 100 JSPs, times 2 seconds each)
to execute an exhaustive test suite for its JSPs. We recommend that you use a back-
ground-running continual build system such as Cruise Control to execute these
tests regularly, rather than trying to make them part of the Programmer Test suite
that you execute whenever you change the production code. The bulk of the cost
comes from rendering the JSP and comparing the resulting web page against con-
tent we retrieve from disk. In order to speed up these tests, we need to eliminate
these costly operations.

We can verify that the JSP has the correct data to display, but that has nothing to
do with the JSP. Instead, see recipe 12.12, “Verify the data passed to a page tem-
plate,” which, in spite of its title, only tests the servlet.

We can verify that the JSP displays the correct data without worrying about lay-
out or look and feel by using XMLUnit. See chapter 9, “Testing and XML,” for rec-
ipes involving XMLUnit.

For the sake of completeness, here is the code for JspTestCase:

public abstract class JspTestCase extends TestCase {
 protected static final String webApplicationRoot =
 "../CoffeeShopWeb/Web Content"; | #1

 protected String getWebContentPath(String relativePath) {
 return new File(
 webApplicationRoot, relativePath).getAbsolutePath();
 }

 protected String getCoffeeShopUrlString(String uri)
 throws Exception {

 return "http://localhost/coffeeShop" + uri;
 }

 protected String getJspTempDirectory() {
 return System.getProperty("java.io.tmpdir");
 }

Change these values
for your project

465Test rendering a Velocity template
 protected void tearDown() throws Exception {
 File[] files =
 new File(getJspTempDirectory()).listFiles(
 new FilenameFilter() {

 public boolean accept(File dir, String name) {
 return name.endsWith(".java")
 || name.endsWith(".class");
 }
 });

 for (int i = 0; i < files.length; i++) {
 File file = files[i];
 file.delete();
 }
 }
}

One final note: we do not recommend using the Gold Master technique for out-
put that constantly changes. This technique is best used to detect inadvertent or
unexpected changes in output. If cosmetic changes such as look-and-feel or layout
enhancements are likely to happen, we strongly recommend that you verify just
the dynamic content parts of the JSP, as in the Discussion section of recipe 12.10,
“Verify web page content without a web server.” Those tests tend to be much less
brittle than tests that use the Gold Master technique.

◆ Related

■ 12.4—Test rendering a Velocity template

■ 12.10—Verify web page content without a web server

12.4 Test rendering a Velocity template

◆ Problem

You are using Velocity as your presentation engine and want to verify that the
page renders correctly.

◆ Background

If you are using Velocity rather than JSP as your presentation engine there is much
less work involved in testing your templates compared to testing JSPs—at least
when writing Object Tests. This recipe describes how simple it is to test rendering
a Velocity template.

466 CHAPTER 12

Testing web components
◆ Recipe

Testing a Velocity template consists of these steps:

1 Initialize the Velocity engine, pointing to the location of the templates on
the file system.

2 Add display JavaBeans to a VelocityContext object.

3 Merge the Velocity template with the data in the VelocityContext.

4 Compare the results against a Gold Master or parse the results in some
way.

We return to the shopcart example and use the Gold Master technique. The Velocity
template test is much the same as the JSP-based test (see listing 12.3 in recipe 12.3
to compare). We have highlighted the differences in bold print in listing 12.6.

public class RenderShopcartDisplayTemplateTest extends TestCase {
 private File contentDirectory =
 new File("../CoffeeShopWeb/Web Content"
 + "/WEB-INF/template/velocity");

 private ShopcartBean shopcartBean;

 protected void setUp() throws Exception {
 contentDirectory.mkdirs();

 Properties properties = new Properties();
 properties.put(
 RuntimeConstants.FILE_RESOURCE_LOADER_PATH,
 contentDirectory.getAbsolutePath());

 Velocity.init(properties);

 shopcartBean = new ShopcartBean();
 }

 public void testEmptyShopcart() throws Exception {
 File goldMasterFile =
 new File("test/gold/velocity", "emptyShopcart-master.txt");
 checkShopcartPageAgainst(goldMasterFile);
 }

 public void testOneItemInShopcart() throws Exception {
 shopcartBean.shopcartItems.add(
 new ShopcartItemBean(
 "Sumatra", "762", 5, Money.dollars(7, 50)));

 checkShopcartPageAgainst(
 new File("test/gold/velocity", "oneItemInShopcart-master.txt"));
 }

Listing 12.6 RenderShopcartDisplayTemplateTest

Specify the location of
the Velocity templates

467Test rendering a Velocity template

 public void checkShopcartPageAgainst(File goldMasterFile)
 throws Exception {

 String responseText = getActualShopcartPageContent();
 new GoldMasterFile(goldMasterFile).check(responseText);
 }

 public String getActualShopcartPageContent() throws Exception {
 Context templateAttributes = new VelocityContext();
 templateAttributes.put("shopcartDisplay", shopcartBean);

 StringWriter webPageWriter = new StringWriter();

 Velocity.mergeTemplate(
 "shopcart.vm",
 "UTF-8",
 templateAttributes,
 webPageWriter);

 String responseText = webPageWriter.toString();
 return responseText;
 }

 public void generateGoldMaster(File goldMasterFile)
 throws Exception {

 String responseText = getActualShopcartPageContent();
 new GoldMasterFile(goldMasterFile).write(responseText);
 fail("Writing Gold Master file.");
 }
}

These tests use the Velocity engine in standalone mode, which eliminates the need
to mock anything around you. We believe that this is a considerable improvement
over the work we need to do to write the same test for a JSP.

◆ Discussion

There is one difference between JSP and Velocity that we consider an annoyance,
but you might consider a blessing. The display JavaBeans we have used on our JSPs
expose properties as public fields, rather than as get methods. When we tried to
use those JavaBeans on a Velocity template, Velocity did not behave the way we
expected. It turns out that Velocity requires you to expose JavaBean properties
through get methods, so we added the ones we needed. We see this as more code
without an obvious justification, but perhaps it is a small price to pay for the sim-
plicity of Velocity over JSP. And, of course, if you believe that public fields are
pure evil, then you probably do not mind this additional requirement.

Merge the template with
the template attributes

Provide data to
the template

Write the
resulting web
page to a String

468 CHAPTER 12

Testing web components
If you do not want to use the Gold Master technique, but prefer instead to
make assertions about the structure and content of the resulting web page, then
see recipe 12.10 for details.

◆ Related

■ 12.3—Test rendering a JavaServer Page

■ 12.10—Verify web page content without a web server

12.5 Test a JSP tag handler

◆ Problem

You would like to write Object Tests for a JSP tag handler.

◆ Background

Because the JSP framework invokes the JSP tag handler, it is not obvious how to
test the tag handler in isolation. The approach you take depends on whether you
want to involve a JSP engine. As we have written previously, there is no mature,
standalone JSP engine that you can use outside the context of a web container, so
if you want to avoid a JSP engine, your best bet is to simulate it in your test.
Although a little annoying, it only takes a little research to get all the information
you need.

◆ Recipe

To test a JSP tag handler in isolation, you must write a test that invokes the tag
handler’s methods in the same order that the JSP engine would. Now that sounds
like a lot of work, but it is surprisingly simple. Not only that, but you can certainly
recuperate the effort you invest in writing this kind of test by refactoring your
mini-JSP engine and using it for future work. Perhaps one is available in a publicly
available toolkit somewhere.

In order to simulate the JSP engine, at least the part that executes your tag han-
dler, we searched the web and found a presentation by Doris Chen of Sun Micro-
systems.8 It includes lifecycle graphs for the various kinds of JSP tag handler
objects. We used these lifecycle graphs as specifications to build our tests, as they
told us the order in which to invoke the various JSP tag handler methods. For our

8 http://developers.sun.com/dev/evangcentral/presentations/customTag.pdf

469Test a JSP tag handler
example, we consider a custom tag that iterates over the items in a shopcart, pre-
senting each shopcart item as a JavaBean that the JSP can then render as it wants.
Listing 12.7 shows you how to use such a tag.

<table name="shopcart" border="1">
 <tbody>
 <tr>
 <td>Name</td>
 <td>Quantity</td>
 <td>Unit Price</td>
 <td>Total Price</td>
 </tr>
 <coffee:eachShopcartItem shopcartBean="shopcartDisplay"
 each="item">
 <tr>
 <td><%= item.coffeeName %></td>
 <td id="product-<%= item.productId %>">
 <%= item.quantityInKilograms %> kg
 </td>
 <td><%= item.unitPrice %></td>
 <td><%= item.getTotalPrice() %></td>
 </tr>
 </coffee:eachShopcartItem>
 <tr>
 <td colspan="3">Subtotal</td>
 <td>
 <jsp:getProperty name="shopcartDisplay"
 property="subtotal" />
 </td>
 </tr>
 </tbody>
</table>

We have highlighted the relevant parts of this JSP fragment in bold print. The tag
<coffee:eachShopcartItem> defines an iterator over the shopcart items, placing
each in the scripting variable named by the attribute each. In this case, we named
that scripting variable item and use that variable to display a single row. We could
certainly further hide the <tr> tag for each shopcart item behind another JSP tag,
but that is not germane to the point we want to make here. We see that this as an
IterationTag, and so refer to the lifecycle for an IterationTag, which we have
translated into pseudocode in listing 12.8. The parts in bold print are the actual
method and constant names.

Listing 12.7 Using an IterationTag

470 CHAPTER 12

Testing web components
initialize page context
initialize tag attributes

whatNext := doStartTag()
if (whatNext == EVAL_BODY_INCLUDE)
 do
 evaluate body
 until (doAfterBody() == SKIP_BODY)
endif

whatNext := doEndTag()
if (whatNext == EVAL_PAGE)
 evaluate rest of page
endif

We need to know the essential strategy behind the tag’s behavior before we know
what to test. The tag takes the specified shopcart and iterates over the items in it.
The tag stores each item in a scripting variable—implemented as a page context
attribute—so that the JSP can display its properties. We can describe the behavior
we need to test, then, in terms of the way we expect the JSP engine to invoke the
tag handler.

1 Set the tag attribute values, shopcartBean and each.

2 Invoke doStartTag(). If the shopcart is empty, we should skip the tag
body; otherwise, we should store the first shopcart item in the scripting
variable named by the attribute each, and then process the body.

3 If the shopcart is not empty, invoke doAfterBody(). If there are more
shopcart items, store the next shopcart item in the scripting variable
named by the attribute each, then process the body again; otherwise, skip
the body.

4 Now that all the shopcart items have been processed, invoke doEndTag(),
then evaluate the rest of the page.

We are essentially simulating a JSP engine—a theoretical one that follows the JSP
specification correctly. If your vendor supports the specification differently,9 your
End-to-End Tests will reveal that, at which point you should feed that information
back into your Object Tests with the appropriate comments. This is one case

Listing 12.8 Pseudocode for a generic IterationTag handler

9 A euphemism for “has a defect.”

471Test a JSP tag handler
where comments are certainly appropriate in code: when third-party software
does not conform to specifications to which it is meant to conform. We can trans-
late these steps into code relatively easily, as in listing 12.9.

package junit.cookbook.coffee.jsp.test;

import java.util.*;
import javax.servlet.jsp.tagext.*;

import junit.framework.*;
import junit.cookbook.coffee.display.*;
import junit.cookbook.coffee.jsp.EachShopcartItemHandler;

import com.diasparsoftware.java.util.Money;

import com.mockobjects.servlet.MockJspWriter;
import com.mockobjects.servlet.MockPageContext;

public class EachShopcartItemHandlerTest extends TestCase {
 private EachShopcartItemHandler handler;
 private ShopcartBean shopcartBean;
 private MockPageContext pageContext;

 protected void setUp() throws Exception {
 shopcartBean = new ShopcartBean();
 handler = new EachShopcartItemHandler();

 pageContext = new MockPageContext() {
 private Map attributes = new HashMap();

 public Object getAttribute(String name) {
 return attributes.get(name);
 }

 public void setAttribute(String name, Object value) {
 attributes.put(name, value);
 }

 public void removeAttribute(String name) {
 attributes.remove(name);
 }
 };

 MockJspWriter out = new MockJspWriter();
 pageContext.setJspWriter(out);

 handler.setPageContext(pageContext);
 handler.setParent(null);

 handler.setShopcartBean(shopcartBean);
 handler.setEach("item");

 }

Listing 12.9 EachShopcartItemHandlerTest

MockPageContext does not
store attributes by default

You can set the expected
output and verify it
against a String

We do not need the
parent tag for this test

Set the tag attributes

472 CHAPTER 12

Testing web components
 public void testEmptyShopcart() throws Exception {
 assertEquals(Tag.SKIP_BODY, handler.doStartTag());
 assertNull(getTheEachAttribute());
 assertEquals(Tag.EVAL_PAGE, handler.doEndTag());
 }

 public void testOneItem() throws Exception {
 ShopcartItemBean shopcartItem1 = new ShopcartItemBean(
 "Sumatra", "762", 1, Money.dollars(10, 0));
 shopcartBean.shopcartItems.add(shopcartItem1);

 List shopcartItemAsList = new LinkedList(
 shopcartBean.shopcartItems);

 assertEquals(Tag.EVAL_BODY_INCLUDE, handler.doStartTag());

 assertEquals(shopcartItemAsList.get(0), getTheEachAttribute());
 assertEquals(Tag.SKIP_BODY, handler.doAfterBody());

 assertNull(getTheEachAttribute());

 assertEquals(Tag.EVAL_PAGE, handler.doEndTag());
 }

 public void testTwoItems() throws Exception {
 shopcartBean.shopcartItems.add(
 new ShopcartItemBean(
 "Sumatra", "762", 1, Money.dollars(10, 0)));
 shopcartBean.shopcartItems.add(
 new ShopcartItemBean(
 "Special Blend", "768", 1, Money.dollars(10, 0)));

 List shopcartItemAsList = new LinkedList(
 shopcartBean.shopcartItems);

 assertEquals(Tag.EVAL_BODY_INCLUDE, handler.doStartTag());

 assertEquals(shopcartItemAsList.get(0), getTheEachAttribute());
 assertEquals(
 IterationTag.EVAL_BODY_AGAIN,
 handler.doAfterBody());

 assertEquals(shopcartItemAsList.get(1), getTheEachAttribute());
 assertEquals(Tag.SKIP_BODY, handler.doAfterBody());

 assertNull(getTheEachAttribute());
 assertEquals(Tag.EVAL_PAGE, handler.doEndTag());
 }

 public Object getTheEachAttribute() {
 return pageContext.getAttribute("item");
 }
}

Allows us to refer to each
shopcart item by index

A strange name, only because
getEachAttribute() could
mean something different

473Test a JSP tag handler
This test shows iterating over an empty shopcart, a single-item shopcart, and a
multiple-item shopcart. These are the three distinct cases we need to test,
although if it would make you more comfortable, you could test for ten items
rather than two. The next step is to turn this into a Parameterized Test Case (see
recipe 4.8, “Build a data-driven test suite”) that allows you to test against a variety
of values for the tag input attributes.

Notice that we do not test the output of the JspWriter our tag uses. In this case,
the tag does not write any output, but simply sets a page context attribute and pro-
cesses whatever body it might have. If your tag writes output using the JspWriter,
then add these lines of code to the end of your test:

MockJspWriter out = new MockJspWriter();
pageContext.setJspWriter(out);
handler.setPageContext(pageContext);
// The rest of the test
out.setExpectedData("The output you expect");
out.verify();

When you execute the test, the MockJspWriter verifies its actual output against the
expected data you specify here. You will use this technique for tags that write
directly to the JSP.

◆ Discussion

We have built our own MockPageContext implementation (as an anonymous class)
because the version that comes with Mock Objects v0.09 does not store page con-
text attributes. The tag we want to test sets those attributes, so we need to add
enough behavior to MockPageContext to store, retrieve and remove page context
attributes. This is a candidate to move to a reusable library (such as Mock Objects
itself). If your tag does not manipulate the page context in this way, then you can
use MockPageContext as is. Try it and see.

Compare the logic in each of the three tests with the IterationTag lifecycle to
see how the two match up. To help you see what we mean, consider the empty
shopcart case. The JSP engine should invoke doStartTag(), which should skip
the tag body. The JSP engine should then invoke doEndTag(), which should eval-
uate the rest of the page. This case entirely avoids processing the body and
invoking doAfterBody().

We do not generally recommend writing your own platform simulators. We
strongly recommend against, for example, writing your own servlet processing
engine for the sake of writing tests like this. We made an exception here for two
key reasons: it turns out to be simpler than we thought and there does not appear

474 CHAPTER 12

Testing web components
to be a viable alternative for writing Object Tests for a JSP tag handler. Our next
option would have been to write an End-to-End Test involving a JSP that uses this
tag (see recipe 12.3); so we compared the effort of writing this small JSP tag pro-
cessor, executing and maintaining the corresponding tests against writing, and
executing and maintaining the corresponding End-to-End Tests. We judged that
it was worth taking an hour or so to learn how to write these tests. We were right
this time. As always, be aware of the alternatives and the overall cost of each
option before you make your choice. If you do not know, then ask; the JUnit com-
munity is only too happy to help you.

◆ Related

■ 4.8—Build a data-driven test suite

■ 12.3—Test rendering a JavaServer Page

12.6 Test your JSP tag library deployment

◆ Problem

You want to verify that your JSP tag library has been deployed correctly.

◆ Background

It is possible to write all the right Object Tests for your web components but have
the system fail an End-to-End Test. It is easy to forget to write the deployment
descriptors for your web components when you do the majority of your web com-
ponent testing outside of a web container. The approach you take to deal with
this problem depends in part on how often you make the mistake and how much
it hurts you when you do. (Do not feel bad: it happens to the best of us.)

◆ Recipe

Let us first recommend you use your End-to-End Tests to detect this kind of prob-
lem. If you are executing End-to-End Tests (“Customer Tests” in the Extreme Pro-
gramming vernacular) as you complete features or as you execute your Object
Tests, then you can easily let your End-to-End Tests detect any defect arising from
deploying your web components incorrectly. For example, if you deploy a JSP tag
library incorrectly, your Object Tests will pass but your End-to-End Tests will fail.
As a result, when this failure happens, the first question to ask yourself is, “Did I
deploy this stuff correctly?”

475Test your JSP tag library deployment
We understand that this solution might not satisfy you. It might seem unneces-
sarily informal or haphazard. If you feel that way or decide for any other reason
that you need some more focused tests in place, then we recommend verifying the
deployment descriptors themselves, either using the Gold Master technique (which
we discussed in chapter 10, “Testing and JDBC”) or by parsing the XML documents
and making assertions about them (see chapter 9, “Testing and XML”). We recom-
mend the latter approach over the former. You might even wish to compare the
Gold Master file against the current deployment descriptor using XMLUnit rather
than performing a straight text-content comparison. If you use XMLUnit you will
not be bothered by false failures resulting from purely innocuous differences in
formatting: tabs or spaces, different white space, different line breaks.

The files you need to verify are the tag library descriptors (*.tld) and the web
deployment descriptor itself (web.xml). Check the former to ensure that you have
specified the tag name, attributes, requirements, and tag handler class name cor-
rectly. Check the latter to ensure that your application has access to all the tag
libraries it needs.

The following is an example of using XMLUnit to verify that you have specified
a custom tag correctly in your tag library descriptor. The entire test revolves around
checking the existence of a number of increasingly specific XPath expressions.
Listing 12.10 is an example.

package junit.cookbook.coffee.deployment.test;

import java.io.File;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import junit.cookbook.coffee.display.ShopcartItemBean;

import org.apache.crimson.jaxp.DocumentBuilderFactoryImpl;
import org.custommonkey.xmlunit.XMLTestCase;
import org.w3c.dom.Document;

public class CoffeeTagLibraryDeploymentTest
 extends XMLTestCase {
 private Document tagLibraryDescriptorDocument;

 protected void setUp() throws Exception {
 DocumentBuilderFactory factory =
 new DocumentBuilderFactoryImpl();

 factory.setNamespaceAware(true);

Listing 12.10 CoffeeTagLibraryDeploymentTest

476 CHAPTER 12

Testing web components
 factory.setValidating(false);

 DocumentBuilder documentBuilder =
 factory.newDocumentBuilder();

 documentBuilder.setEntityResolver(
 new StringEntityResolver(""));

 File file =
 new File(
 "../CoffeeShopWeb/Web Content",
 "WEB-INF/coffeeShop.tld");

 tagLibraryDescriptorDocument =
 documentBuilder.parse(file);
 }

 public void testShopcartTagDeployedCorrectly()
 throws Exception {

 String[] expectedRelativeXpaths =
 new String[] {
 "",
 "/attribute[name='shopcartBean']",
 "/attribute[name='each']",
 "/attribute[name='each' and required='true']",
 "/variable[name-from-attribute='each']",
 "/variable[name-from-attribute='each' and "
 + "variable-class='"
 + ShopcartItemBean.class.getName()
 + "']" };

 for (int i = 0;
 i < expectedRelativeXpaths.length;
 i++) {

 assertXpathExists(
 "/taglib/tag[name='eachShopcartItem']"
 + expectedRelativeXpaths[i],
 tagLibraryDescriptorDocument);
 }
 }
}

You now have the skeleton from which you can make two main enhancements. First,
add more XPath-based assertions to cover the other parts of the tag library descriptor
that you expect to find. Next, build a customized Document Object Model for this
document, similar to the work that Mike Bowler has done in creating a domain-
oriented Document Object Model for HTML in HtmlUnit. If you get that far, con-
sider sharing it with the rest of the world through the medium of open source!

Avoid loading
the DTD

Verify each
expected XPath
expression

477Test servlet initialization
◆ Discussion

In our example we avoided loading the DTD for our tag library descriptor10

because that was not part of the problem we were trying to solve. XMLUnit pro-
vides support for validating documents against a DTD, and you should use them in
testing wherever you can. Validating XML documents—either against a DTD or a
schema—catches perhaps 90% of the silly mistakes we make when writing XML by
hand or when generating it. See chapter 9, “Testing and XML” for more informa-
tion on testing with XMLUnit.

We recommend building a Deployment Test Suite that you execute when you
deploy the application. This suite would include all manner of tests that verify
deployment descriptors, including checking for tag libraries. Not only will the
programmers find this useful during development, but the deployers will find it
useful to avoid silly problems during deployment. Everyone wins.

If you are test-driving your JSP tag library, then you will typically use XMLUnit to
build the content of your tag library descriptor and web deployment descriptor as
you write the tag library. In that case, you are more likely to use XMLUnit directly
on the deployment descriptor and place the expected contents in your test
method than you would be to use the Gold Master technique. If you are adding
deployment tests to an existing application, you will probably find the Gold Mas-
ter technique sufficient until you notice a pattern in the kinds of deployment
defects your organization tends to make. If that happens, we recommend adding
the more direct-style tests to cover those “blind spots.”

◆ Related

■ Chapter 9—Testing and XML

■ Chapter 10—Testing and JDBC

12.7 Test servlet initialization

◆ Problem

You want to verify that your servlet initializes correctly.

10 We created the class StringEntityResolver and used it in a rather trivial manner, because that was
quick and easy.

478 CHAPTER 12

Testing web components
◆ Background

If you have trouble verifying a servlet’s initialization behavior, this is most likely
the reason: the behavior has no directly observable side effect. Often the servlet
reads some startup data or builds some internal lookup tables and that informa-
tion is not available outside the servlet object—instead they are private parts.
Other times, servlet initialization consists of initializing other resources, such as a
data source, messaging server, or security server. It is often difficult to verify that
the servlet initializes those resources correctly, as doing so involves both having
those resources online and making assertions on their state. You would be sur-
prised how difficult it can be to ask a messaging server, “Are you initialized prop-
erly?” They are not accustomed to answering such simple questions!

◆ Recipe

The most direct approach is best: invoke init() and verify the results. Listing 12.11
provides an example.

public class InitializeCoffeeShopControllerTest extends TestCase {
 public void testCatalogInitialized() throws Exception {
 final Map initParameters = new HashMap();
 initParameters.put("A", "$7.25");

 CoffeeShopController controller = new CoffeeShopController() {
 public Enumeration getInitParameterNames() {
 return new Vector(initParameters.keySet()).elements();
 }

 public String getInitParameter(String name) {
 return (String) initParameters.get(name);
 }
 };

 controller.init();
 assertEquals(1, controller.getCatalog().size());
 }
}

NOTE A question of style?—Our hard-working reviewer George Latkiewicz pointed
out that, “realistically” there would be an additional assertion in this test
verifying the values of the item in the catalog. After all, it is possible for the
catalog to have one item, but the wrong item, masking a defect. We have
to admit that to be true in general, but definitely not in this case.

Listing 12.11 Verifying the behavior of init()

Hard code initialization
parameters

Substitute
hard-coded

data

Verify servlet
processed hard-
coded data

479Test servlet initialization
The only way the catalog could have the wrong item would be if get-
InitParameter() were broken, and returned the wrong values. In this
case, we’re faking getInitParameter(), so really we do not care what it
returns—we only care that the servlet init() method invokes it. As long
as getInitParameter() returns something meaningful that the servlet
can then add to its catalog, that does the job. Adding the assertion
George suggests is not only superfluous, but increases the test’s coupling
to its data. Not this time, George!

To invoke init(), you might need to pass a ServletConfig object to this method,
in which case you need a simple implementation of this interface: either an off-
the-shelf mock or your own, hand-coded implementation.11 You can find an easy-
to-use implementation of ServletConfig in the reference implementation of
J2EE,12 called org.apache.catalina.core.StandardWrapper. With this class, you
can set initialization parameters by invoking addInitializationParameter(key,
value), then verify that your servlet processes those parameters correctly.
Listing 12.12 shows an example.

public void testProcessedParameters() throws Exception {
 FrontControllerServlet servlet = new FrontControllerServlet() {
 public void log(String message) {
 // Intentionally disable logging
 }
 };

 StandardWrapper config = new StandardWrapper();
 config.addInitParameter(
 "serverImplementationClass",
 "junit.cookbook.servlet.RmiServerImpl");

 servlet.init(config);

 assertEquals(
 "junit.cookbook.servlet.RmiServerImpl",
 servlet.getServerImplClassName());
}

Override log()—If you use this technique, you will need to override the method
GenericServlet.log(String) just to avoid a NullPointerException when executing

11 Fortunately, it is a small interface: only four methods as of this writing. Unfortunately, one of those returns
a ServletContext, which you would also need to mock—sometimes once you mock, you can’t stop!

12 Only in J2EE 1.3.1, apparently. It is not included in J2EE 1.4, but is part of Catalina, the Tomcat 4.0 web
container.

Listing 12.12 Test processing initialization parameters

B

B

C

480 CHAPTER 12

Testing web components
the test. This test is quite brittle, as it depends on a particular implementation of
GenericServlet and might change from application server to application server.
Try instantiating your servlet directly without overriding this method to see what
changes you need to make to get around whatever your implementation does in
GenericServlet.init().

Add query method for testing—If you do not have a way to ask the servlet for this
property, then you will have to add this method. If none such exists, then you
might need to ask the servlet for its private parts. See recipe 17.6, “Test a private
method if you must,” for details on using JUnitX.

To summarize, if your servlet implements init() with no parameters then you
need to override the servlet methods that retrieve initialization parameters. This is
the most direct way to control the initialization parameters your servlet tries to
process during a test. If your servlet implements init(ServletConfig) then you
can use the StandardWrapper to hard code initialization parameters. This second
option is generally less confusing, so we recommend implementing init(Serv-
letConfig) in your servlets, rather than the no-parameter version. Doing so
makes your servlet easier to test.

◆ Discussion

If you would also like to verify the behavior of destroy(), then you can apply the
above technique and invoke destroy() directly. You might need to invoke init()
first, but as the two methods go together, that is perfectly reasonable. Do be sure
to test init() first if you are going to rely on its behavior to test destroy(). If you
can find a way to avoid calling init() in your destroy() test—without merely
duplicating init()’s code in the test—so much the better. (Test isolation is
important, test isolation is important, test isolation is important,)

◆ Related

■ 17.6—Test a private method if you must

12.8 Test the ServletContext

◆ Problem

Your servlet stores lookup data in the ServletContext during initialization. You
want to verify its behavior without running the servlet in a container.

C

481Test the ServletContext
◆ Background

It is common, although perhaps not necessarily recommended, to store lookup
tables in the ServletContext.13 In applications with multiple servlets that look up
data at initialization, it is common to cache this data in the ServletContext, as this
object is available to all servlets in a web application. Certainly if the cache is
incorrect on startup, the application does not stand much of a chance of working.

◆ Recipe

There are really two behaviors here that you want to test: the servlet asks an object
to load the data, and that indeed the object loads the data correctly. Test them sep-
arately, if you can. We will start with the second behavior and return to the first.

Testing the ability to load the lookup data depends on how it is stored. If you
store it on disk, simply load the file into memory, present the data as objects, then
verify that you load the right objects. You will generally provide a “lookup data
provider” with methods to look up data by some key. In our Coffee Shop applica-
tion we want to be able to find the unit price for a given kind of coffee. We build
this interface to provide that service:

package junit.cookbook.coffee.model;

import com.diasparsoftware.java.util.Money;

public interface CoffeeBeanUnitPriceProvider {
 Money getUnitPrice(String coffeeName);
}

Let us say we want to load this data from a database. In that case, we use the tech-
niques in chapter 10, “Testing and JDBC,” to build a CatalogStoreJdbcImpl, which
not only implements CatalogStore—providing more catalog-related features—
but also implements CoffeeBeanUnitPriceProvider. We test it according to the
JDBC testing techniques we have already described, and the result is a database-
aware lookup table for the unit price of coffee products. So far, so good. On to
the other part of the equation: verifying that the servlet asks to load this data dur-
ing initialization and stores it in the ServletContext. For that, we use ServletUnit
and servlet context initialization parameters.

In the web deployment descriptor for our web application, we specify which
implementation of the CoffeeBeanUnitPriceProvider to instantiate and place in
the ServletContext. The application can then obtain this object and ask it for

13 The ServletContext is essentially global data, after all.

482 CHAPTER 12

Testing web components
unit prices whenever such are needed. We therefore need to test that the servlet
instantiates the unit price provider and stores it in the ServletContext. Listing 12.13
shows the test we need.

public class InitializeUnitPricesTest {
 private ServletRunner servletRunner;
 private ServletUnitClient client;

 public void testInitializeUnitPrices() throws Exception {
 servletRunner =
 new ServletRunner(
 getWebContentPath("/WEB-INF/web.xml"),
 "/coffeeShop");

 client = servletRunner.newClient();

 WebRequest request = new PostMethodWebRequest(
 "http://localhost/coffeeShop/coffee");
 request.setParameter("browseCatalog", "catalog");

 client.sendRequest(request);

 InvocationContext invocationContext =
 client.newInvocation(request);

 CoffeeShopController controller =
 (CoffeeShopController) invocationContext
 .getServlet();

 assertTrue(
 controller.getServletContext().getAttribute(
 "unitPriceProvider")
 instanceof CoffeeBeanUnitPriceProviderJdbcImpl);
 }
}

The key parts to this test are triggering servlet initialization and verifying what
kind of unit price provider ends up in the servlet context. By passing this test you
know that a unit price provider is available on servlet startup. By testing the JDBC
implementation of CoffeeBeanUnitPriceProvider on its own, you know that it
works. In this case you do not even need a mock unit price provider! We always
like it when that happens.

◆ Discussion

If you are unable to refactor (or design!) your application in the manner we
describe here, you will need to combine the two kinds of tests: the ones that verify

Listing 12.13 InitializeUnitPricesTest

Any request that
goes through the
servlet

No need to be
more specific

483Test processing a request
the lookup data provider and the one that verifies initializing the ServletContext.
Do not despair: just use the initialization code as the test fixture. Move the initial-
ization test into your test case class’s setUp() method, then use that as the fixture
for the rest of your tests. Certainly if the fixture code fails then the tests that
depend on it will fail and you will know right away. We could even have written
this entire recipe that way, but we prefer more and smaller tests, where possible.
This is another instance where less coupling makes for simpler tests.

We describe JspTestCase elsewhere in this chapter, particularly in recipe 12.3,
so if you want to know more about it, look there.

◆ Related

■ Chapter 10—Testing and JDBC

■ 12.3—Test rendering a JavaServer page

12.9 Test processing a request

◆ Problem

You would like to verify that your servlet correctly processes incoming requests.

◆ Background

The typical way one tests a servlet is manually, and through the end-user interface.
Often, the general strategy is to click through a maze of pages until you arrive at
the right one, fill in some text, push a button, and determine from the end result
whether the servlet did the right thing. There are two principal downfalls with this
approach. First, the tests are manual, so they are expensive to execute and prone
to error. Second, you verify the result indirectly by observing side effects of correct
behavior, rather than making assertions on the servlet itself. Clearly some auto-
mated tests are in order: tests that verify the correct handling of the request with-
out relying on the correctness of the rest of the application.

◆ Recipe

In a typical web application, a servlet behaves as follows:

1 Receive a request from the web container.

2 Choose some business logic to execute based on the request.

3 Extract data from the request and pass it to the business logic as parameters.

484 CHAPTER 12

Testing web components
This recipe is about testing each of these aspects of a servlet’s behavior. Because
we want these to be isolated Object Tests, there are a few principles that guide our
approach. The first is “the servlet does not know where the request comes from.”
We ought to be able to simulate the request without involving a live web con-
tainer. The next is “the business logic does not need to behave correctly.” We
should not have to invoke the production business logic corresponding to the
request, but rather verify that we choose the appropriate method and send it the
correct parameters. We will test the business logic elsewhere, if we have not done
so already. We will use these as the guiding principles for our tests.

If your servlet is already well factored, with application logic and business logic
separate from the servlet class itself, then most of the work is done: simply test all
those pieces in isolation and trust the web container to do its job correctly. At this
point, the servlet is nothing more than a data transfer bus between the network
and your objects. Use the techniques in part 1 of this book plus a mock objects
approach between the application logic and the business logic. The rest of this
recipe deals with the majority of web applications: ones where the servlet is more
than just a gateway to your application.

If you have a “kitchen sink” servlet—all the logic is in the request handler
methods14—then you must approach testing it like any other method that has no
return value. The best you can do is invoke the method and observe its behavior
by examining its side effects. See recipe 2.2, “Test a method that returns nothing,”
for a more detailed discussion of the issues. Now for a servlet, those side effects
likely include invoking business logic, something we expressly wish to avoid; there-
fore, we need to extract the code that processes the request parameters into a sep-
arate method [Refactoring, 110]. We then test the new method in isolation, in
addition to verifying that the servlet correctly invokes it. Testing the former is
straightforward, whereas the latter is best done with a mock objects approach.

Returning to our Coffee Shop application, consider a shopper adding a quan-
tity of coffee to his shopcart. Our application presents the catalog information to
the user with a text field to specify the quantity of a given coffee and a button to
add it to the shopcart. When the shopper presses the “Buy!” button, the servlet
instantiates an AddToShopcartCommand, containing the ShopcartModel for the shop-
per’s shopcart and the CoffeeQuantity object that corresponds to their choice of
coffee name and amount in kilograms. It then executes this command to update
the shopcart. We want to test creating that command from a request, without actu-
ally executing the command. To do this, we extract the command-creating logic

14 doGet(), doPost(),

485Test processing a request
into a new method named makeAddToShopcartCommand(). Rather than take the
HttpServletRequest as a parameter, it takes as parameters the request parameters
(as a Map) and the session attributes (as a Map). This makes the method very easy to
test, because by the time the servlet invokes makeAddToShopcartCommand(), there
are no servlet-related interfaces to deal with. Listing 12.14 shows the test.15

public void testMakeCommandValidRequest() {
 CoffeeShopController controller = new CoffeeShopController();

 CoffeeShopModel coffeeShopModel = new CoffeeShopModel();
 coffeeShopModel.getCatalog().addCoffee(
 "0",
 "Sumatra",
 Money.dollars(7, 50));

 controller.setModel(coffeeShopModel);

 Map parameters = new HashMap();
 parameters.put("quantity-0", new String[] { "2" });
 parameters.put("addToShopcart-0", new String[] { "Buy!" });

 ShopcartModel shopcartModel = new ShopcartModel();
 Map sessionAttributes =
 Collections.singletonMap("shopcartModel", shopcartModel);

 AddToShopcartCommand actualCommand =
 controller.makeAddToShopcartCommand(
 parameters,
 sessionAttributes);

 AddToShopcartCommand expectedCommand =
 new AddToShopcartCommand(
 new CoffeeQuantity(2, "Sumatra"),
 shopcartModel);

 assertEquals(expectedCommand, actualCommand);
}

We set the request parameter values as arrays of String objects, because that is
how the servlet API presents them when we invoke HttpServletRequest.get-
ParameterMap(). We also substitute our own coffee catalog for the one the servlet
would initialize to avoid an unpleasant dependency between this test and the serv-
let. If someone were to change the default data in the coffee catalog, this test

Listing 12.14 Test making the “add to shopcart” command

15 Find all these tests in junit.cookbook.coffee.test.AddToShopcartParametersTest.

486 CHAPTER 12

Testing web components
might fail even though the logic it tests is correct. For this, we needed to add the
method setModel() to our servlet. We could alternatively have made the Coffee-
ShopModel object an optional constructor parameter, as we described in recipe 2.11,
“Test an object that instantiates other objects.” Adding this method is easier, but if
we find we want to add more of these kinds of methods, we will consider refactor-
ing towards optional constructor parameters.

The next step is to verify that given a request to add coffee to the shopcart, the
servlet attempts to invoke makeAddToShopcartCommand() with the expected param-
eters. To determine how to create that request, we consult the page that presents
the appropriate form: the catalog page. It turns out that the names of the request
parameters we need depend on the product ID of the coffee the shopper wants to
buy. If he chooses coffee with product ID 762, then the name of the quantity
parameter is quantity-762 and the name of the submit button for adding that cof-
fee to the shopcart is addToShopcart-762. We already know from working with the
code that the shopcart is stored in the session under the name shopcartModel, so
that is all the information we need to simulate an incoming request. We create a
mock request and response, invoke doPost() then verify that makeAddToShopcart-
Command() is eventually invoked. To do that, we simply subclass the class under
test, intercept that method invocation, assert that it happened, and that the param-
eters were the correct ones. Listing 12.15 shows the test in question. Because we
are faking the servlet API, our fake objects are more complex than we would like.

public void testServletInvokesMakeAddToShopcartCommand()
 throws Exception {

 final Map expectedRequestParameters = new HashMap() {
 {
 put("quantity-0", new String[] { "2" });
 put("addToShopcart-0", new String[] { "Buy!" });
 }
 };

 ShopcartModel shopcartModel = new ShopcartModel();
 final Map expectedSessionAttributes =
 Collections.singletonMap("shopcartModel", shopcartModel);

 CoffeeShopModel coffeeShopModel = new CoffeeShopModel();
 coffeeShopModel.getCatalog().addCoffee(
 "0",
 "Sumatra",
 Money.dollars(7, 50));

Listing 12.15 Verifying the servlet invokes the new command

487Test processing a request

d

ck
e Http-
onse

ay
tp-
quest
 CoffeeShopController controller = new CoffeeShopController() {
 public AddToShopcartCommand makeAddToShopcartCommand(
 Map parameters,
 Map sessionAttributes) {

 makeAddToShopcartCommandInvoked = true;
 assertEquals(expectedRequestParameters, parameters);
 assertEquals(
 expectedSessionAttributes,
 sessionAttributes);

 return null;
 }
 };

 controller.setModel(coffeeShopModel);

 MockControl httpServletResponseControl =
 MockControl.createNiceControl(HttpServletResponse.class);

 HttpServletResponse httpServletResponse =
 (HttpServletResponse) httpServletResponseControl.getMock();

 final HttpRequestBase httpServletRequest =
 new HttpRequestBase() {

 public HttpSession getSession(boolean create) {
 return new FakeHttpSession(expectedSessionAttributes);
 }

 public RequestDispatcher getRequestDispatcher(String path) {
 return new RequestDispatcherAdapter();
 }
 };

 httpServletRequest.clearParameters();

 CollectionUtil
 .forEachDo(
 expectedRequestParameters,
 new MapEntryClosure() {
 public void eachMapEntry(Object key, Object value) {
 httpServletRequest.addParameter(
 (String) key,
 (String[]) value);
 }
 });

 controller.doPost(httpServletRequest, httpServletResponse);
 assertTrue(
 "Did not invoke makeAddToShopcartCommand()",
 makeAddToShopcartCommandInvoked);
}

Fake making
the comman

Use EasyMo
to mock th
ServletResp

Copy the
request
parameters
into the fake
request

An easy w
to fake Ht
ServletRe

Was the method
invoked?

488 CHAPTER 12

Testing web components
The are two key parts to this test: intercepting the invocation of makeAddToShop-
cartCommand() and asserting that the method was invoked at all. We create a field
in our test case class named makeAddToShopcartCommandInvoked to store whether
the method was invoked, set it to false in setUp(), set it to true when the method
is invoked, and then verify it at the end of the test. When the test invokes doPost()
on the servlet, our spy version of makeAddToShopcartCommand() says “Someone
invoked me,” and then makes assertions about the parameters passed into it. The
rest of the test contains some mock objects noise: the servlet API is notoriously
annoying to fake out, which indicates that using ServletUnit for these tests might
be easier, but that is a decision you can only make on a case-by-case basis. If you
feel that hand rolling Test Objects is too much work, then try the various packages
(ServletUnit, EasyMock, MockMaker, and jMock) and learn what works best in
which situation.

These tests combine to give us the confidence that the servlet correctly extracts
the relevant data from the request (product ID, quantity, and shopcart) and
chooses the correct business logic to execute (AddToShopcartCommand). Now we
need to verify that it actually invokes the command. We can use the same tech-
nique as for makeAddToShopcartCommand(): extract the method executeCommand(),
intercept the method invocation, assert that it happened, and that the correct
command was executed. Listing 12.16 shows the test.

public void testServletInvokesExecuteCommand() throws Exception {
 final AddToShopcartCommand expectedCommand =
 new AddToShopcartCommand(
 new CoffeeQuantity(200, "Special Blend"),
 new ShopcartModel());

 CoffeeShopController controller = new CoffeeShopController() {
 public AddToShopcartCommand makeAddToShopcartCommand(
 HttpServletRequest request) {

 return expectedCommand;
 }

 public void executeCommand(AddToShopcartCommand command) {
 executeCommandInvoked = true;
 assertEquals(expectedCommand, command);
 }
 };

 final HttpRequestBase httpServletRequest =
 new HttpRequestBase() {

Listing 12.16 testServletInvokesExecuteCommand()

B

C

489Test processing a request
 public HttpSession getSession(boolean create) {
 return new FakeHttpSession(Collections.EMPTY_MAP);
 }

 public RequestDispatcher getRequestDispatcher(String path) {
 return new RequestDispatcherAdapter();
 }
 };

 httpServletRequest.clearParameters();

 Map requestParameters = new HashMap() {
 {
 put("quantity-0", new String[] { "2" });
 put("addToShopcart-0", new String[] { "Buy!" });
 }
 };

 CollectionUtil
 .forEachDo(requestParameters, new MapEntryClosure() {

 public void eachMapEntry(Object key, Object value) {
 httpServletRequest.addParameter(
 (String) key,
 (String[]) value);
 }
 });

 MockControl httpServletResponseControl =
 MockControl.createNiceControl(HttpServletResponse.class);

 HttpServletResponse httpServletResponse =
 (HttpServletResponse) httpServletResponseControl.getMock();

 controller.doPost(httpServletRequest, httpServletResponse);
 assertTrue(
 "Did not invoke executeCommand()",
 executeCommandInvoked);
}

Fake making the command—Fake makeAddToShopcartCommand() to return a hard-
coded command. This avoids worrying about whether the servlet does this cor-
rectly—we test that elsewhere.

Record the invocation of executeCommand()—Intercept executeCommand() so that the
test knows whether the servlet invoked it. We store this information in the field
executeCommandInvoked, which we declare on the test case class.

The actual test—Invoke doPost() and verify that the servlet invoked executeCommand()

D

B

C

D

490 CHAPTER 12

Testing web components
NOTE The classes RequestDispatcherAdapter and FakeHttpSession are
both part of Diasparsoft Toolkit. Each one merely makes it easier to fake
out the corresponding objects: the request dispatcher and the HTTP ses-
sion. You might want to use these in your own projects.

Altogether now, we have verified that the servlet executes the “add to shopcart”
business logic when given an “add to shopcart” request. There are boundary cases
and error conditions to check, but they are split into two categories: invalid
request data and exceptions thrown when executing the command. To test the
former, create an invalid request—say leave out one of the parameters—invoke
doPost(), and then verify that the servlet reports the necessary error messages.
Extract this behavior to a method named, for example, signalError(), and then
test it by intercepting the method invocation—the same technique we have used
throughout this recipe. To test the latter, override executeCommand() to throw an
exception that your commands might throw, then verify how the servlet reacts: it
should add error messages, so you can intercept signalError() again and verify
the method invocations.

◆ Discussion

You will notice that testing a servlet this way leads to intercepting a number of the
servlet’s methods, substituting some test-only behavior in their place. Repeatedly
subclassing the class under test indicates that it is time to consider moving that
behavior to a separate class by applying the refactoring Replace Subclass with Col-
laborator.16 We generally use the three-strike rule [Refactoring, 58]: “three strikes
and you refactor.” Let your conscience—and your experience in deferring a refac-
toring for too long—be your guide. When you apply this refactoring, you end up
with a servlet providing a thin wrapper around a main Controller class that does
not depend on the servlet specification. This controller class is a Plain Old Java
Object, and therefore easier to test. If your servlet is not yet designed this way,
then start adding tests to it: the tests will nudge you in the direction of having a
standalone Front Controller, which you then integrate into your Front Controller
servlet.17 This not only makes your application easier to test, but easier to wrap in
a different user interface, such as a standalone application.

Finally, be careful! Even if you pass all the tests you write using this approach,
there is no guarantee that your front end—usually HTML pages—provides form

16 www.diasparsoftware.com/articles/refactorings/replaceSubclassWithCollaborator.pdf
17 Front Controller is one of the Core J2EE patterns. See http://java.sun.com/blueprints/corej2eepatterns.

491Verify web page content
without a web server
attributes that match the request parameters from your tests. You will need more
tests to verify that your web form has the expected attributes. See recipe 12.11,
“Verify web form attributes,” for details.

◆ Related

■ 2.2—Test a method that returns nothing

■ 2.11—Test an object that instantiates other objects

■ 12.3—Test rendering a JavaServer Page

■ 12.11—Verify web form attributes

■ J. B. Rainsberger, “Replace Subclass with Collaborator”
(www.diasparsoftware.com/articles/refactorings/
replaceSubclassWithCollaborator.pdf)

12.10 Verify web page content without a web server

◆ Problem

You want to verify the content of a web page using HtmlUnit, rather than XPath-
based assertions, but without running a web server.

◆ Background

You have used HtmlUnit in End-to-End Tests, and you like the way it works. Its cus-
tomized assertion library is designed specifically for analyzing web pages, making it
an ideal tool to use when testing all kinds of web pages without a web server: static
web pages, rendered Velocity templates, possibly even rendered JSPs. The problem
is that, out of the box, HtmlUnit is coupled to its HTTP client: there is no way to
create an HtmlPage object without retrieving it through a WebConnection, so you
cannot use HtmlUnit unless you test against a live web server or web container.

◆ Recipe

Out of the box, HtmlUnit expects to retrieve web pages from a remote server, but
with only a few lines of code it is possible to load web pages from the file system.
Listing 12.17 shows an example of how to use that code.18

18 The code the test is using—FileSystemWebResponse and FileSystemWebConnection—is part of
Diasparsoft Toolkit, and should one day be submitted as a patch to HtmlUnit.

492 CHAPTER 12

Testing web components

-
e
e

public void testContent() throws Exception {
 URL loginPageUrl =
 new URL("http://localhost/coffeeShop/login.html");

 File loginPageFile =
 new File(webContentDirectory, "login.html");

 WebClient webClient = new WebClient();

 FileSystemWebResponse webResponse =
 new FileSystemWebResponse(loginPageUrl, loginPageFile);
 webResponse.setContentType("text/html");

 FileSystemWebConnection fileSystemWebConnection =
 new FileSystemWebConnection(webClient);

 fileSystemWebConnection.setResponse(webResponse);
 webClient.setWebConnection(fileSystemWebConnection);

 HtmlPage loginPage =
 (HtmlPage) webClient.getPage(loginPageUrl);

 assertEquals("Login", loginPage.getTitleText());
 assertTrue(
 loginPage.asText().indexOf(
 "Enter your user name and password")
 >= 0);

 HtmlForm loginForm = loginPage.getFormByName("loginForm");
 assertNotNull(loginForm);
 assertEquals("/coffeeShop", loginForm.getActionAttribute());
 assertTrue(
 "post".equalsIgnoreCase(loginForm.getMethodAttribute()));

 HtmlInput usernameInput = loginForm.getInputByName("username");
 assertNotNull(usernameInput);
 assertEquals(
 12,
 Integer.parseInt(usernameInput.getSizeAttribute()));

 assertTrue(usernameInput instanceof HtmlTextInput);
 assertEquals("", usernameInput.getValueAttribute());

 HtmlInput passwordInput = loginForm.getInputByName("password");
 assertNotNull(passwordInput);
 assertTrue(passwordInput instanceof HtmlPasswordInput);
 assertEquals(
 12,
 Integer.parseInt(passwordInput.getSizeAttribute()));
 assertEquals("", passwordInput.getValueAttribute());

 HtmlInput loginInput = loginForm.getInputByName("login");
 assertNotNull(loginInput);
 assertTrue(loginInput instanceof HtmlSubmitInput);
 assertEquals("Login", loginInput.getValueAttribute());
}

Listing 12.17 Loading web pages from the file system with FileSystemWebResponse

 Just a label here

Point to the page
on the file system

Set up a mock
WebResponse from

the file system

Register the mock
WebResponse with
the WebClient

Ask HtmlUnit to
create the HtmlPage

Better than
checking the
“type” attribute

Prime a mock Web
Connection with th
mock WebRespons

493Verify web page content
without a web server
The instanceof check in this code bears some explanation. Rather than verify the
value of the type attribute, we recommend using instanceof to verify the input
tag’s type without resorting to a case-insensitive string comparison. The alterna-
tive is to write this assertion:

assertTrue("text".equalsIgnoreCase(myInput.getTypeAttribute());

If you try to use assertEquals(), you run the risk of typing TEXT in the web page
and having the test fail while the browser is satisfied. This makes the test unneces-
sarily brittle, adds the risk of “false failures” and those are bad things. You have
enough problems to handle without creating more for yourself!

◆ Discussion

This technique works very well for static web pages, but what about dynamic ones?
You cannot simply retrieve them from the file system, because as page templates
(JSPs or Velocity templates) they need to be merged with some set of data to pro-
duce a final result. No need to worry, though: just render the page, then obtain its
content as either an InputStream or a String. If you can do this, then HtmlUnit
can create an HtmlPage object from it, and that is all you need to be able to use its
HTML assertion library in your tests.

If you are using JSPs, apply the technique in recipe 12.3, after which point you
will have the rendered web page as a String. You can create an InputStream from
that String using HtmlUnit’s utility method TextUtil.toInputStream(String).
You can then create an InputStreamWebResponse and the corresponding Input-
StreamWebConnection, substituting them in this recipe’s sample code, like so:19

FileInputStream webPageAsInputStream
 = new FileInputStream(loginPageFile);

TextUtil.toInputStream("Web page content as a string");

WebClient webClient = new WebClient();

InputStreamWebConnection inputStreamWebConnection =
 new InputStreamWebConnection(webClient);

InputStreamWebResponse webResponse =
 new InputStreamWebResponse(
 loginPageUrl,
 webPageAsInputStream);
webResponse.setContentType("text/html");

inputStreamWebConnection.setResponse(webResponse);

19 These classes are also part of Diasparsoft Toolkit.

494 CHAPTER 12

Testing web components
webClient.setWebConnection(inputStreamWebConnection);
HtmlPage loginPage = (HtmlPage) webClient.getPage(loginPageUrl);

After this point, make the same kinds of assertions that we made in our example.
If you are using Velocity templates, then apply the technique we describe in

recipe 12.4, “Test rendering a Velocity template.” This involves writing the result-
ing web page to a String, from which point you can use the same code as we have
just provided to obtain an HtmlPage.

No matter how you render a web page—from the file system, through a tem-
plate engine, some other way—if you can get either an InputStream or a String
with that web page’s contents, you can use HtmlUnit to verify its structure and
contents. To verify its look and feel, however, generally requires human interven-
tion, at least at first. See recipe 12.3 for an example of comparing a rendered
dynamic web page against a Gold Master. This technique ensures that the page
looks right, in addition to merely having all the right content.

◆ Related

■ 12.3—Test rendering a JavaServer Page

■ 12.4—Test rendering a Velocity template

■ Chapter 9—Testing and XML

■ HtmlUnit (http://HtmlUnit.sourceforge.net)

12.11 Verify web form attributes

◆ Problem

You want to verify that a web form contains the attributes your request proces-
sor—usually a servlet—expects.

◆ Background

You might have written Object Tests for your servlet, verifying that it correctly
handles various requests. When you execute your End-to-End Tests, however, the
system does not work. You have just seen for yourself the importance of complete
object-level testing: your web form is wrong, so you need a test for it. It seems fairly
straightforward to load the page and inspect the form visually, but any approach
you take is likely to require a great deal of work. You hope that someone has done
the work for you.

495Verify the data passed
to a page template
◆ Recipe

You can use HtmlUnit to verify the attributes of the web form, but that usually
assumes the existence of a server to serve up those pages. (It might be overkill to
apply recipe 12.10 at this point.) Assuming that you do not want to run an actual
server—that leads to slow tests—you can use Jetty20 in embedded mode and serve
the page up that way or simply load the page from disk. Once you have the page,
you can obtain the form and make assertions about its elements using XMLUnit.
We describe this technique in recipe 9.5, “Test the content of a static web page,”
and the example we use is a login form, so this recipe is (as much as anything) a
pointer to that one. Enjoy.

◆ Discussion

Once you have tests such as this in place, you can pass hard-coded HttpServlet-
Request objects to your request processor and verify that it chooses the appropri-
ate business logic, or action, to execute. The interface for such a request
processor can be small and simple: getAction(HttpServletRequest) returning
an Action. The Action can provide the method execute(), which performs the
action, then returns a URI corresponding to the page to show next. You could
easily test all these parts in isolation, then use ServletUnit to verify that the con-
troller wires them all together properly. If you think this all sounds suspiciously
like Struts, you are right. There are some parts of Struts applications that are
delightfully easy to test.

◆ Related

■ 9.5—Test the content of a static web page

12.12 Verify the data passed to a page template

◆ Problem

You want to test the data passed into a page template without having to involve
the web component that forwards to that page template. The page template could
be a JSP, Velocity template, or some other page template mechanism.

20 A Java-based HTTP server that is easy to embed in applications. Vincent Massol and Ted Husted describe
using Jetty in JUnit in Action (Manning, 2003) and you can find the project at http://jetty.mortbay.org/jetty/.

496 CHAPTER 12

Testing web components
◆ Background

In many ways, a page template is only as good as the data you pass into it. It is eas-
iest, and therefore most common, to test passing data to a page template by ren-
dering the page and inspecting it. When errors occur, the page often dies in some
spectacular manner, and as a result you might fall into the trap of seeing the page
templates as the problem, rather than the rest of the application around it. As you
investigate defects in the application, if you notice that the page template itself is
not often to blame, then you might want to write tests to verify the data that you
passed into them.

◆ Recipe

Your JSPs use data to present dynamic content to the end user. You find this
dynamic data in as many as five sources: the HTTP request, the HTTP session, the
page itself, the application context, or an external data source from which the
page template pulls data.

The first four of these data sources21 are the familiar servlet API objects: request,
response, page, and application, and have one thing in common: the servlet
places data into these objects, and then the page template pulls the data out of
these objects. They represent a kind of shared memory space between the Con-
troller and the View. The general strategy to test this interaction is to verify that
the Controller supplies the correct data for a given request.

The last of these five data sources is most commonly a JDBC data source—the
page template either includes JDBC code directly or uses a data-aware component
such as an Enterprise JavaBean or Data Bean. With this design, the Controller
provides primary key information to the page template, which then pulls the rest
of the data from “the database” using that primary key information. In addition to
verifying that the Controller supplies the correct primary key data, you need to
test that the page template invokes the data-aware component properly.

In either case, you certainly need to test the data retrieval code separately, and
we invite you to refer to chapter 10, “Testing and JDBC,” for details.

We now return to the Coffee Shop application and consider the shopcart dis-
play JSP. Listing 12.18 shows the page template.

21 We do not mean J2EE Data Sources, such as relational databases. We just mean “sources of data.”

497Verify the data passed
to a page template
<%@page import="java.util.*" %>
<%@page import="junit.cookbook.coffee.display.*" %>

<jsp:useBean id="shopcartDisplay"
 class="junit.cookbook.coffee.display.ShopcartBean"
 scope="request" />

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head><title>Your Coffee Shop Shopcart</title></head>
<body>
<h1>Your Shopcart Contains</h1>
<table name="shopcart" border="1">
 <tbody>
 <tr>
 <td>Name</td>
 <td>Quantity</td>
 <td>Unit Price</td>
 <td>Total Price</td>
 </tr>
<%
for (Iterator i = shopcartDisplay.shopcartItems.iterator();
 i.hasNext();) {

 ShopcartItemBean item = (ShopcartItemBean) i.next();
%>
 <tr>
 <td><%= item.coffeeName %></td>
 <td id="product-<%= item.productId %>">
 <%= item.quantityInKilograms %> kg
 </td>
 <td><%= item.unitPrice %></td>
 <td><%= item.getTotalPrice() %></td>
 </tr>
<%
}
%>
 <tr>
 <td colspan="3">Subtotal</td>
 <td><%= shopcartDisplay.getSubtotal() %></td>
 </tr>
 </tbody>
</table>

<form action="coffee" method="POST">
 <input type="submit"
 name="browseCatalog" value="Buy More Coffee!" />
</form>
</body>
</html>

Listing 12.18 Shopcart Display page template (JSP)

498 CHAPTER 12

Testing web components
This JSP expects a ShopcartBean containing ShopcartBeanItems and displays a sub-
total for the items in the shopcart. You compute shipping and taxes when the user
submits the order for processing. What do we need to test, then? The JSP expects
to see a ShopcartBean in the HTTP request as an attribute with the name shop-
cartDisplay. Those are the assertions for our first test.

public void testControllerProvidesShopcartBean() {
 // This does not yet compile

 // Arrange?
 // Act?

 Object shopcartDisplayAttribute =
 request.getAttribute("shopcartDisplay");

 assertNotNull(shopcartDisplayAttribute);
 assertTrue(shopcartDisplayAttribute instanceof ShopcartBean);
}

We need more code here. Specifically, we need to initialize our test environment
and request the shopcart page. It seems reasonable to start with a user who does
not yet have a shopcart, then verify that the act of requesting the shopcart places
an empty shopcart in the request. If the Controller does its job—and that is what
we plan to test here—then we can separately test that the JSP displaying the shop-
cart does indeed display the data as expected. As for checking the layout, nothing
beats good, old-fashioned visual inspection. There are some things you just have
to see before you can be confident that they are right.

As for the rest of this code, you have two choices, depending on whether you
have access to the source code of the Controller. If you need to test the Controller
as is, then you need to send an HTTP request to the servlet and verify the contents
of the request after invoking the service() method. For this, use ServletUnit. List-
ing 12.19 shows an example.

public void testControllerProvidesShopcartBean() throws Exception {
 ServletRunner servletRunner = new ServletRunner();
 servletRunner.registerServlet(
 "CoffeeShopController",
 CoffeeShopController.class.getName());

 CoffeeShopController coffeeShopController =
 new CoffeeShopController() {
 public void log(String message) {
 // Intentionally disable logging
 }
 };

Listing 12.19 testControllerProvidesShopcartBean()

499Verify the data passed
to a page template
 ServletUnitClient client = servletRunner.newClient();

 WebRequest addToShopcartRequest =
 new PostMethodWebRequest(
 "http://localhost:9080/coffeeShop/coffee");
 addToShopcartRequest.setParameter("displayShopcart", "shopcart");

 InvocationContext invocationContext =
 client.newInvocation(addToShopcartRequest);

 coffeeShopController.handleDisplayShopcart(
 invocationContext.getRequest());

 Object shopcartDisplayAttribute =
 invocationContext.getRequest().getAttribute("shopcartDisplay");

 assertNotNull(shopcartDisplayAttribute);
 assertTrue(shopcartDisplayAttribute instanceof ShopcartBean);
}

The “arrange” part of this test involves the usual ServletUnit set up: creating a
ServletRunner, registering the servlet and creating a client.22 The “act” part of this
test involves creating the “display shopcart” request, creating the invocation con-
text (to convert the WebRequest into an HttpServletRequest) and invoking the
request handler. Notice that we do not invoke doPost(), but just invoke the correct
handler for the request. If we try to invoke doPost(), ServletUnit throws a
NullPointerException deep inside. That should not worry you: after all, you want
to test the request handler, and not the rest of the servlet. If the request handler
puts the right data in the request, then the JSP works as expected. That is the point
of this test. We extracted the method handleDisplayShopcart()23 and made it pub-
lic in order to invoke it for this test. If you prefer, leave handleDisplayShopcart()
protected and put your test in the same package, but a different source tree. (See
recipe 3.3, “Separate test packages from production code packages,” for details.)

◆ Discussion

This test does not need to change at all if you use Velocity templates as your pres-
entation layer. Because the test prepares the data to be displayed but does not
actually invoke the presentation layer, it does not matter what presentation layer

22 There is a clue in that last sentence—perhaps we need to extract this into a test fixture. See recipe 3.4,
“Factor out a test fixture.”

23 This method has since been refactored out of the class, so if you look at the code online, you will not
see it. Do not worry about that, because it is the concept, and not the code, that matters here.

500 CHAPTER 12

Testing web components
you use: forward to a JSP or merge with a Velocity template. Any way you do it, the
test remains the same. You can even use this technique to verify data passed to any
component, such as a web resource filter. (See recipe 12.13, “Test a web resource
filter,” for a total strategy for testing a filter.)

As a general design rule, we recommend that page templates not pull data
from a data source, but rather display the data the Controller sends to it. The
Controller ought to retrieve all the data to be displayed, and then pass it to the
page template through session attributes, request attributes, or template context,
whatever the appropriate underlying mechanism. This design reduces the cou-
pling between your presentation layer and the business layer, allowing you to sub-
stitute a different presentation layer when a new technically minded manager
joins your project and declares, “From this point forward, we use Velocity tem-
plates rather than JSPs!” You might doubt that, but it happens.

◆ Related

■ 3.3—Separate test packages from production code packages

■ 3.4—Factor out a test fixture

■ 12.13—Test a web resource filter

12.13 Test a web resource filter

◆ Problem

You want to test a web resource filter.

◆ Background

Filters can make a web application difficult to understand. Runtime behavior
appears as if by magic, because you do not see that behavior in the servlet, the most
logical place to start looking. Moreover, debugging a filter can be quite annoying:
typically you end up executing manual, End-to-End Tests with a browser, and log-
ging information to the web application log. This is very time consuming, and one
instance where adding a few tests can save hours of headache.

◆ Recipe

A filter has two responsibilities: execute certain logic, and do it at the appropriate
time. That is, not only do you need to test what the filter does, but you need to test
when it does that work in relation to when it invokes the rest of the filter chain.
Testing the logic is the easy part, so let us start with that.

501Test a web resource filter
As with any other framework component, a filter consists of two parts: its logic
and its integration to the framework. In general, you should separate those two
parts, refactoring the logic to a separate class where possible, leaving behind in
the Filter implementation only its integration to the web container. For all but
the simplest filters, we recommend performing this refactoring. We describe this
technique in recipe 12.1 as well as throughout chapter 11, “Testing Enterprise Java-
Beans.” It so happens that the filter we use as an example is simple enough that
we can take a shortcut.

Our Coffee Shop application contains an annoying bit of behavior. Due to the
way the HTTP session API behaves, our CoffeeShopController needs to verify on
every request whether the user has a session and, if so, whether that session con-
tains a ShopcartModel object. It would simplify the servlet if we could extract that
check to a filter. Not only does it make the servlet easier to understand, but also
easier to test: for tests that have nothing to do with session data, there is no need
to mock up the method HttpServletRequest.getSession(). The less we need to
do, the better. Our filter, then, ensures that the user has a shopcart in her session.
As such, we call it EnsureShopperHasShopcartFilter.

The logic our filter executes, then, can be summarized as follows: create a ses-
sion, if needed, and if it has no shopcart, add an empty one. Because we have no reason
to do otherwise, we decide to execute this logic before invoking the rest of the fil-
ter chain. There are essentially three tests that we need to pass:

1 If the user has no session to start with, then after invoking the filter, she has
a session and a shopcart.

2 If the user has a session without a shopcart to start with, then after invok-
ing the filter, she has a session with a shopcart.

3 If the user already has a shopcart, the filter does not change the session in
any way.

This appears to be sufficient to test the filter’s logic. We can easily implement this
in a single method, so we decide to implement it directly on the filter class and
make it public, rather than extracting it to a separate class as we recommend
doing in general. This is one of those make-as-you-go trade-offs: we cannot really
reuse this logic outside the context of a web application, anyway, so moving it to a
separate class does not appear to make sense yet. Perhaps something else—a new
feature or a design change elsewhere—will change the balance of pros and cons
here. We will take that as it comes. Listing 12.20 shows the three tests.

502 CHAPTER 12

Testing web components
package junit.cookbook.coffee.test;

import junit.cookbook.coffee.EnsureShopperHasShopcartFilter;
import junit.cookbook.coffee.model.ShopcartModel;
import junit.framework.TestCase;

import com.diasparsoftware.javax.servlet.http.HttpSessionAdapter;
import com.mockobjects.servlet.*;

public class EnsureShopperHasShopcartFilterLogicTest
 extends TestCase {

 private FakeHttpSession session;
 private MockHttpServletRequest request;
 private MockHttpServletResponse response;
 private EnsureShopperHasShopcartFilter filter;

 protected void setUp() throws Exception {
 session = new FakeHttpSession();
 request = new MockHttpServletRequest();
 response = new MockHttpServletResponse();
 filter = new EnsureShopperHasShopcartFilter();

 request.setSession(session);
 }

 public void testAlreadyHasShopcart() throws Exception {
 ShopcartModel shopcartModel = new ShopcartModel();
 session.setAttribute("shopcartModel", shopcartModel);

 filter.addShopcartIfNeeded(request);

 assertSame(
 shopcartModel,
 request.getSession(true).getAttribute("shopcartModel"));
 }

 public void testEmptySession() throws Exception {
 filter.addShopcartIfNeeded(request);
 assertNotNull(session.shopcartModelAttribute);
 assertTrue(session.shopcartModelAttribute.isEmpty());
 }

 public void testNoSession() throws Exception {
 request.setExpectedCreateSession(true);

 filter.addShopcartIfNeeded(request);
 assertNotNull(session.shopcartModelAttribute);
 assertTrue(session.shopcartModelAttribute.isEmpty());
 }

 public static class FakeHttpSession extends HttpSessionAdapter {
 public ShopcartModel shopcartModelAttribute;

Listing 12.20 EnsureShopperHasShopcartFilterLogicTest

503Test a web resource filter
 public Object getAttribute(String name) {
 return shopcartModelAttribute;
 }

 public void setAttribute(String name, Object value) {
 shopcartModelAttribute = (ShopcartModel) value;
 }
 }
}

Notice the use of assertSame() in the “already has shopcart” test. If the user
already has a shopcart in her session, we want the filter to leave that shopcart
alone. To implement this assertion, we invoke the filter logic, then verify that the
session contains the same shopcart object that it had before invoking the filter logic,
and not just an equivalent one. We could take this test one step further: clone the
“before” shopcart, apply the filter logic, assert that the session has the same shop-
cart object, then assert that the “after” shopcart is equal to (contains the same
items as) the “before” shopcart. If you want to be certain that the filter logic does
not place 50 items in the shopcart, then this is a good idea. It all depends on the
level of confidence you need in the correctness of that logic. Next, we need to test
that the filter invokes its logic before invoking the filter chain.

This test is more complex, requiring a more complex fixture, so we create a
separate one. We need to test when the method doFilter() invokes addShopcart-
IfNeeded() and filterChain.doFilter(), so we need to be a little sneaky here.
The simplest solution we imagined involves doing something we ordinarily dis-
like: subclassing the class under test. The idea is to override the method addShop-
cartIfNeeded() and store in a flag if the method has been invoked. We then
create a mock FilterChain that fails when its method doFilter() is invoked when
this flag is false. Listing 12.21 shows the test, with the “sneaky parts” highlighted
in bold print.

package junit.cookbook.coffee.test;

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.HttpSession;
import junit.cookbook.coffee.EnsureShopperHasShopcartFilter;
import junit.framework.TestCase;
import com.diasparsoftware.javax.servlet.http.HttpSessionAdapter;
import com.mockobjects.servlet.*;

Listing 12.21 EnsureShopperHasShopcartFilterIntegrationTest

504 CHAPTER 12

Testing web components
public class EnsureShopperHasShopcartFilterIntegrationTest
 extends TestCase {

 private HttpSession session;
 private MockHttpServletRequest request;
 private MockHttpServletResponse response;
 private MockFilterChain filterChain;
 private EnsureShopperHasShopcartFilter filter;
 private boolean invokedFilterChainDoFilter;
 private boolean filterLogicDone;

 protected void setUp() throws Exception {
 filterLogicDone = false;
 invokedFilterChainDoFilter = false;

 session = new HttpSessionAdapter();

 request = new MockHttpServletRequest();
 request.setSession(session);

 response = new MockHttpServletResponse();

 filterChain = new MockFilterChain() {
 public void doFilter(
 ServletRequest request,
 ServletResponse response)
 throws IOException, ServletException {

 assertTrue(
 "Something invoked filterChain.doFilter "
 + "before the filter logic was done",
 filterLogicDone);

 invokedFilterChainDoFilter = true;
 }
 };

 filter = new EnsureShopperHasShopcartFilter() {
 public void addShopcartIfNeeded(ServletRequest request) {
 super.addShopcartIfNeeded(request);
 filterLogicDone = true;
 }
 };
 }

 public void testInvokesFilterChain() throws Exception {
 filter.doFilter(request, response, filterChain);
 assertTrue(invokedFilterChainDoFilter);
 }
}

If we needed to invoke the filter chain before the filter logic, we would use the same
technique, but in reverse: FilterChain.doFilter() would have to set the “someone

505Test a web resource filter
invoked me” flag, then we would override addShopcartIfNeeded() to assert that that
flag had been set. Now that we have tested the filter logic and its integration with
the filter chain, what remains is to test that it has been correctly deployed.

It is important to verify that your web application actually invokes the filter;
otherwise the rest of your testing effort goes for naught. One approach is to test
the servlet in a live container, another is to use ServletUnit, but these approaches
have a common weakness: they test the web container, rather than the informa-
tion you provide to the web container. Don’t test the platform. Instead, use XMLUnit
to verify that you have specified the deployment descriptor correctly, a technique
we describe in detail in the introduction to chapter 9, “Testing and XML.”
Listing 12.22 shows a few simple tests.

package junit.cookbook.coffee.deployment.test;

import java.io.*;
import junit.cookbook.coffee.EnsureShopperHasShopcartFilter;
import org.custommonkey.xmlunit.*;
import org.w3c.dom.Document;
import org.xml.sax.InputSource;

public class FiltersTest extends XMLTestCase {
 public void testEnsureShopperHasShopcartFilterConfigured()
 throws Exception {

 String webDeploymentDescriptorFilename =
 "../CoffeeShopWeb/Web Content/WEB-INF/web.xml";

 Document webDeploymentDescriptorDocument =
 XMLUnit.buildTestDocument(
 new InputSource(
 new FileReader(
 new File(webDeploymentDescriptorFilename))));

 String filterNameMatch =
 "[filter-name='EnsureShopperHasShopcartFilter']";

 assertXpathExists(
 "/web-app/filter" + filterNameMatch,
 webDeploymentDescriptorDocument);

 assertXpathEvaluatesTo(
 EnsureShopperHasShopcartFilter.class.getName(),
 "/web-app/filter" + filterNameMatch + "/filter-class",
 webDeploymentDescriptorDocument);

 assertXpathExists(
 "/web-app/filter-mapping" + filterNameMatch,
 webDeploymentDescriptorDocument);

Listing 12.22 Some simple filter tests

506 CHAPTER 12

Testing web components
 assertXpathEvaluatesTo(
 "/coffee",
 "/web-app/filter-mapping"
 + filterNameMatch
 + "/url-pattern",
 webDeploymentDescriptorDocument);
 }
}

The first assertion verifies that a filter is configured at all; the next verifies the
class name implementing the filter. The third assertion verifies that the filter is
mapped to some URL; the next verifies the URL to which it is mapped. This is the
beginning of a general pattern for testing the deployment of web resource filters
and probably ought to be refactored into its own class. At a minimum, this test is
an excellent candidate to refactor towards a Parameterized Test Case (see recipe 4.8,
“Build a data-driven test suite”); so if we were to add more tests, we would likely
perform the refactoring.

Finally, for the sake of completeness, listing 12.23 shows a filter that passes
these tests.

package junit.cookbook.coffee;

import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

import junit.cookbook.coffee.model.ShopcartModel;

public class EnsureShopperHasShopcartFilter implements Filter {
 public void doFilter(
 ServletRequest request,
 ServletResponse response,
 FilterChain filterChain)
 throws ServletException, IOException {

 addShopcartIfNeeded(request);
 filterChain.doFilter(request, response);
 }

 public void addShopcartIfNeeded(ServletRequest request) {
 HttpSession session =
 ((HttpServletRequest) request).getSession(true);

 ShopcartModel shopcartModel =
 (ShopcartModel) session.getAttribute("shopcartModel");

Listing 12.23 EnsureShopperHasShopcartFilter (final version)

507Test a web resource filter
 if (shopcartModel == null) {
 session.setAttribute("shopcartModel", new ShopcartModel());
 }
 }

 public void init(FilterConfig config) {
 }

 public void destroy() {
 }
}

◆ Discussion

If we were really concerned about subclassing the class under test—and ordinarily
we are—we could easily have extracted the filter logic to a separate class. In this
case, for the above test we would substitute a Spy implementation of the filter
logic that kept track of whether it had yet been invoked. As we wrote previously,
this example is simple enough that the risk of subclassing the class under test is
low. It is worth noting, however, that the desire to subclass the class under test
tends to indicate a need to perform the refactoring Extract Class [Refactoring,
149]. You will typically move the methods you override into the new class.

If your web resource filter requires information from the outside world, such as
input from a servlet, then use the techniques in recipe 12.12. In this case, the web
resource filter plays the same role that a page template plays: it is the recipient of
data that some component (the servlet) has passed into the request object.

◆ Related

■ 4.8—Build a data-driven test suite

■ Chapter 9—Testing and XML

■ Chapter 11—Testing Enterprise Java Beans

■ 12.1—Test updating session data without a container

■ 12.12—Verify the data passed to a page template

Testing J2EE applications
This chapter covers
■ Testing web application page flow, including Struts
■ Testing your site for broken links
■ Testing web and EJB resource security
■ Testing container-managed transactions
508

509Testing J2EE applications
As you read this book it should become clear that we advocate testing an application
by testing its components thoroughly, and then integrating those components as
simply as possible. Specifically, “integration” for us is little more than choosing
which implementations of various interfaces to use, and then creating an applica-
tion entry point object with references to those implementations. Which logging
strategy do we use? How about Log4J! We know that our components work with any
implementation of the logging strategy interface. What kind of model? A JDBC-
based one, although our Controller really only knows about our Model interface, so
an in-memory implementation, or one based on Prevayler (www.prevayler.org) will
do. To us, this is integration. As a result, we tend not to emphasize End-to-End Test-
ing for correctness, but rather to give us confidence that we have built the features
we needed to build. Object Tests tell you whether you built the thing right; whereas
End-to-End Tests help you decide whether you built the right thing.

There are certain aspects of J2EE applications that people associate with End-to-
End Tests rather than Object Tests. These include page flow—or navigating a web
application—and using container services, such as security and transactions. We
discuss these topics in recipes in this chapter, showing you how to test these behav-
iors in isolation—as Object Tests. We do not want to give the impression that we
shy away from End-to-End Tests—that is, testing an application by simulating the
way an end user interacts with it through its end-user interface. As we wrote previ-
ously, we use End-to-End Tests to play a different role than other programmers
do: we use End-to-End Tests to help us determine whether what we have built actu-
ally does what our customers need. We do discuss using HtmlUnit to write End-to-
End Tests for a web application (see recipe 13.1), but we no longer see JUnit as
the best tool available for testing an application from end to end. We use Fit
(http://fit.c2.com) and its companion tool, FitNesse (www.fitnesse.org).

NOTE We are certainly not the only people who see End-to-End Tests in this
role: we got the idea from the Agile community (www.agilealliance.org)
at large. Still, while Agile developers remain in the minority, organiza-
tions will continue to see End-to-End Tests as their primary tool for vali-
dating software, an approach that we feel ultimately wastes resources that
could be better spent ensuring correctness from the inside out through
Programmer Tests.

Because this is a book on JUnit, and not Fit, we will describe Fit only briefly. Imag-
ine writing tests entirely as spreadsheets and word-processor documents. You
could annotate your tests with plain-language descriptions of what they verify—
mix code and text together so that both the programmers and the nonprogram-
mers can follow them. Now imagine running those tests through software that

510 CHAPTER 13

Testing J2EE applications
decorates your documents green for the parts that are right (tests pass) and red
for the parts that are wrong (tests fail). That is Fit, and it allows those with busi-
ness knowledge to write executable tests, even if they are not programmers. Fit-
Nesse1 is a Wiki (www.wiki.org) that can execute Fit tests, providing an excellent
way to organize them and collaborate on them. Many people have designated Fit-
Nesse as “the way they do End-to-End Tests.” We are among them.

But this is a book about JUnit, and this is a chapter on writing Object Tests for
aspects of J2EE applications that one usually tests from end to end. In here is a collec-
tion of recipes that will help you test certain aspects of J2EE applications more effec-
tively. These are behaviors that tend to be sprinkled throughout the application:
page flow, broken links, security, transactions, and JNDI. We have added a recipe
related to the Struts application framework (http://jakarta.apache.org/struts), but
for more on testing Struts applications, we recommend the StrutsTestCase project
(http://strutstestcase.sourceforge.net). It provides both a mock objects approach
(testing outside the application server) and a Cactus approach (testing inside the
application server). It embodies many of the techniques we have described in this
book, and rather than duplicate their fine work, we refer you to them.

13.1 Test page flow

◆ Problem

You want to verify that a user can navigate through your web application’s pages
correctly, and you want to make the verification without involving all the machin-
ery of the application itself.

◆ Background

Even though you2 will execute End-to-End Tests that can help uncover problems
with page flow, it is generally easier to verify page flow without involving your
application’s business logic, presentation layer, external resources, and so on.
What we recommend you do is translate your web application into a large state
diagram where moving from page to page depends on two things: (1) the action
the user took, and (2) the result of the action the user took. We provide a sample
diagram in figure 13.1. The boxes are pages and the arrows represent actions.

1 Pronounced “fit-NESS.” Micah Martin, cocreator of FitNesse, tells the story how Uncle Bob (Robert C.
Martin) was tired of executing Fit tests from the command line and wanted to execute them “with finesse.”

2 Well, someone will. Who does it is largely a matter of organizational culture.

511Test page flow
Some actions have a single outcome, such as clicking the link to browse the cata-
log. For the most part, that action cannot fail—when you click that link, you end
up at the catalog page. Some actions have multiple outcomes, such as “OK” and
“failed.” In the diagram, at the registration page, if submitting the registration
form fails, then the shopper stays at the registration page. We label those arrows
using a format of action/result, so that “submit/OK” means “follow this arrow if
submitting the form is successful.” When we model page flow this way, it does not
look very complex, and so it ought to be relatively easy to test—after all, they are
just names of pages, names of actions, and names of results. They are all strings!
How hard can that be?

Not hard at all. If you can focus your attention like this on just the page flow of
your system, then certainly you can extract the page-to-page navigation code from
your system into a single navigation “engine”that operates on navigation data.
The Struts web application framework3 works on this principle, and we discuss
how much simpler it is to verify page flow on a Struts application in recipe 13.2.
This recipe shows a simple example of how to create a refactoring safety net,
refactor navigation logic to a single class, and then verify the resulting data.

3 We recommend James Turner and Kevin Bedell, Struts: Kick Start (SAMS, 2002) as well as Ted Husted
et al., Struts in Action (Manning, 2002). The former is an excellent tutorial and the latter shows you what
Struts can really do.

Shopper

Welcome

Registration

Personalized
Welcome

Catalog Product
Details

ShopcartOrder DetailsConfirm Order
Submitted

register

login

submit/OK

browse

select product

add to
shopcart

check out

submit order/OK

OK
continue

shopping

for all other failures, go to Error pagesubmit/failed

submit order/failed
or cancelFigure 13.1 Page flow diagram

512 CHAPTER 13

Testing J2EE applications
◆ Recipe

We will start with what seems to be the simpler test: an End-to-End Test that veri-
fies the ability to move from one page to another. Returning to our Coffee Shop
application, we first verify that we can move from the welcome page to the catalog
page. We can use HtmlUnit to first load the welcome page, and then push the
browse catalog button and verify that the resulting web page is indeed the coffee
catalog page. Of course, before we execute this test, we need to deploy the appli-
cation to a live application server and start the server. You can see the test in ques-
tion in listing 13.1.

package junit.cookbook.coffee.endtoend.test;

import java.net.URL;
import junit.framework.TestCase;
import com.gargoylesoftware.htmlunit.*;
import com.gargoylesoftware.htmlunit.html.*;

public class NavigationTest extends TestCase {
 private WebClient webClient;

 protected void setUp() throws Exception {
 webClient = new WebClient();
 webClient.setRedirectEnabled(true);
 }

 public void testNavigateToCatalog() throws Exception {
 Page page =
 webClient.getPage(
 new URL("http://localhost:8080/coffeeShop/"));

 assertTrue(
 "Welcome page not an HTML page",
 page instanceof HtmlPage);

 HtmlPage welcomePage = (HtmlPage) page;
 HtmlForm launchPointsForm =
 welcomePage.getFormByName("launchPoints");

 HtmlInput htmlInput =
 launchPointsForm.getInputByName("browseCatalog");

 assertTrue(
 "'browseCatalog' is not a submit button",
 htmlInput instanceof HtmlSubmitInput);

 HtmlSubmitInput browseCatalogSubmit =
 (HtmlSubmitInput) htmlInput;

 Page page2 = browseCatalogSubmit.click();

Listing 13.1 NavigationTest, a sample page flow test

513Test page flow
 assertTrue(
 "Catalog page not an HTML page",
 page2 instanceof HtmlPage);

 HtmlPage catalogPage = (HtmlPage) page2;
 assertEquals(
 "Coffee Shop - Catalog",
 catalogPage.getTitleText());
 }
}

There are a number of things about this test that are worthy of concern.
We need to deploy the application and start the application server in order to

execute it. Although this seems like a reasonable requirement to verify page flow,
any number of unrelated problems can make it impossible to execute this test: EJB
deployment problems, servlet/URL mapping problems, and so on. That is not to
say that these problems are not important enough to fix, but we generally prefer to
verify them separately. These tests are meant to verify page flow and nothing else.

The test hard codes information about the server to which the application is
deployed (localhost) and the port on which it is listening (8080). Both of these
pieces of information vary from environment to environment, so at a minimum, you
ought to refactor the information to some external source, such as a configuration
file. This makes the tests slightly more complex to configure and execute correctly.

The test depends on the correctness of the web pages themselves, which is not
guaranteed. If there is a problem with either the welcome page or the catalog
page, then this test might fail, even though the problem is not navigation related.
Certainly you will test the pages themselves in isolation using the techniques in
chapter 12, “Testing Web Components,” so there is no need to duplicate that
effort here.

This test hard codes information about the structure of the web pages—the
form named launchPoints and the submit button named browseCatalog. If some-
one changes these names, then these tests will fail, making them somewhat brittle.
A web author ought to be able to change that button to a link, get the URL right,
and the only tests to fail would be the ones for the page itself. This test does not
allow that to happen.

Now please do not get us wrong: the foregoing is not an indictment of Html-
Unit. Far from it. HtmlUnit is an excellent package that does a very good job of
automating End-to-End Tests. With its focus on analyzing the result of a web
request—its comprehensive HTML page object model—HtmlUnit is an ideal
choice for automating End-to-End Tests for web applications, so HtmlUnit is not

514 CHAPTER 13

Testing J2EE applications
the issue here. The issue is using a hammer to kill a fly, as it were: using End-to-
End Tests (no matter how you write them) to verify page flow invites the kinds of
problems we have just described. Instead, we ought to write tests that focus on the
navigation rules themselves.

This is the kind of test we want to write, assuming the existence of an object
representing a “navigation engine.”

public void testNavigateToCatalog() {
 assertEquals(
 "Catalog Page",
 navigationEngine.getNextLocation(
 "Browse Catalog",
 "OK"));
}

This test simply says, “If I push the button marked Browse Catalog and everything
goes OK, then I should be taken to the catalog page.” The test is expressed in a
somewhat abstract fashion in terms of locations, actions, and results: a location is
usually a web page, an action is usually either submitting a form or clicking a link,
and a result is a description of result of the action. If we want to talk in terms of a
finite state machine, the locations are the machine’s states and the action/result
pairs are the machine’s transitions. We can model navigating through our site
entirely in terms of locations and actions.

A location corresponds to the URI of a web page or a web page template
(Velocity template or JSP). An action corresponds to the URI of a form submit but-
ton or of a hypertext link. This means that we need some way to translate incom-
ing request URIs into locations and actions, and vice versa. Once we give each URI
the name of either a location or an action, we can ignore the details of which JSP
displays the catalog page or which request parameter indicates “add a product to
the shopcart.” We can test that all separately.

First, listing 13.2 shows our Coffee Shop Controller using a separate “request-
to-action” mapper.

private void handleRequest(
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 String forwardUri = "index.html";
 String userName = "jbrains";

 try {

Listing 13.2 CoffeeShopController using an Action Mapper

515Test page flow
 String actionName = actionMapper.getActionName(request);
 log("Performing action: " + actionName);

 if ("Browse Catalog".equals(actionName)) {
 CoffeeCatalog catalog = model.getCatalog();

 CatalogView view = new CatalogView(request);
 view.setCatalog(catalog);

 forwardUri = view.getUri();
 }
 else if ("Add to Shopcart".equals(actionName)) {
 AddToShopcartCommand command =
 makeAddToShopcartCommand(request);
 executeCommand(command);
 }
 else {
 log("I don't understand action " + actionName);
 }
 }
 catch (Exception wrapped) {
 throw new ServletException(wrapped);
 }

 request.getRequestDispatcher(forwardUri).forward(
 request,
 response);
}

Here, actionMapper is an object of type HttpServletRequestToActionMapper, for
which we have started with the tests in listing 13.3.

package junit.cookbook.coffee.web.test;

import java.util.*;
import java.util.regex.*;
import java.util.regex.Pattern;
import javax.servlet.RequestDispatcher;
import javax.servlet.http.*;
import junit.cookbook.coffee.HttpServletRequestToActionMapper;
import junit.framework.TestCase;
import org.apache.catalina.connector.HttpRequestBase;
import com.diasparsoftware.java.util.*;
import com.diasparsoftware.javax.servlet.http.*;

public class MapRequestToActionTest extends TestCase {
 private HttpServletRequestToActionMapper actionMapper;

 protected void setUp() throws Exception {

Listing 13.3 MapRequestToActionTest

516 CHAPTER 13

Testing J2EE applications
 actionMapper = new HttpServletRequestToActionMapper();
 }

 public void testBrowseCatalogAction() throws Exception {
 Map parameters =
 Collections.singletonMap(
 "browseCatalog",
 new String[] { "catalog" });

 doTestMapAction(
 "Browse Catalog",
 "/coffeeShop/coffee",
 parameters);
 }

 public void testAddToShopcart() throws Exception {
 HashMap parameters = new HashMap() {
 {
 put("addToShopcart-18", new String[] { "Buy!" });
 put("quantity-18", new String[] { "5" });
 }
 };

 doTestMapAction(
 "Add to Shopcart",
 "/coffeeShop/coffee",
 parameters);
 }

 private void doTestMapAction(
 String expectedActionName,
 String uri,
 Map parameters) {

 HttpServletRequest request =
 HttpUtil.makeRequestIgnoreSession(uri, parameters);

 assertEquals(
 expectedActionName,
 actionMapper.getActionName(request));
 }
}

These tests create a fake HttpServletRequest using HttpUtil from Diasparsoft Tool-
kit. As the method name implies, we create a request without worrying about
keeping track of session information, as we do not care about session information
for these tests. The more variables you can eliminate in a test, the better. The
request-to-action mapper is simple: turn a request into the name of an action.
This test case is a good candidate to be turned into a Parameterized Test Case
(see recipe 4.8, “Build a data-driven test suite”).

517Test page flow
We have built a location-to-URI mapper in a similar style: it turns location
names into URIs. After adding that into the equation, our servlet’s request han-
dler method can now be seen in listing 13.4.4

private void handleRequest(
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 String userName = "jbrains";
 String nextLocationName = "Welcome";

 try {
 String actionName = actionMapper.getActionName(request);
 log("Performing action: " + actionName);

 if (knownActions.contains(actionName) == false) {
 log("I don't understand action " + actionName);
 }
 else {
 String actionResult = "OK";
 if ("Browse Catalog".equals(actionName)) {
 CoffeeCatalog catalog = model.getCatalog();

 CatalogView view = new CatalogView(request);
 view.setCatalog(catalog);
 }
 else if ("Add to Shopcart".equals(actionName)) {
 AddToShopcartCommand command =
 makeAddToShopcartCommand(request);
 executeCommand(command);
 }

 nextLocationName =
 navigationEngine.getNextLocation(actionName, "OK");
 }

 }
 catch (Exception wrapped) {
 throw new ServletException(wrapped);
 }

 String forwardUri = locationMapper.getUri(nextLocationName);
 request.getRequestDispatcher(forwardUri).forward(
 request,
 response);
}

Listing 13.4 CoffeeShopController using the location mapper

4 You can find this code online in the class CoffeeShopControllerDecoupledNavigator, because
CoffeeShopController undergoes more refactorings as the book progresses.

518 CHAPTER 13

Testing J2EE applications
The overall behavior of the request handler is straightforward:

1 Interpret the incoming request to determine which action the user wants
to perform.

2 Perform the action, assuming it goes “OK.” If the action fails for some rea-
son, set the value of result to some short description of the failure. For
example, if the user tries to add -1 kg of Sumatra to his shopcart, set
result to invalid quantity.

3 Ask the navigator for the next location, based on the action performed
and the result of that action.

4 Determine the URI that corresponds to the next location.

5 Provide that URI to the request dispatcher.

This design makes it possible to test the rest of your application’s navigation
rules—no matter how complex they might be—without actually running the serv-
let! Of course, you should write at least one test suite that verifies that the servlet
invokes the mappers and the navigator. Use either ServletUnit or mock objects,
depending on the technique with which you feel most comfortable. We describe
both techniques throughout chapter 12, “Testing Web Components.”

◆ Discussion

Once you have written these tests and extracted the navigation rules into an easily
tested object, you might notice a striking similarity to the Struts web application
framework. With Struts, you specify navigation rules as data in struts-config.xml
and the “navigation engine” operates on that data, rather than having navigation
rules strewn about the site, as is common. Not only is the Struts approach easy to
understand and maintain, it is easy to test: one can substitute dummy Actions pro-
grammed to return the desired ActionForward to verify the expected navigation
path. See recipe 13.2 for more.

◆ Related

■ 4.8—Build a data-driven test suite

■ 13.2—Test navigation rules in a Struts application

519Test navigation rules
in a Struts application
13.2 Test navigation rules in a Struts application

◆ Problem

You want to test page-to-page navigation in your Struts application, preferably with-
out starting Struts.

◆ Background

Testing navigation rules using End-to-End Tests is expensive. We described the
issues in recipe 13.1. Here, we are interested in verifying the navigation rules for a
Struts application. Using End-to-End Tests to do this is no less expensive for a
Struts application than for any other type of web application. Using a framework
does not make End-to-End Tests any simpler than not using a framework. What
Struts does, however, is provide a way to test navigation rules without resorting to
End-to-End Tests, something that makes isolated navigation tests remarkably easy.

◆ Recipe

The most direct approach you can use is to verify the content of struts-config.xml
using XMLUnit. Here we will show a few example tests, but for more details on veri-
fying XML documents, see chapter 9, “Testing and XML.” We will use the sample
struts-config.xml currently posted at the Struts web site (http://jakarta.apache.org/
struts/index.html). Listing 13.5 shows some tests.5

package junit.cookbook.coffee.web.test;

import java.io.*;
import junit.extensions.TestSetup;
import junit.framework.*;
import org.custommonkey.xmlunit.XMLUnit;
import org.w3c.dom.Document;
import org.xml.sax.InputSource;

public class StrutsNavigationTest extends StrutsConfigFixture {
 private static Document strutsConfigDocument;

 public static Test suite() {
 TestSetup setup =

Listing 13.5 XMLUnit tests for struts-config.xml

5 The tests here will fail without an internet connection, because XMLUnit will try to validate the XML
document against its DTD. For further details, see recipe 9.2, “Ignore the order of elements in an XML
document,” and read the section entitled, “Network connectivity and the DTD.”

520 CHAPTER 13

Testing J2EE applications
 new TestSetup(new TestSuite(StrutsNavigationTest.class)) {
 private String strutsConfigFilename =
 "test/data/sample-struts-config.xml";

 protected void setUp() throws Exception {
 XMLUnit.setIgnoreWhitespace(true);
 strutsConfigDocument =
 XMLUnit.buildTestDocument(
 new InputSource(
 new FileReader(
 new File(strutsConfigFilename))));
 }
 };

 return setup;
 }

 public void testLogonSubmitActionExists() throws Exception {
 assertXpathExists(
 getActionXpath("/LogonSubmit"),
 strutsConfigDocument);
 }

 public void testLogonSubmitActionSuccessMappingExists()
 throws Exception {

 assertXpathExists(
 getActionForwardXpath("/LogonSubmit"),
 strutsConfigDocument);
 }

 public void testLogonSubmitActionSuccessMapsToWelcome()
 throws Exception {

 assertXpathEvaluatesTo(
 "/Welcome.do",
 getActionForwardPathXpath("/LogonSubmit", "success"),
 strutsConfigDocument);
 }
}

The Struts configuration file combines navigation rules with the mapping between
locations and URIs. When an action forwards to another action, it uses a navigation
rule; whereas, actions that forward to page templates (a JSP or a Velocity template)
are location/URI mapping rules. In this way, the Struts configuration file plays the
role of navigation engine as well as location mapper, as we described them in rec-
ipe 13.1. You can use the same approach to test location mappings as for naviga-
tion rules.

521Test navigation rules
in a Struts application
◆ Discussion

There are a few things to notice about the tests in this recipe. First, notice that we
load the Struts configuration file using one-time setup (see recipe 5.10, “Set up
your fixture once for the entire suite,” for more about how to use TestSetup).
Next, notice the methods getActionXpath(), getActionForwardXpath(), and get-
ActionForwardPathXpath(). These methods translate the concepts of “action” and
“action forward” to the corresponding XPath locations in struts-config.xml. Not
only do you not need to remember the various XPath expressions for actions and
action forwards, but you also avoid duplicating those expressions in case of future
changes in the Struts Configuration file DTD. We extracted a fixture class Struts-
ConfigFixture and pulled those methods up into the new fixture class for reuse
(see recipe 3.4, “Factor out a test fixture” for more about extracting test fixtures).
Listing 13.6 shows these methods.

package junit.cookbook.coffee.web.test;

import org.custommonkey.xmlunit.XMLTestCase;

public abstract class StrutsConfigFixture extends XMLTestCase {
 protected String getActionForwardPathXpath(
 String action,
 String forward) {

 return getActionXpath(action)
 + "/forward[@name='" + forward + "']/@path";
 }

 protected String getActionXpath(String path) {
 return "/struts-config/action-mappings/action[@path='"
 + path + "']";
 }

 protected String getActionForwardXpath(String action) {
 return getActionXpath(action) + "/forward";
 }
}

Notice the incremental style of the tests. This is a good approach to take when ver-
ifying XML documents with XPath, because when an XPath-based assertion fails,
there is no easy way to determine the cause. Perhaps you mistyped the name of an
XML element three levels down in the expression, or you forgot to include an “at”
sign (@) for an attribute. By writing many small, increasingly specific tests, it is
easier to determine the problem by observing which tests fail. For an action map-
ping, consider these three tests:

Listing 13.6 A sample fixture for struts-config.xml tests

522 CHAPTER 13

Testing J2EE applications
1 Is the action configured at all?

2 Does it have any forwards?

3 Are its forwards correct?

Writing three tests rather than just the third one makes it possible to say that, for
example, if the second and third tests both fail, then there is a problem with the
Struts configuration file—there is an action without a forward.

◆ Related

■ 3.4—Factor out a test fixture

■ 5.10—Set up your fixture once for the entire suite

■ 13.1—Test page flow (navigation rules)

13.3 Test your site for broken links

◆ Problem

You want to verify that all the links on your site lead somewhere.

◆ Background

A typical web application end user will leave your site and never come back if he is
annoyed by clicking a link that leads him nowhere. You need to avoid letting end
users see “404 File Not Found” at essentially any cost. Fortunately, it is quite sim-
ple to use JUnit to test your entire site.

◆ Recipe

Here, HtmlUnit can come to the rescue: a fairly simple recursive algorithm makes
this test surprisingly easy to write. The key parts of the algorithm are:

1 Retrieve a page by invoking WebClient.getPage().

2 If the page is an HtmlPage, get all the anchors (<a> tags) on it and try to
follow each one.

3 If you reach a page outside your domain, do not bother checking any further.

4 If something goes wrong when following a link, identify that link as broken.

This leads to a recursive algorithm; however, as we tried to execute the test, we ran
into some specific details of which you need to be aware.

523Test your site for broken links
The Jakarta Commons HttpClient does not handle mailto links, so we cannot
check those. The best you can do is verify that they represent valid e-mail
addresses, perhaps. We recommend you check them by hand.

There is a defect in HtmlUnit 1.2.3 that does not handle linking to page targets
() correctly. We have submitted the issue to Mike Bowler
with a fix, and more than likely by the time you read this sentence, it will already
have been fixed. If not, lean on him a little.6

Many links lead back to a page the test has already checked. To avoid infinite
recursion, keep track of every URL the test has checked so far, and then skip those
URLs if they come up again.

There are the occasional false failures—that is, the test fails, you check the link,
and it is not broken. Part of that is the nature of the web: sometimes a URL is
unavailable for a few seconds. Other than that, we do not know why this would hap-
pen. You would have to run the test more often to notice a pattern. Because you
will likely run this test say, once per week, these false negative are not a hot issue.

Also be aware that we are not checking form submission, which would be very
complex to do in general. Instead, see chapter 12, “Testing Web Components,”
for a discussion on how to verify web forms, one by one, in isolation.

Let us look at the code in listing 13.7. Simply change domainName to whatever
URL you would like to start with. We do not recommend running this test against
yahoo.com—that would take an awfully long time.

package junit.cookbook.applications.test;

import java.io.IOException;
import java.net.URL;
import java.util.*;

import junit.framework.TestCase;

import com.gargoylesoftware.HtmlUnit.*;
import com.gargoylesoftware.HtmlUnit.html.*;

public class LinksTest extends TestCase {
 private WebClient client;
 private List urlsChecked;
 private Map failedLinks;
 private String domainName;

6 No need. We received e-mail from Mike that our fix was checked in and will be part of the next release
of HtmlUnit. Ah, open source!

Listing 13.7 LinksTest

524 CHAPTER 13

Testing J2EE applications
 protected void setUp() throws Exception {
 client = new WebClient();
 client.setJavaScriptEnabled(false);
 client.setRedirectEnabled(true);
 urlsChecked = new ArrayList();
 failedLinks = new HashMap();
 }

 public void testFindABrokenLink() throws Exception {
 domainName = "yahoo.com";
 URL root = new URL("http://www." + domainName + "/");

 Page rootPage = client.getPage(root);
 checkAllLinksOnPage(rootPage);

 assertTrue(
 "Failed links (from => to): " + failedLinks.toString(),
 failedLinks.isEmpty());
 }

 private void checkAllLinksOnPage(Page page) throws IOException {
 if (!(page instanceof HtmlPage))
 return;

 URL currentUrl = page.getWebResponse().getUrl();
 String currentUrlAsString = currentUrl.toExternalForm();

 if (urlsChecked.contains(currentUrlAsString)) {
 return;
 }

 if (currentUrlAsString.indexOf(domainName) < 0) {
 return;
 }

 urlsChecked.add(currentUrlAsString);
 System.out.println("Checking URL: " + currentUrlAsString);

 HtmlPage rootHtmlPage = (HtmlPage) page;
 List anchors = rootHtmlPage.getAnchors();
 for (Iterator i = anchors.iterator(); i.hasNext();) {
 HtmlAnchor each = (HtmlAnchor) i.next();

 String hrefAttribute = each.getHrefAttribute();

 boolean isMailtoLink = hrefAttribute.startsWith("mailto:");
 boolean isHypertextLink = hrefAttribute.trim().length() > 0;

 if (!isMailtoLink && isHypertextLink) {
 try {
 Page nextPage = each.click();
 checkAllLinksOnPage(nextPage);
 }

525Test web resource security
 catch (Exception e) {
 failedLinks.put(currentUrlAsString, each);
 }
 }
 }
 }
}

◆ Discussion

A few warnings about this test:

■ It is slow to execute, as it is checking URLs over a live network.

■ If one of your broken links is to a nonexistent domain or a domain with its
server entirely down, the test’s network connection might have to time out
before registering a failure, which makes it even slower. Although our ver-
sion of the test only checks pages in the desired domain, you could certainly
remove that restriction in your test. If you do, then this becomes an issue.

■ The whole thing executes as one big test, rather than as a test for each URL to
check. We cannot see a way to get around this without implementing Test
directly, which we could certainly do; however, the idea of creating a TestSuite
in memory while the test is running gave us a headache, so we chose not to try it.

Still, we think it is a good starting point for common use.

◆ Related

■ Chapter 12—Testing Web Components

13.4 Test web resource security

◆ Problem

You want to verify that you have protected your web resources correctly.

◆ Background

The typical way to verify security is with End-to-End Tests: deploy the application,
log in as different users, and verify that you receive “Authorization Failure” or
“Forbidden” at the expected moment. In this recipe we will describe how to auto-
mate this kind of testing, but bear in mind that these tests might violate our prin-
ciple of don’t test the platform. If you are using J2EE’s declarative security feature—

526 CHAPTER 13

Testing J2EE applications
and we would be surprised if you were not—then you can test your security set-
tings without getting the container involved.

◆ Recipe

First, let us look at how to test security from the outside, using an End-to-End Test.
HtmlUnit provides support for specifying credentials along with a request, so that
you can simulate having a user logged in. You can also use HtmlUnit to test the
login procedure itself. Returning to our Coffee Shop application, imagine an
administrative interface for such simple day-to-day things as changing products
and prices.7 Obviously, these features need to be protected behind some resource
security. In particular, we want to be sure that if a user tries to access this page
without logging in, that the application forces them to identify themselves. The
test in listing 13.8 verifies that very condition. All the administrative pages are
under the URI admin inside our application.

package junit.cookbook.coffee.endtoend.test;

import java.net.URL;
import junit.framework.TestCase;
import com.gargoylesoftware.HtmlUnit.*;
import com.gargoylesoftware.HtmlUnit.html.HtmlPage;

public class AdminWelcomePageTest extends TestCase {
 private static final int AUTHORIZATION_FAILED = 401;

 private WebClient webClient;

 protected void setUp() throws Exception {
 webClient = new WebClient();
 }

 public void testWithoutCredentials() throws Exception {
 try {
 Page page =
 webClient.getPage(
 new URL("http://localhost:8080/coffeeShop/admin/"));

 fail("Got through without a challenge?!");
 }

7 You are right: no company in its right mind would dare make pricing changes available to the web. Nev-
ertheless, we need an example, and this is the one we have chosen. Suspend your disbelief for a few pages.

Listing 13.8 Test the authorization rules for administrative web resources

527Test web resource security
 catch (FailingHttpStatusCodeException expected) {
 assertEquals(
 AUTHORIZATION_FAILED,
 expected.getStatusCode());
 }
 }
}

Here we use HtmlUnit to try to retrieve the page, expecting a 401 response code:
“Authorization Failed.” In order to make this test work, we had to configure secu-
rity in our application’s web deployment descriptor. Listing 13.9 shows the rele-
vant portion.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3/

/EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app id="WebApp">

 <!-- Most of the file omitted for brevity -->

 <display-name>CoffeeShopWeb</display-name>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>CatalogAdministration</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>administrator</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
</web-app>

Now that we know these pages require the requester to log in, we need to limit
access to those users that play the administrator role. Our next test uses Html-
Unit’s CredentialProvider API to simulate having a particular user logged in. The
class SimpleCredentialProvider allows you to specify the user name and password
to simulate for all requests originating from the same WebClient object. Suppose
that admin is the user name of an administrator who should have access to the
administrative part of the online store. Here is the test we need to verify that
admin can log in and see the welcome page.

Listing 13.9 A web deployment descriptor that passes the tests in AdminWelcomePageTest

528 CHAPTER 13

Testing J2EE applications
public void testAdminLoggedIn() throws Exception {
 webClient.setCredentialProvider(
 new SimpleCredentialProvider("admin", "adm1n"));

 Page page =
 webClient.getPage(
 new URL("http://localhost:8080/coffeeShop/admin/"));

 assertEquals(
 HttpServletResponse.SC_OK,
 page.getWebResponse().getStatusCode());

 assertTrue(page instanceof HtmlPage);

 HtmlPage welcomePage = (HtmlPage) page;
 assertEquals(
 "Coffee Shop - Administration",
 welcomePage.getTitleText());
}

You will notice two differences with this test: first, we invoke WebClient.setCre-
dentialProvider() to simulate user admin logging in with password adm1n. From
this point, until you change the CredentialProvider, all requests from this Web-
Client object will pass those credentials, the behavior you would expect from
such an API.8 The other difference to note is that we verify that we receive the
response code 200, meaning “OK.” We need this because we have made a small
but useful change to our WebClient. In the setUp()method we have added the
line highlighted in bold print:

protected void setUp() throws Exception {
 webClient = new WebClient();
 webClient.setThrowExceptionOnFailingStatusCode(false);
}

This line configures how the WebClient reacts when it receives a failing status code
from the server—that is, a code outside of the range 200–299. By default, the Web-
Client throws an exception, which explains our first test: because it expected sta-
tus code 401, a failing status code, the test expects its WebClient to throw a
FailingHttpStatusCodeException. By turning this behavior off we can avoid hav-
ing to catch all these exceptions, but in return, we need to check the status code
of every request—even the ones we expect to pass. It is a small price to pay to sim-
plify tests that generally expect the server to respond with a failing status code.

8 Remember that each test executes in its own object, and so uses a different WebClient object. Do not
expect those credentials to remain set for other tests in your suite.

529Test web resource security
As an example, this next test tries to log in to the administrative application as
shopper. We expect the server to answer with “forbidden.”

public void testShopperLoggedIn() throws Exception {
 webClient.setCredentialProvider(
 new SimpleCredentialProvider("shopper", "sh0pper"));

 Page page =
 webClient.getPage(
 new URL("http://localhost:8080/coffeeShop/admin/"));

 assertEquals(
 HttpServletResponse.SC_FORBIDDEN,
 page.getWebResponse().getStatusCode());
}

We were using hard-coded status code in the original version of our tests, but
remembered later that HttpServletResponse defines constants for them all, so we
use the constants instead. The resulting tests are much easier to read. You have seen
how to simulate having no credentials (not being logged in), being logged in as a
user with the required access, and being logged in as a user without the required
access. These are the building blocks you need to write as sophisticated a test as you
need, centered on authentication and authorizationfor web resources.

◆ Discussion

Be aware of one downside to testing application resource security “from the out-
side” as we have described here. If you verify the container’s enforcement of your
security policies for all user roles on all resources, there is a real danger of dupli-
cating your entire access control list in the tests. This defeats, at least in part, the
point of declarative security.9 As a result, we recommend that you test the way you
declare security information, rather than whether your application server applies
it correctly. To test the latter would require essentially duplicating the application
server’s assembly descriptor-processing algorithm. If you are building an applica-
tion server, then that effort is appropriate; however, if you are only building an
enterprise application to execute on an application server, then it goes too far.
Don’t test the platform. Instead, verify the content of each of your deployment
descriptors using the techniques we described in chapter 9, “Testing and XML.”

The specific techniques you need to test your server-side security settings
depend on the application server: some servers are not open enough to make

9 You know: security without a large pile of code.

530 CHAPTER 13

Testing J2EE applications
server configuration data available to outside components.10 With JBoss, for exam-
ple, a combination of XMLUnit and Plain Old JUnit can help you verify your set-
tings in jboss-web.xml, login-config.xml, and—in the case of the user registry
(which is based on properties files)—users.properties and roles.properties.
With other application servers, check your local documentation.

◆ Related

■ Chapter 9—Testing and XML

13.5 Test EJB resource security

◆ Problem

You want to test your EJB security settings.

◆ Background

Manual EJB security testing is generally even more annoying than manual web
resource security testing (see recipe 13.4). The typical approach is to build a web
front end just to be able to invoke the EJBs directly, or you might be using a devel-
opment environment that provides test client applications for this purpose.11

Such test clients are essentially interactive Java interpreters, in which you execute
code by clicking hypertext links; and while it can be useful for quickly verifying
that your EJBs are not entirely broken, they are not a substitute for or—at least in
our opinion—a good tool for testing. What you need is a way to write security-
based tests that simply provide credentials, look up the EJB, and try to use it.
These tests are easy to automate. This recipe describes how.

◆ Recipe

We recommend starting with Cactus, which helps you simulate having a specific
user logged in on a per test basis. It uses a mechanism quite similar to HtmlUnit
(see recipe 13.4). The general strategy is to provide Cactus with the appropriate
authentication information to simulate a user being logged in, and then trying to
invoke the protected EJB method. Remember that because we are using Cactus,
these tests execute in the container. We will come back to that in the Discussion

10 We do not have any specific product in mind. The culprits know who they are.
11 IBM’s WebSphere Studio, for example, provides the Universal Test Client for this purpose.

531Test EJB resource security
section of this recipe. Listing 13.10 shows the first test: if there are no credentials
(no one has logged in), then invoking an EJB method ought to fail. The EJB in
question is a session bean that can provide the business logic for our Coffee Shop
administrative application. This EJB performs pricing changes.

package junit.cookbook.coffee.model.ejb.test;

import java.rmi.ServerException;
import javax.ejb.EJBException;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import junit.cookbook.coffee.model.ejb.*;
import org.apache.cactus.*;

public class PricingOperationsSecurityTest extends ServletTestCase {
 public void testNoCredentials() throws Exception {
 Context context = new InitialContext();
 Object object = context.lookup("ejb/PricingOperations");
 PricingOperationsHome home =
 (PricingOperationsHome) PortableRemoteObject.narrow(
 object,
 PricingOperationsHome.class);

 try {
 PricingOperations pricingOperations = home.create();
 fail("No credentials and you got through?!");
 }
 catch (ServerException expected) {
 Throwable serverExceptionCause = expected.getCause();
 assertTrue(
 "This caused the ServerException: "
 + serverExceptionCause,
 serverExceptionCause instanceof EJBException);

 EJBException ejbException =
 (EJBException) serverExceptionCause;

 Exception ejbExceptionCause =
 ejbException.getCausedByException();

 assertTrue(
 "This caused the EJBException: " + ejbExceptionCause,
 ejbExceptionCause instanceof SecurityException);

 }
 }
}

Listing 13.10 PricingOperationsSecurityTest, a server-side Cactus test

532 CHAPTER 13

Testing J2EE applications
All the code in bold print verifies that the server-side exception is indeed a secu-
rity exception, and not some incidental problem. It is common practice in Java to
wrap exceptions within exceptions when propagating them up through the vari-
ous layers of an application, which explains all the unwrapping here in the test.
We will refactor this into a separate method when we add another test or two.
Otherwise, this uses the technique we describe in recipe 2.8, “Test throwing the
right exception.” Our next test verifies that a user with the required authorization
can create a PricingOperations bean.

You need to follow a few simple instructions from the Cactus web site to be able
to provide authentication information along with a request.12 After we augmented
our web deployment descriptor, we added the following test, which verifies that an
administrator (user admin) can invoke methods on both the home interface and
on the bean itself.

public void beginAdministrator(WebRequest request) {
 request.setRedirectorName("ServletRedirectorSecure");
 request.setAuthentication(
 new BasicAuthentication("admin", "adm1n"));
}

public void testAdministrator() throws Exception {
 PricingOperations pricingOperations = home.create();
 pricingOperations.setPrice("762", Money.dollars(12, 50));
}

The Cactus web site instructed us to implement a “begin” method in order to set
authentication for this test. Our test then simply creates a PricingOperations bean
and invokes a method on it. As long as this test does not throw any security-related
exceptions, it passes—that is why there are no assertions in it. If the test did throw
an exception, we might want to add logic to verify exactly which exception it is
throwing, and have the test fail only if it threw a security-related exception. We
believe that the extra reward is not worth the extra effort, so we leave the test as it
is. We have moved home into the test fixture and initialize it in setUp(), as follows:

public class PricingOperationsSecurityTest extends ServletTestCase {
 private PricingOperationsHome home;

 protected void setUp() throws Exception {
 Context context = new InitialContext();
 Object object = context.lookup("ejb/PricingOperations");
 home =
 (PricingOperationsHome) PortableRemoteObject.narrow(

12 See http://jakarta.apache.org/cactus/writing/howto_security.html

533Test EJB resource security
 object,
 PricingOperationsHome.class);
 }

 // Tests omitted
}

The last test we include here tries to log in as a shopper and invoke the Pricing-
Operations EJB, which ought to fail with “user not authorized.” When we wrote
this test, we realized that we wanted the Cactus test redirector to work for any
authenticated user, because the EJB layer was going to perform the stricter secu-
rity check. After failing to figure out how to do that, we settled on a role that no
user played, and named it test. We configured our test web application—the web
application containing our Cactus tests—with a security constraint, but authorized
all users to use the web application (by not preventing anyone from using it). This
forces the user to be authenticated for purposes of testing the user’s authority to
invoke EJBs, but any user can execute the tests. We think this is a good design for
security-based tests.

We refactored the “no credentials” test, extracting the code that tries to invoke
PricingOperationsHome.create(), unwraps the expected exception, and verifies
that it is a SecurityException. We even added some code to check the Security-
Exception message—now we need to distinguish between “no credentials pro-
vided” and “user not authorized.” Listing 13.11 shows that method.

private void doTestExpectingSecurityException(
 String testFailureMessage,
 String expectedSecurityExceptionMessageContains)
 throws Exception {

 try {
 PricingOperations pricingOperations = home.create();
 fail(testFailureMessage);
 }
 catch (ServerException expected) {
 Throwable serverExceptionCause = expected.getCause();
 assertTrue(
 "This caused the ServerException: "
 + serverExceptionCause,
 serverExceptionCause instanceof EJBException);

 EJBException ejbException =
 (EJBException) serverExceptionCause;

 Exception ejbExceptionCause =
 ejbException.getCausedByException();

Listing 13.11 Verifying the SecurityException message

534 CHAPTER 13

Testing J2EE applications
 assertTrue(
 "This caused the EJBException: " + ejbExceptionCause,
 ejbExceptionCause instanceof SecurityException);

 SecurityException securityException =
 (SecurityException) ejbExceptionCause;

 String securityExceptionMessage =
 securityException.getMessage();

 assertTrue(
 securityExceptionMessage,
 securityExceptionMessage.matches(
 ".*"
 + expectedSecurityExceptionMessageContains
 + ".*"));
 }
}

We have highlighted in bold print the extra code to check the SecurityException
message. With this change, the “no credentials” test now looks as follows:

public void testNoCredentials() throws Exception {
 doTestExpectingSecurityException(
 "No credentials and you got through?!",
 "principal=null");
}

And the new test, which tries to invoke the EJB as a shopper, looks as follows.

public void beginShopper(WebRequest request) {
 request.setRedirectorName("ServletRedirectorSecure");
 request.setAuthentication(
 new BasicAuthentication("shopper", "sh0pper"));
}

public void testShopper() throws Exception {
 doTestExpectingSecurityException(
 "Only administrators should be allowed to do this!",
 "Insufficient method permissions");
}

As with the “administrator” test, first we implement the Cactus method beginShop-
per() to impersonate a shopper, and then we implement the test itself, expecting
to see “Insufficient method permissions” in the SecurityException message. This
message text is specific to JBoss 3.2.2, and if we wrote any more of these tests, we
would certainly extract that text into either a property file or at least a symbolic
constant, to avoid massive duplication. If in JBoss 4.0, that message text changes,
we do not want to have to change 25 strings scattered throughout our tests.

535Test EJB resource security
So here we have examples of the three typical kinds of security tests: no user
logged in, an authorized user logged in, and an unauthorized user logged in. You
can use these as templates to write your own tests.

◆ Discussion

The Cactus tests are complex, but only in the sense that the runtime environment
is complex. Writing the tests themselves involves a slight learning curve—in our
opinion, not too steep a curve, either—and the usual tentative experiment or two
while trying to figure out whether you have followed the instructions correctly.
The good news is that once you get going, the only real problem is that the tests
are slower to execute than we would like. Certainly that is not the fault of Cac-
tus,13 but rather is intrinsic to any kind of in-container testing strategy. The only
drawback is that writing an exhaustive security test suite this way—trying all per-
mutations of roles and so on—leads to an unhealthy amount of duplicated code.

If you refactor mercilessly, eventually you will end up with an engine that gen-
erates the tests from a text-based description of the security roles. You could imag-
ine an XML document that describes which roles are authorized to perform which
actions, and that could be used to generate the tests. Does this sound familiar? We
recognize it as a description of the declarative security feature of J2EE! To get your
tests right, then, would be equivalent to getting your test-generating XML docu-
ment right. Instead of this, we recommend just verifying the deployment descrip-
tors themselves. Use XMLUnit to verify that you have specified the security settings
correctly, and then use whatever strategies you need to verify the configuration
files that are specific to your application server. These tests provide a warning sys-
tem whenever someone changes security settings: the tests will fail, and then it will
be up to the team to decide whether that change is correct. No more accidental
security holes caused by someone who changed a file at 2 a.m. and neglected to
warn anyone about it.14

◆ Related

■ Chapter 9—Testing and XML

■ 13.4—Test web resource security

■ Cactus Security HOWTO
(http://jakarta.apache.org/cactus/writing/howto_security.html)

13 It must be Chet’s fault.
14 We do not recommend working when tired, anyway, but we recognize that some people are pressured

into doing it.

536 CHAPTER 13

Testing J2EE applications
13.6 Test container-managed transactions

◆ Problem

You want to verify your container-managed transactions.

◆ Background

Transaction-based programming can be complex, which is one of the reasons for
the J2EE container-managed transaction feature. The goal of this feature is to allow
you to specify transactions without having to code all the dirty details. The simplic-
ity of container-managed transactions often leaves programmers feeling as though
it were “too easy,” and they sometimes worry that the application will not behave as
expected under a large, concurrent load. Because they know that transaction-
based programming is complex, they feel as though they should have to “do more”
to add transactional behavior to an application. Testing container-managed trans-
actions is not complex at all, once you put some trust in the container. This recipe
helps you focus on testing your work, and not the work of the container.

◆ Recipe

The most direct approach you can take involves verifying the container-managed
transaction attributes set in your deployment descriptors. When you do this, you
are not testing whether your transaction settings make sense for the application,
but rather that the transaction settings are what you think they should be. This
kind of test largely protects against someone unknowingly (or carelessly) chang-
ing the settings. This kind of test alerts you to any changes so that you can make a
sound judgment whether the change is appropriate. It merely avoids the unpleas-
ant task of debugging a test or production problem and tracing it all the way back
to a transaction isolation level that could not possibly work. Avoid the problem by
verifying your deployment descriptors. You can do this using the techniques in
chapter 9, “Testing and XML.”

You may develop additional Deployment Tests to enforce your own deploy-
ment rules. As an example, you might decide that all entity bean component
methods (on the remote and local interfaces) must be deployed with the transac-
tion attribute Required.15 In this case, you could certainly write a test to verify
those settings, such as the one that follows. The test in listing 13.12 verifies that

15 This is not a suggestion; rather just an example.

537Test container-managed transactions
the transaction attribute for any container transaction involving the component
methods of a particular EJB is Required. Note how complex it is. 16

package junit.cookbook.coffee.model.ejb.test;

import java.io.*;

import org.apache.xpath.XPathAPI;
import org.custommonkey.xmlunit.*;
import org.w3c.dom.*;
import org.xml.sax.InputSource;

public class EntityBeanTransactionAttributeTest extends XMLTestCase {
 protected void setUp() throws Exception {
 XMLUnit.setIgnoreWhitespace(true);
 }

 public void testOrder() throws Exception {
 doTestTransactionAttribute(
 "../CoffeeShopLegacyEJB/META-INF/ejb-jar.xml",
 "Order");
 }

 private void doTestTransactionAttribute(
 String ejbDeploymentDescriptorFilename,
 String ejbName)
 throws Exception {

 Document ejbDeploymentDescriptor =
 XMLUnit.buildTestDocument(
 new InputSource(
 new FileInputStream(
 new File(ejbDeploymentDescriptorFilename))));

 String transactionAttributeXpath =
 "/ejb-jar/assembly-descriptor/container-transaction"
 + "[method/ejb-name='" + ejbName + "' and "
 + "(method/method-intf='Remote' or "
 + "method/method-intf='Local')]"
 + "/trans-attribute";

 NodeList transactionAttributeNodes =
 XPathAPI.selectNodeList(
 ejbDeploymentDescriptor,
 transactionAttributeXpath);

Listing 13.12 EntityBeanTransactionAttributeTest

16 The tests here will fail without an internet connection, because XMLUnit will try to validate the XML
document against its DTD. For further details, see recipe 9.2, “Ignore the order of elements in an XML
document,” and read the section entitled, “Network connectivity and the DTD.”

538 CHAPTER 13

Testing J2EE applications
 assertTrue(
 "No transaction attribute setting for " + ejbName + " EJB",
 transactionAttributeNodes.getLength() > 0);

 for (int i = 0;
 i < transactionAttributeNodes.getLength();
 i++) {

 Node each = transactionAttributeNodes.item(i);
 Text text = (Text) each.getFirstChild();

 Node assemblyDescriptorNode =
 each.getParentNode().getParentNode();

 assertEquals(
 "Transaction attribute incorrect at "
 + assemblyDescriptorNode.toString(),
 "Required",
 text.getData());
 }
 }
}

We have already factored out a generic version of the test so that you can convert
this into a Parameterized Test Case (see recipe 4.8, “Build a data-driven test
suite”), looping over all the entity beans in your system. Due to the inherent flexi-
bility in describing container-managed transactions, we need a particularly long
and convoluted XPath expression to match them all: any container-transaction
node that contains the ejb-name we are looking for and either the Remote or
Local method-intf. It would take even seasoned XPath users a moment or two to
realize what this test is doing, so naming it is particularly important. As we wrote
previously, you could write this kind of test, but we find it to be too complex.
Instead, we recommend generating your EJB deployment descriptors from a pro-
cess that can more easily enforce this deployment rule. If you use XDoclet (http:/
/xdoclet.sourceforge.net/) to generate your EJB deployment descriptors, then
you could use XJavaDoc—the standalone JavaDoc engine—to parse your entity
bean implementation class source files and make assertions as to the value of each
entity bean’s @ejb.transaction type property. We recommend that you try a few
different approaches and see what works best for you.

◆ Discussion

In this recipe we made it clear what we were testing: that the transaction attribute
set in your deployment descriptors is what you think it should be. There is the
other question: how do you test that such a transaction attribute produces the

539Test container-managed transactions
desired results? Typically one chooses transaction attributes and transaction isola-
tion levels based on reasoning about the system and live experiments. We will not
discuss how to discern which transaction settings are appropriate, as that is the not
the goal of this book.17 As for live experiments, there are several commercial—and
perhaps some viable noncommercial—tools that one can use to simulate heavy
load for web applications. There are performance testing packages built on JUnit,
such as JUnitPerf (www.clarkware.com/software/JUnitPerf.html); and the combi-
nation of JUnitPerf and HtmlUnit can help you implement load tests driving a web
application. Whatever tools you choose, there is no substitute for deploying your
application on a production quality machine, letting 1000 simulated users loose on
it and monitoring the error log. Or, as Ron Jeffries said, “Speculation or experi-
mentation—which is more likely to give the correct answer?”

◆ Related

■ 4.8—Build a data-driven test suite

■ Chapter 9—Testing and XML

■ JUnitPerf (www.clarkware.com/software/JUnitPerf.html)

■ XDoclet (http://xdoclet.sourceforge.net/)

17 See Greg Barish, Building Scalable and High-Performance Java Web Applications Using J2EE Technology
(Addison-Wesley, 2001). The title is a mouthful, but the content is well worth it.

Part 3

More JUnit techniques

Up to this point we have discussed the building blocks of JUnit tests, as well as
how to apply those building blocks in testing J2EE components and applications.
There is more to Java than J2EE, and there is much more to JUnit than the basics;
so we wanted to look at some of the more advanced JUnit techniques that we had
not had the opportunity to introduce up to now. This part contains recipes related
to design patterns, popular JUnit extensions, and a few other recipes that did not
seem to fit into other chapters.

Testing design patterns
This chapter covers
■ Testing the Observer/Observable pattern
■ Testing the Singleton pattern
■ Testing the Factory pattern
■ Testing the Template Method pattern
543

544 CHAPTER 14

Testing design patterns
Design Patterns have been around for quite a long time, now—enough time to
have become part of the common vocabulary of Java programmers. As we become
more comfortable discussing designs in terms of the patterns we apply, we begin
to wonder what kinds of tests are most appropriate when we apply those patterns.
For example, if there is a special set of cases that one typically needs to cover in
order to effectively test the Flyweight pattern,1 then we would like to know about
them. As we plan to apply the pattern, we can be sure to include the correspond-
ing tests. Some of these patterns present challenges to testing, and we would like
to have guidelines for how to meet those challenges. The Singleton presents a test
isolation problem, whereas it is not obvious how to test the Observer without the
Observable. Are there any special shortcuts to testing designs using other pat-
terns? The Decorator and Abstract Factory patterns each provide an opportunity
to see abstract test cases in action. While we cannot possibly treat all the classic
Design Patterns in this single chapter, we can examine how to test some of the ele-
mentary patterns. Our approach is to point out how the tests for each pattern
relate to the recipes in the first part of this book. This provides the road map to
writing the appropriate tests.

Not only do certain Design Patterns suggest certain testing strategies, but the
opposite might be true as well. If you notice yourself writing a particular class of
tests, this can be a sign that your design is converging towards a well-known pat-
tern. For example, you might use abstract test cases to test a number of classes in a
“wide, but shallow” hierarchy—that is, a large number of sibling classes, but per-
haps only one superclass. In this case, look closely at the classes under test. Could
these classes decorate one another? Refactor towards the Decorator pattern.
Could there be a node/leaf relationship among them? Refactor towards the Com-
posite pattern. Do you notice four or five parallel abstract test case hierarchies?
Perhaps the objects under test are the “families of objects” one creates using the
Abstract Factory pattern, so consider refactoring in that direction. To learn more
about the notion of refactoring towards Design Patterns, we refer you to Joshua
Kerievsky’s work on the topic.2 As you gain more experience writing tests, you will
see the relationships between the structure of test code and the structure of the
objects it tests. You will recognize how the two types of code influence one
another: how certain test code structure leads you towards a given Design Pattern

1 http://c2.com/cgi/wiki?FlyweightPattern
2 www.industriallogic.com/xp/refactoring/, as well as Joshua Kerievsky, Refactoring to Patterns (Addison-

Wesley, 2004).

545Test an Observer (Event Listener)
and the other way around. This chapter starts you on that road with an essential
collection of tests for various elementary Design Patterns.

14.1 Test an Observer (Event Listener)

◆ Problem

You want to test an event listener.

◆ Background

The power of the Observer (or Event Listener) is that it is not coupled to the
Observable (or Event Source). The nature of their collaboration makes it possible
to test the Observer in perfect isolation, although on the surface it seems strange
to use the Observer without the Observable. When considering how to test an
Observer, the first idea that might come to one’s mind is to create a fake Observ-
able—an object that plays the role of the real Observable, but does something
simpler. It turns out that testing an Observer is even easier than that.

◆ Recipe

The simplest way to test an Observer is simply to invoke its event handler methods
directly and make assertions about what they do. There is no need to create a fake
Observable: the test case class itself is good enough.3 You can take advantage of
the fact that the Observer does not care about the origin of the events it is listen-
ing for, by merely invoking the event handler method directly with a variety of
events. You can easily simulate any condition you like in this way.

We look to JUnit itself for an example. One of its core interfaces is junit.frame-
work.TestListener. A test listener registers with the test runner to find out when
tests begin, when they end, and when they fail. The text-based test runner registers a
TestListener to print out a dot (.) for each test, an “F” for each failure and an “E”
for each error. Although JUnit has already implemented junit.textui.Result-
Printer, in this example we will build our own implementation.

Because event handler methods typically do not return values, we need to
observe some side effect to verify their correctness. In this case, the side effect is

3 This approach is not quite the Self-Shunt Pattern, although it is similar in spirit. Sometimes we want to
add labels to things to make them sound important, but not here—we’re simply invoking methods, just
as we did way back in chapter 2.

546 CHAPTER 14

Testing design patterns
whatever the test listener prints out...somewhere. In production, this test listener
should print to the console, but that would be an invisible side effect for the tests.
Referring to the techniques in recipe 2.2, “Test a method that returns nothing,”
we make the side effect visible by providing the TextBasedTestListener a Print-
Writer to which to print. In our tests, we use a PrintWriter that wraps a String-
Writer, so we can retrieve the output as a String, while in production we use a
PrintWriter that redirects to System.out, the console. Look at the tests in
listing 14.1, the first few of which invoke each event handler method in isolation
to verify its basic behavior.

package junit.cookbook.patterns.test;

import java.io.*;
import junit.cookbook.patterns.TextBasedTestListener;
import junit.framework.*;

public class TextBasedTestListenerTest extends TestCase {
 private TextBasedTestListener testListener;
 private StringWriter stringWriter;

 protected void setUp() throws Exception {
 stringWriter = new StringWriter();
 testListener =
 new TextBasedTestListener(new PrintWriter(stringWriter));
 }

 public void testStartTestEvent() throws Exception {
 testListener.startTest(this);
 assertEquals(".", stringWriter.toString());
 }

 public void testAddFailureEvent() throws Exception {
 testListener.addFailure(this, new AssertionFailedError());
 assertEquals("F", stringWriter.toString());
 }

 public void testAddErrorEvent() throws Exception {
 testListener.addError(this, new RuntimeException());
 assertEquals("E", stringWriter.toString());
 }

 public void testEndTestEvent() throws Exception {
 testListener.endTest(this);
 assertEquals("", stringWriter.toString());
 }
}

Listing 14.1 Tests for a text-based TestListener implementation

547Test an Observer (Event Listener)
These tests are straightforward: at the start of a test, we ought to see a dot; when a test
fails, we ought to see an “F”, and so on. We write the production code to make these
tests pass.4 Now we know that our TextBasedTestListener correctly handles the
various events occurring on their own. There are no special case variations on these
events that we can think of, but do we need any other tests? Just to be sure, in list-
ing 14.2, we try out the various “end-to-end” scenarios that occur when executing a test.

package junit.cookbook.patterns.test;

import java.io.*;
import junit.cookbook.patterns.TextBasedTestListener;
import junit.framework.*;

public class TextBasedTestListenerTest extends TestCase {
 private TextBasedTestListener testListener;
 private StringWriter stringWriter;

 protected void setUp() throws Exception {
 stringWriter = new StringWriter();
 testListener =
 new TextBasedTestListener(new PrintWriter(stringWriter));
 }

 // Basic event handler tests omitted

 public void testCompletePassingTestScenario() throws Exception {
 testListener.startTest(this);
 testListener.endTest(this);
 assertEquals(".", stringWriter.toString());
 }

 public void testCompleteTestFailureScenario() throws Exception {
 testListener.startTest(this);
 testListener.addFailure(this, new AssertionFailedError());
 testListener.endTest(this);
 assertEquals(".F", stringWriter.toString());
 }

 public void testCompleteTestErrorScenario() throws Exception {
 testListener.startTest(this);
 testListener.addError(this, new RuntimeException());
 testListener.endTest(this);
 assertEquals(".E", stringWriter.toString());
 }
}

4 For this recipe we have decided to work in Test-Driven Development mode. If you do not like TDD, then
pretend we wrote the code first—whichever you prefer.

Listing 14.2 Further text-based TestListener tests

548 CHAPTER 14

Testing design patterns
These tests verify that TextBasedTestListener handles the typical event flows the
way we would expect. The last feature we need to add makes it easier to eyeball
how many tests have executed: insert a line break every forty tests so that as we see
a row of dots we know that forty tests have executed. Here is that test.

public void testAddLineBreakAfterFortyTests() throws Exception {
 for (int i = 0; i < 41; i++) {
 testListener.startTest(this);
 }

 assertEquals(
 "..\r\n.",
 stringWriter.toString());
}

Count them if you like: there are forty dots, a line break, and then one more dot.
If we had to generate more long lines of dots, we would extract a method like
StringUtil.repeat() to do it; but until then, we’ll live with the duplication, or
lack of abstraction, however you prefer to see it. This is the test that forces the
TextBasedTestListener to keep a count of the number of tests and invoke
println() at the right time. We did not need any test runner, real or fake, to gen-
erate the events for these tests. Instead, we simply invoke the event handler meth-
ods with some sample events and verify the way the methods respond.

◆ Discussion

The event-handling logic for TextBasedTestListener was very simple: print some
characters to a PrintWriter. Some event-handling logic is complex enough to
present its own testing challenges, making it difficult to use as the “observable side
effect” to test the event handlers. Observer tests should be very simple, and if they
are not, then that is generally a sign that the Observer is “working too hard.” It
might be violating the Single Responsibility Principle. For example, consider an
event handler that sends a JMS message when it receives an event notification.
Verifying that the event handler sent the appropriate JMS message involves JMS
servers, message marshalling and unmarshalling, and on and on—quite a com-
plex test environment for something that ought to be much simpler. Instead, we
recommend separating the event handler’s key responsibilities, which are proba-
bly:

■ Determine the message content and destination, depending on the event
received.

■ Marshal the content into a JMS message and send it to its destination.

549Test an Observer (Event Listener)
Extract the second responsibility and move it into a separate class and introduce an
interface containing a method that takes the message content and destination as a
parameter. Name the new interface MessageSender.5 Your event handler now creates
the message content, determines the destination, and invokes its MessageSender.
This is a much simpler side effect to observe during testing: you can use a mock
objects approach to verify that your event handler invokes MessageSender correctly.
Listing 14.3 shows an example that uses EasyMock to verify this method invocation.

package junit.cookbook.patterns.test;

import junit.cookbook.patterns.*;
import junit.framework.TestCase;

import org.easymock.MockControl;

public class MessageSendingObserverTest extends TestCase {
 private MessageSendingObserver observer;
 private MessageSender messageSender;
 private MockControl messageSenderControl;

 protected void setUp() throws Exception {
 messageSenderControl =
 MockControl.createControl(MessageSender.class);

 messageSender = (MessageSender) messageSenderControl.getMock();

 observer = new MessageSendingObserver(messageSender);
 }

 public void testAbcEvent() throws Exception {
 messageSender.sendMessage(
 "ABC-related content", "ABC destination");

 messageSenderControl.replay();

 observer.handle(new AbcEvent());

 messageSenderControl.verify();
 }
}

We have highlighted in bold print the two main parts of the test. The first is
recording the method invocation you expect: that someone will invoke sendMes-
sage() with the correct message content and destination. The second is simulat-
ing the event by invoking the event handler directly. This verifies that when the

5 Not a great name, we know, but you will think of something better later.

Listing 14.3 Testing MessageSender with EasyMock

550 CHAPTER 14

Testing design patterns
MessageSendingObserver receives an AbcEvent, it asks the MessageSender to send
the right message. Now no matter how many different events might result in send-
ing a message, you only need one small set of tests for the JMS-based Message-
Sender implementation you use in production. (We discuss testing JMS message
producers in recipe 11.12, “Test a JMS message producer.”) By separating the
event handler’s two main responsibilities, we can ignore the complexity of send-
ing a real JMS message when all we need to verify is how our Observer determines
the content and destination of a message based on the event it receives. The
resulting tests are simpler and faster, and the resulting design is more flexible.

◆ Related

■ 2.2—Test a method that returns nothing

■ 11.12—Test a JMS message producer

14.2 Test an Observable (Event Source)

◆ Problem

You want to test an event source.

◆ Background

You might be wondering how to test an Observable (or Event Source) without
involving the Observer (or Event Listener). After all, how are you supposed to ver-
ify that an object generates the right events if you do not listen for those events?
Well, yes, without an event listener there is no way to verify that the event source
works; however, just because you need an event listener does not mean you need
the production event listener. On the contrary, any event listener will do. The sim-
plest kind of event listener does nothing important when it receives an event,
except possibly remember the events it received. This recipe shows you how to
leverage this observation—pun intended—to test an event source.

◆ Recipe

To test an Observable, you need to recreate the conditions under which you
expect an event to be generated, and then verify that it notified its listeners. We
often implement this kind of test using the Self-Shunt Pattern. In particular, the
test case class implements the event listener interface, collects the events it receives
in a List, and then verifies the received events against a List of expected events.

551Test an Observable (Event Source)
To illustrate this, we look once again to JUnit for an example. In recipe 14.1 we
tested a text-based implementation of TestListener, which printed information
in response to various test-execution events. Now it is time to verify that JUnit gen-
erates those events correctly. To generate those events requires executing a test—
the TestResult object we pass into the TestCase when executing the test acts as
the Observable. We warn you: testing JUnit with JUnit is a little like trying to chase
your own tail, but it is a worthy exercise.6 First, we set up the Self-Shunt: the test
case class implements TestListener and collects the various method invocations
as events. Because TestResult does not generate event objects, we collect the
information about each event handler method invocation in a convenient pack-
age: a List. Listing 14.4 shows our test, with the Self-Shunt bits highlighted in
bold print.

package junit.cookbook.patterns.test;

import java.util.*;

import junit.framework.*;

public class TestCaseEventsTest
 extends TestCase
 implements TestListener {

 private List events;

 protected void setUp() throws Exception {
 events = new ArrayList();
 }

 public void addError(Test test, Throwable throwable) {
 events.add(
 Arrays.asList(
 new Object[] { "addError", test, throwable }));
 }

 public void addFailure(Test test, AssertionFailedError failure) {
 events.add(
 Arrays.asList(
 new Object[] {
 "addFailure",
 test,
 failure.getMessage()}));
 }

6 Consider that JUnit was built using JUnit, and done so test-first. See Kent Beck’s Test-Driven Development:
By Example (Addison-Wesley, 2002) to see how to build a Python-based xUnit framework using itself!

Listing 14.4 Verifying the events generated when running a JUnit test

552 CHAPTER 14

Testing design patterns
 public void endTest(Test test) {
 events.add(Arrays.asList(new Object[] { "endTest", test }));
 }

 public void startTest(Test test) {
 events.add(Arrays.asList(new Object[] { "startTest", test }));
 }
}

With this in place, we need to test executing a test. (We warned you it would
sound weird.) The simplest kind of test to execute is a passing test. We create a
passing test, attach our Spy TestListener to a TestResult, and then execute the
test using our TestResult. Get it? Maybe not. The code in listing 14.5 makes it
more clear.

public class TestCaseEventsTest
 extends TestCase
 implements TestListener {

 // code from previous listing omitted

 public TestCaseEventsTest(String name) {
 super(name);
 }

 public void dummyPassingTest() {
 }

 public void testPassingTestCase() throws Exception {
 final TestCase testCase =
 new TestCaseEventsTest("dummyPassingTest");

 TestResult testResult = new TestResult();
 testResult.addListener(this);

 testCase.run(testResult);

 List expectedEvents = new ArrayList();
 expectedEvents.add(
 Arrays.asList(new Object[] { "startTest", testCase }));
 expectedEvents.add(
 Arrays.asList(new Object[] { "endTest", testCase }));

 assertEquals(expectedEvents, events);
 }

What better test case class to use to create our dummy passing test than the cur-
rent class? (Again, we warned you about how it would sound.) We create a dummy

Listing 14.5 Adding a dummy passing test

553Test an Observable (Event Source)
passing test and intentionally name it in such a way that the default test suite will
not pick it up. Why? When we execute the default TestCaseEventsTest suite, we
do not want to include the dummy tests. Instead, we want the TestCaseEventTest
tests to execute the dummy tests.7 In testPassingTestCase() we instantiate the
test, pass it a TestResult with our TestListener attached, and execute the test
case expecting the “start” and “end” events and nothing else. This test passes. So
far, so good, but does our test listener handle failing tests? To find out, write a
dummy failing test, as in listing 14.6.

public class TestCaseEventsTest
 extends TestCase
 implements TestListener {

 // code from previous listings omitted

 public void dummyFailingTest() {
 fail("I failed on purpose");
 }

 public void testFailingTestCase() throws Exception {
 final TestCase testCase =
 new TestCaseEventsTest("dummyFailingTest");

 TestResult testResult = new TestResult();
 testResult.addListener(this);

 testCase.run(testResult);

 List expectedEvents = new ArrayList();
 expectedEvents.add(
 Arrays.asList(new Object[] { "startTest", testCase }));

 expectedEvents.add(
 Arrays.asList(
 new Object[] {
 "addFailure",
 testCase,
 "I failed on purpose" }));

 expectedEvents.add(
 Arrays.asList(new Object[] { "endTest", testCase }));

 assertEquals(expectedEvents, events);
 }

7 By now you must realize that we are just trying to have fun with you. If the words are confusing, then
look at the code. Take your time and try to keep it all straight. If you understand this, then you really
understand JUnit.

Listing 14.6 Adding a dummy failing test

554 CHAPTER 14

Testing design patterns
We have highlighted in bold print both the failing test and the extra event we
expect as a result: a “test failure” event between the “start” and “end” events.
Notice that we compare the failure messages, too—we want TestResult to report
the exact failure we expect, or at a minimum, a failure indistinguishable from the
one we expect. Either will do. This test also passes. That makes two out of three
scenarios—the last occurs when a test throws an exception. This is trickier (as if it
has not been tricky enough), so first we present the code in listing 14.7, and then
follow it with an explanation.

public class TestCaseEventsTest
 extends TestCase
 implements TestListener {

 // code from previous listings omitted

 private Exception expectedException;

 protected void setUp() throws Exception {
 events = new ArrayList();
 expectedException = new Exception("I threw this on purpose");
 }

 public void dummyExceptionThrowingTest() throws Exception {
 throw expectedException;
 }

 public void testError() throws Exception {
 final TestCaseEventsTest testCase =
 new TestCaseEventsTest("dummyExceptionThrowingTest");

 TestResult testResult = new TestResult();
 testResult.addListener(this);

 testCase.run(testResult);

 List expectedEvents = new ArrayList();
 expectedEvents.add(
 Arrays.asList(new Object[] { "startTest", testCase }));

 expectedEvents.add(
 Arrays.asList(
 new Object[] {
 "addError",
 testCase,
 testCase.expectedException }));

 expectedEvents.add(
 Arrays.asList(new Object[] { "endTest", testCase }));

 assertEquals(expectedEvents, events);
 }

Listing 14.7 Adding a test that throws an exception

555Test an Observable (Event Source)
We have highlighted in bold print the new additions. First the easy part: we expect
an “add error” event between the start and end events. So far, so good. To verify
that it is the right “add error” event, we need to know which exception (or Throw-
able, to be precise) prompted the TestResult to report the error. The exception
object we want to verify is the one belonging to the dummyExceptionThrowingTest
and not to the testError test, which is why we use testCase.expectedException
and not just expectedException. The latter would be an object belonging to test-
Error’s fixture, whereas the former belongs to dummyExceptionThrowingTest’s fix-
ture. Got it? If not, do not worry—it took us a while to get it too. The point is that
we have verified that JUnit generates the four TestListener events correctly by
attaching our own TestListener, and then verifying that it receives the events we
expected it to receive.

At this point, we can safely conclude that if one listener is correctly notified,
then so would any number of registered listeners; however, if you are at all unsure,
write one test that registers three event listeners, generates an event, and verifies
that all three event listeners were notified. The odds are slim that this would work
for one type of generated event and not the others; but if you think there is a
greater chance that this might fail, then by all means, write more tests. Our expe-
rience has shown that more tests are warranted when testing legacy Observables
and fewer are needed when we are building our own. Test until fear turns to boredom.

◆ Discussion

If for some reason you cannot use the Self-Shunt Pattern for this kind of test—and
that is rare—we recommend using EasyMock. Each incoming event corresponds
to invoking a particular event handler method with certain parameters, and Easy-
Mock is optimized for recording and verifying method invocation sequences. Set
up a mock event listener with EasyMock, record the event handler method invoca-
tions you expect, invoke yourMockControl.replay(), invoke the Observable so
that it generates its events, and then invoke yourMockControl.verify(). Once you
get the implementation pattern down, it is easy to test more and more events.
That said, the Self-Shunt Pattern is simpler in that it results in less test code, and
so we prefer it.

If you find an Observable difficult to test, then the principle cause is violating the
Single Responsibility Principle. The most common symptom of this is writing a
large amount of code to recreate the situation in which a given event is generated—
or worse, being unable to recreate that situation at all. If you find yourself trying to
test such an Observable, then you need to refactor the Observable, extracting the
smallest amount of code that will generate the expected event. You can typically

556 CHAPTER 14

Testing design patterns
achieve this by extracting a method [Refactoring, 110]. Your test would then attach
itself as an event listener, invoke the newly extracted method, and then verify the
event received. The details of the refactoring you need depend entirely on the spe-
cifics of your design, so we are unable to give you more specific advice. As usual, test-
ing difficulties usually point to objects with too many responsibilities.

◆ Related

■ 14.1—Test an Observer

■ Self-Shunt Pattern
(www.objectmentor.com/resources/articles/SelfShunPtrn.pdf)

■ Robert C. Martin, “The Single Responsibility Principle,”
(www.objectmentor.com/resources/articles/srp)

14.3 Test a Singleton

◆ Problem

You want to test a Singleton.

◆ Background

There are a number of things that make testing a Singleton difficult, only some of
which are related to the pattern itself. Perhaps the most notable problem is that
the Singleton retains state from test to test, making it difficult to isolate tests that
use it. Worse, when Singletons collaborate with one another, they often force you
to write long, complex test fixtures. These fixtures are not only difficult to under-
stand, but also difficult to maintain. They become brittle. The slightest change in
one Singleton’s behavior causes the kind of ripple effect that Object-Oriented
Design is meant to minimize. Let us be frank: a Singleton is a big, fancy global
variable, and global variables get in the way of the kind of simple, predictable
behavior that makes Object Testing possible. Beyond the Singleton’s design char-
acteristics, it is the simplest of the Design Patterns to understand and, as a result,
the most commonly used pattern. When a programmer reads Design Patterns for
the first time, she often proceeds to “solve” design problems by introducing Sin-
gletons.8 You don’t know where objects of this type should be stored? Make it a

8 When all you have is a hammer, everything looks like a nail—the “Golden Hammer” antipattern. William
J. Brown et al., AntiPatterns: Refactoring Software, Architectures and Projects in Crisis. (Wiley, 1998).

557Test a Singleton
Singleton! You only need one of those objects for now? Make it a Singleton! This
causes the very proliferation of Singletons that compounds their negative effects
on isolated Object Testing, and there are always more programmers around the
corner just itching to build more Singletons. What can we do?

◆ Recipe

Not surprisingly, the only scenario in which a Singleton does not make Object Test-
ing difficult is when there is only one test. The choice of the Singleton design is
not an impediment in that case: you simply invoke MySingleton.getInstance()
rather than new MySingleton() in the “arrange” part of your test.9 Where you get
into trouble is in trying to write a second test, a third test, and so on.

Because the object under test is a Singleton, it retains state from test to test.
This is a test isolation problem, related to the danger of having one big data set
for tests against a live database. (See chapter 10, “Testing and JDBC” for a discus-
sion of this problem.) When you test a Singleton, your tests are seemingly forced
to share a fixture: this is one of the reasons why Singletons and isolated object test-
ing do not mix well. Unless your Singleton never changes state, you need to either
solve the shared test fixture problem or live with it. Guess which one we recom-
mend? You could try to live with it, but we have too many “war wounds” to make
that choice again. There are several ways to handle this:

1 Change the Singleton class so that it is no longer a Singleton. Perhaps your
application entry point simply needs to instantiate one object, maintain a
reference to it, and then hand that reference to any components that need
it. This is our preferred way to solve the problem, but it affects every client of
the class, and that sounds like real work.

2 Make the Singleton constructors public so that your tests can instantiate
the class, but all your production clients can continue using the class as a
Singleton. This solves the problem, but defeats the purpose of designing
the class as a Singleton in the first place.10 If you think that the class ought
not to be a Singleton, then this is all right; however, you run the risk of

9 Remember Bill Wake’s three “A”s—arrange, act, assert. This is the essential rhythm of a test. Kent Beck
starts Chapter 19 of Test-Driven Development: By Example (Addison-Wesley, 2002) with an explanation of
the pattern.

10 We would argue that the tests are telling you that the class should not be a Singleton. Nay-sayers often
respond, “Are you saying that a Singleton is never appropriate?!” Frankly we don’t have the energy to
take up that debate any longer.

558 CHAPTER 14

Testing design patterns
allowing production code to use the newly visible constructors. If that
weren’t an issue then you likely wouldn’t have designed the class as a Sin-
gleton in the first place. (You must have had a reason.) We recommend
using this technique as the first step towards refactoring the Singleton
into a Plain Old Java Object. If you do not intend to do that, then choose
another approach.

3 Add a reset() method to the Singleton, which resets the unique instance
to its original state. This is essentially the same as making the constructors
public, although it does continue to limit the number of instances of the
class, which is at least in keeping with the spirit of the Singleton pattern.
As with making the constructors public, we recommend this as the first
step towards a refactored system.

4 If the Singleton has a protected constructor, then subclass the Singleton,
place public constructors in your subclass, and then test the subclass. (Do
not override any methods!) This subverts the Singleton design, “just for
testing.” If you keep your test classes in a separate source tree from your
production classes (see recipe 3.3, “Separate test packages from produc-
tion code packages”), then your production code will not see the Single-
ton’s subclass, so there is no way for the production code to bypass the
Singleton and instantiate the class on its own. Of course, if your Single-
ton’s constructors are private, then you cannot use this technique.

5 Execute each test in its own JVM (or at least class loader). This is one way to
ensure that each test executes a freshly initialized Singleton. We describe
how to do this in recipe 6.4, “Execute each test in its own JVM.” It is a very
heavyweight solution and so, while viable, it is the not the first solution we
would try, and likely not the solution we would use over the long term.

If you are unable or unwilling to refactor the system and change the Singleton
into a Plain Old Java Object, then you have decided to live with the shared fixture
problem and the associated high coupling of all the Singleton’s clients to the Sin-
gleton. We warned you, but we cannot stop you; so if you choose to proceed this
way, then you need an effective strategy for testing the Singleton’s clients. Fortu-
nately, we have a recipe for just that case in this chapter.

◆ Discussion

Sometimes a class really does make sense designed as a Singleton, but it happens a
great deal less frequently than you might think. See J. B.’s article, entitled “Use

559Test a Singleton’s client
Your Singletons Wisely,”11 for a thorough discussion of how Singletons affect your
approach to testing. The article concludes by identifying some rules of thumb to
help you decide whether a class really ought to be designed as a Singleton. The
shared fixture problem intrinsic to testing a Singleton is a direct example of the
kinds of problems you have writing any code that uses a Singleton. After all, your
tests are just another bunch of clients for the Singleton.

◆ Related

■ 3.3—Separate test packages from production code packages

■ Chapter 10—Testing and JDBC

■ J. B. Rainsberger, “Use Your Singletons Wisely,”
(www-106.ibm.com/developerworks/webservices/library/co-single.html)

14.4 Test a Singleton’s client

◆ Problem

You want to a test a class that uses a Singleton.

◆ Background

The problem with using a Singleton is that it introduces a certain amount of cou-
pling into a system—coupling that is almost always unnecessary. You are saying
that your class can only collaborate with one particular implementation of a set of
methods—the implementation that the Singleton provides. You will allow no sub-
stitutes. This makes it difficult to test your class in isolation from the Singleton.
The very nature of test isolation assumes the ability to substitute alternate imple-
mentations—Test Objects, as we call them—for an object’s collaborators. If an
object hard codes the class name of its collaborator, then one has to resort to
some kind of meta code, such as aspects, to substitute a Test Object version of that
collaborator in a test. If you are not comfortable with aspects, then unless you
change your design, you are forced to rely on the correct behavior of the Single-
ton in order to test any of its clients. We have been there and done that and prefer
never to go back.

11 www-106.ibm.com/developerworks/webservices/library/co-single.html

560 CHAPTER 14

Testing design patterns
◆ Recipe

First let us clarify one point: when we refer to a client of a Singleton, we mean any
class that invokes the Singleton’s getInstance() method. Many of the testing issues
around a Singleton’s client reduce to problems we explored in recipe 2.11, “Test
an object that instantiates other objects.” Although a Singleton’s client does not
instantiate the Singleton class (by the definition of Singleton) it does hard-code
how it obtains one of its collaborators, a design point equivalent to instantiating
the Singleton object directly. With a Singleton’s client, an extra layer of complexity
comes from the shared test fixture problem we described in recipe 14.3. There is
no easy way to reset a Singleton’s state from test to test, which violates the principle
of test isolation. We have mentioned throughout this book how important test iso-
lation is to testing your object effectively.12 So how do we solve this problem?

There are two main approaches from which to choose. The first is to change
the interface of the Singleton’s client so that it does not invoke getInstance()
directly. We describe this in detail in recipe 2.11, “Test an object that instantiates
other objects,” using a Singleton as the example. If you follow that recipe, then
you will have solved the problem. Here is a recap of the technique:

1 Change the Singleton’s clients so that they accept an instance of the Single-
ton through either a constructor or as an additional method parameter.

2 Extract an interface [Refactoring, 341] with the Singleton methods that
your client needs to use. Change the constructor or method parameter to
be the interface’s type, rather than the Singleton’s type.

3 Implement a mock version of the newly created interface, perhaps using
EasyMock, to use in your tests.

You could, alternatively, change your Singleton to a Plain Old Java Object by mak-
ing its constructors available to your client—usually by changing their visibility to
public. In your tests, instantiate the ex-Singleton object with whatever state you
need for each test, but use the Singleton version in the rest of your production
code. The vast majority of the Singletons we have seen were not really Singletons.
Instead they were Plain Old Java Objects, of which a particular application only
needed one instance. In that case, let the application instantiate just one of them
and have it pass that object to the other objects that need it. Only your applica-
tion’s entry point needs to know that there is one and only one instance of the

12 We mentioned it specifically in chapter 4, “Managing Test Suites,” but it is a principle that pervades our
approach to testing, and in many cases is an unspoken assumption in our recommendations.

561Test a Singleton’s client
class, and you entirely avoid the tight coupling that comes with using a Singleton.
Everyone wins.

◆ Discussion

We do recognize, however, that it might not be desirable to change the produc-
tion code without having the safety net of running tests. It is a bit of a chicken-
and-egg problem that faces the intrepid Test-Infected Programmer:13 I need to
refactor to test the current design, but I ought not to refactor without tests. These opposing
forces are as mutually contradictory as they come. You could walk the tightrope of
refactoring without a net, but an exciting and (as we write this) new idea has
come along that changes the story considerably: Virtual Mock Objects.

We had intended to include an example of Virtual Mock Objects here; however,
the idea is relatively new and implementations are still changing quite rapidly. As a
result, we would rather refer you to the Virtual Mock site (www.virtualmock.org)
than write something here, only to have it become out of date before the book
even goes to press. Such is the nature of writing about quickly changing technol-
ogy! To give you a sneak peek, Virtual Mock allows you to mock—that is, substitute
in your tests—invocations to class-level (static) methods without having to modify
the design of the code under test. Virtual Mock achieves this through aspect-
oriented programming and bytecode manipulation. If you are in a situation where
refactoring is not a reasonable option—at least not at present—then Virtual Mock
enables you to work around your current design and add tests to it. Virtual Mock
does more than just make it easy to mock class-level methods, so we recommend
you visit the Virtual Mock site to learn more about its features.

We recommend using this technique as a way to enable you to refactor safely,
rather than as a substitute for refactoring. At the slightest sign of trouble, we rec-
ommend employing this technique to add at least a thin covering of tests for your
Singleton client code. Later, when the current design really begins to hurt, at least
the tests will be in place to support the refactoring that will ease your pain. Other-
wise, you will experience twice the pain: the ill effects of the design itself and the
difficulty of adding tests to fix the problem—all this under tight deadline pressure
and while you are in a bad mood. If you need to test large amounts of legacy code,
riddled with coupling between objects and class-level methods, then we strongly
recommend that someone on your team spend a few days exploring Virtual Mock.
You will be glad that you did.

13 A term named after this article: http://junit.sourceforge.net/doc/testinfected/testing.htm.

562 CHAPTER 14

Testing design patterns
◆ Related

■ 2.11—Test an object that instantiates other objects

■ 14.3—Test a singleton

■ Virtual Mock (www.virtualmock.org)

14.5 Test an object factory

◆ Problem

You want to test an object factory. More specifically, you would like to test a fac-
tory method.14

◆ Background

First, there is some general confusion as to what a factory method is. There is a
small, but important, difference between a factory method and a creation method. A
creation method is simply a method that creates an object. This method usually
just delegates to a specific class’s constructor. In this situation, the creation
method is too simple to break and you should focus on deciding whether to test the
underlying constructor. See recipe 2.3, “Test a constructor,” for details. A factory
method is a kind of creation method that applies some logic to decide which class
to instantiate. Most commonly, the factory method chooses among many sub-
classes of a class or many implementations of an interface. The code using a fac-
tory method often knows nothing about the specific implementation it receives.
When we say “factory,” we refer to a class that provides a factory method, and not
just creation methods.

Testing an object factory generally creates all kinds of wonderful problems to
solve. A typical object factory implementation involves:

1 Reading data from either the file system or a database

2 Using that data to decide which subclass or implementation to create

3 Passing a variable list of parameters to the constructor

4 Answering the result

14 See the “Gang of Four” book for details on the Factory design pattern. Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides, Design Patterns (Addison Wesley, 1995).

563Test an object factory
As you can see, there are a lot of moving parts and those moving parts present
serious challenges to someone new to JUnit.

When writing tests for an object factory, you see—perhaps for the first time—
how a design with high coupling is difficult to test. You need to get the right data
into the database, make sure that the database is up and running, and just when
you get that to work, the test you write looks like a perfect duplication of the code
you are trying to test. This kind of duplication is always a signal that something is
not quite right.

◆ Recipe

The basic approach is to test the two concrete behaviors of a factory method separately.

■ Choose the creation method to invoke. This is the rule that decides which
implementation to instantiate.

■ Invoke the creation method correctly. The factory method needs to send the
correct parameters to the creation method it has decided to use.

To test the first of these behaviors, use a test similar to the following. Paying hom-
age to the classics, we use the time-tested polymorphism example: making shapes.

public void testChooseMakeSquare() {
 SpyShapeMaker spyShapeMaker = new SpyShapeMaker();
 ShapeFactory factory = new ShapeFactory(spyShapeMaker);
 double[] dummyParameters = new double[0];
 factory.makeShape("square", dummyParameters);
 assertEquals(1, spyShapeMaker.getShapesMadeCount());
 assertEquals(1, spyShapeMaker.getSquaresMadeCount());
}

Here we see the Spy technique in use: a spy collects information about how other
objects invoke its methods, so if you want to verify that the ShapeFactory uses the
ShapeMaker properly, give the factory a spy shape maker, let the spy collect its
“intelligence,” and then ask it what it learned. “The factory asked me to make one
shape: a square.” This is about as cloak-and-dagger as we get in programming.

A seemingly simpler design would be for the ShapeFactory to own the Shape-
Maker—that is, the factory not only holds a reference to a maker, but manages its life-
cycle, creating and destroying it. If the factory is the only class using the maker, then
why make it visible to the outside? We have two answers. First, the tests talk to the
maker, testing it directly; therefore, more than just the factory uses it. Second, and
more importantly, in order to achieve test isolation—where each object is tested
without relying on the behavior of its collaborators—it is necessary to be able to sub-
stitute alternate implementations of an object’s collaborators at run time. In the

564 CHAPTER 14

Testing design patterns
tests, pass the factory a spy shape maker in order to test it; in production, pass the
factory a real shape maker, where “real” is in the eye of the application.

Now that you know that the ShapeFactory requests the correct kind of shape,
you need a production-quality class that can make that kind of shape. The tests for
ShapeMaker are very simple. Here is a test for making a square (for real):

public void testMakeSquare() {
 ShapeMaker shapeMaker = new ShapeMaker();
 Square expected = new Square(5.0d);
 assertEquals(expected, shapeMaker.makeSquare(5.0d));
}

Sometimes it is difficult to believe that a test this simple is actually doing anything
to give you confidence in the code, but it really is this simple! By separating con-
cerns effectively, the tests become simple and the production code even simpler.

Now you have a test for choosing the creation method: the ShapeFactory cor-
rectly asks the ShapeMaker for a Square. You also have a test for the creation
method itself: the ShapeMaker makes the expected Square when asked to make a
Square. To test making new kinds of shapes, add a “choose the right creation
method” test to the ShapeFactory. To test making different instances of existing
kinds of shapes, such as the different kinds of triangles, simply add a “creation
method” test for the ShapeMaker.

◆ Discussion

Commonly, the two responsibilities of an object factory are coded directly inside
the factory class. Using our example, the object factory would simply call new
Square() inside the if statement that checked which kind of shape the client
wanted. A test for this might look like:

public void testMakeSquare() {
 double[] parameters = new double[] {5.0d};
 Square expected = new Square(5.0d);
 ShapeFactory factory = new ShapeFactory();
 assertEquals(expected, factory.makeSquare("square", parameters);
}

Now this test looks simpler than what we’ve written, but it has some duplication.
Because duplication is the root of all evil15, we should remove it. Here is the
resulting test:

15 If you don’t think that it is, then please consult Martin Fowler, Refactoring: Improving the Design of Existing
Code (Addison-Wesley, 1999).

565Test an object factory
public void testMakeSquare() {
 double sideLength = 5.0d;
 Square expected = new Square(sideLength);
 ShapeFactory factory = new ShapeFactory();
 double[] parameters = new double[] {sideLength};
 assertEquals(expected, factory.makeSquare("square", parameters);
}

So far so good, but consider what happens in the rest of the system. You will feel
compelled to test the constructors for Square. Those assertions will duplicate
some of the work that you have done here. This duplication is not only wasted
effort, but the resulting tests are brittle: if the shape-making behavior needs to
change, you will need to change not only the SquareTest, but also the ShapeMak-
erTest. Worse, the changes you make will essentially be the same, but still have
small differences. Nothing creates defects in code more easily than having to
make “almost the same change” in multiple places. Confusion abounds. By sepa-
rating concerns, you can avoid the confusion.

Worse, the only way to verify that the factory creates the correct kind of shape is to
have it create the actual shape. What if, rather than creating shapes, your factory
created connectors to back-end systems? What if those connectors required a live
connection to the corresponding back-end system just to be created? Now you cannot
test your connector factory without having each of your supported back-end sys-
tems up and running. Those tests will be slow, brittle, and there will be times when
you’ll want to run them and you cannot, because some other department has bor-
rowed the back-end systems you need. This recipe makes it possible to verify choos-
ing the correct connector without even having to create the connector!

Finally, listing 14.8 shows an implementation of SpyShapeMaker, able to count
how many squares and shapes it has been asked to create.

package junit.cookbook.common.test;

import junit.cookbook.common.ShapeMaker;
import junit.cookbook.common.Square;

public class SpyShapeMaker extends ShapeMaker {
 private int squaresMade = 0;

 public int getShapesMadeCount() {
 return squaresMade;
 }

 public int getSquaresMadeCount() {
 return squaresMade;
 }

Listing 14.8 SpyShapeMaker

566 CHAPTER 14

Testing design patterns
 public Square makeSquare(double sideLength) {
 squaresMade++;
 return super.makeSquare(sideLength);
 }
}

◆ Related

■ 2.3—Test a constructor

14.6 Test a template method’s implementation

◆ Problem

You want to test a template method, but you cannot instantiate the class that
defines the method, because the class is abstract.

◆ Background

We generally create template methods from classes in an existing class hierarchy.
We extract them when we notice that each subclass implements a method to per-
form the same minitasks (or “primitive operations”) in the same order, even
though each subclass might implement some of those primitive operations differ-
ently. First, we extract each primitive operation into an appropriately named
method [Refactoring, 110]. Next, we pull the larger method up into the super-
class [Refactoring, 322], along with any operations that all the subclasses imple-
ment the same way. Next, we create abstract methods for the operations that each
subclass implements differently, pulling them up into the superclass. The result is
a superclass with some abstract methods, declaring abstract operations. We want
to test that the template method works, no matter how any subclass decides to
implement these abstract operations. We could simply test all the existing sub-
classes, but that duplicates testing effort, overestimates our testing progress,16 and
misses the point: we want to test all possible subclasses no matter how they imple-
ment the abstract operations.

16 If you have 10 subclasses, then you will test the template method 10 times, even though each test verifies
the same thing. Verifying it 10 times does not make it more correct!

567Test a template method’s
implementation
◆ Recipe

There are two aspects of a template method to test: behavior and structure. We
will describe testing the behavior later in this recipe, but first we will test the struc-
ture by verifying that it invokes the expected primitive operations in the expected
order. To invoke a template method we need concrete implementations of the
abstract operations, which means that we have to create a particular implementa-
tion of our abstract class. This appears to contradict our stated goal of testing all
possible subclasses, which makes it seem like we cannot do what we have set out to
do. In spite of this, there is a straightforward solution.

Consider that a template method consists of invoking a desired set of methods
in a desired order. In order to verify this, we need to record the method invoca-
tions in order, which we can do with a simple Spy object. The general strategy is to
override all the primitive operations to say “I was invoked,” and to collect the
order in which the operations report that they were invoked into a List. You can
then verify the List of method invocations. This technique is similar to the one
Kent Beck calls “Log String.”17 To illustrate the technique, let us verify part of
JUnit’s own behavior: the way it runs a test.

Recall that JUnit first invokes setUp(), and then your test method, and then
tearDown(). In particular, this is the method that runs your test, from the class
junit.framework.TestCase:

public void runBare() throws Throwable {
 setUp();
 try {
 runTest();
 }
 finally {
 tearDown();
 }
}

We want to verify that JUnit does indeed invoke these methods in the correct
order. We will implement a SpyTestCase which collects the method names run-
Bare, setUp, runTest, and tearDown in the order in which they are invoked. Our
test will verify the order of those methods. First, here is the test:

public class TestCaseTest extends TestCase {
 public void testRunBareTemplate() throws Throwable {
 SpyTestCase spyTestCase = new SpyTestCase();
 spyTestCase.runBare();

17 Kent Beck, Test-Driven Development: By Example (Addison-Wesley, 2002), p. 146.

568 CHAPTER 14

Testing design patterns
 List expectedMethodNames = new ArrayList() {
 {
 add("setUp");
 add("runTest");
 add("tearDown");
 }
 };

 assertEquals(
 expectedMethodNames,
 spyTestCase.getInvokedMethodNames());
 }
}

Next, here is our SpyTestCase, which overrides the methods of interest and
records the name of each method as it is invoked:

public class SpyTestCase extends TestCase {
 private List invokedMethodNames = new ArrayList();

 protected void runTest() throws Throwable {
 invokedMethodNames.add("runTest");
 }

 protected void setUp() throws Exception {
 invokedMethodNames.add("setUp");
 }

 protected void tearDown() throws Exception {
 invokedMethodNames.add("tearDown");
 }

 public List getInvokedMethodNames() {
 return invokedMethodNames;
 }
}

We override each primitive operation method and have it just add its name to the
list of invoked methods. We also add a method to provide access to the list of
invoked method names so that the test can compare that to its expectations. Our
SpyTestCase is a “spy” in that it records information about what happened (the
order in which the primitive operations were invoked) and provides that “intelli-
gence” to the test. This is the essence of the Spy testing pattern, a mock object-
related technique. We provide a survey of mock objects in essay B.4, “The mock
objects landscape.” You can use this test as a template (yes, we intended the pun)
for testing your own template methods.

We started this recipe by describing two types of template method tests: behav-
ioral and structural. The Spy technique helps you test the structure of a template
method, but you still need to verify that, in general, the template method does

569Test a template method’s
implementation
what it should. You can use the techniques in recipe 2.6, “Test an interface,” to
write tests for the general behavior you expect from your template method.
Returning to our example, we could verify that invoking TestCase.runBare()
causes a test to be executed, throwing an AssertionFailedError in the event of a
failure.18 To illustrate the difference, here is one of those tests. This test only veri-
fies that runBare() reports a failure by throwing an AssertionFailedError, and
does not concern itself with the order in which the other methods are invoked,
such as setUp() or tearDown().

public void testRunBareExecutesAFailingTest() throws Throwable {
 TestCase testCase = new TestCase() {
 protected void runTest() throws Throwable {
 fail("Intentional failure");
 }
 };

 try {
 testCase.runBare();
 fail("Test should have failed!");
 }
 catch (AssertionFailedError expected) {
 assertEquals("Intentional failure", expected.getMessage());
 }
}

We recommend that you separate the behavioral and structural tests, as combin-
ing the two can be confusing for particularly complex template methods. As with
any of our other recommendations, feel free to try both and measure the results
for yourself.

◆ Discussion

It is generally a good idea to test how your template method reacts when one of
the primitive operations fails. Because the template method has no control over
how a subclass implements a primitive operation, you should assume that the
primitive operations can fail. The general strategy for writing this kind of test
involves overriding your Spy and having it simulate the desired failure in the
appropriate primitive operation. The result is a combination of the Spy technique
and the Crash Test Dummy technique. (See essay B.4, “The mock objects land-
scape” for more on these mock object techniques.) Returning to JUnit, we want to
verify that runBare() invokes tearDown() even when the test fails. To simulate test

18 We searched through JUnit to see which methods invoke runBare() and the only one is TestCase.
runProtected(). We used this method to decide how runBare() should behave.

570 CHAPTER 14

Testing design patterns
failure, we can simply override SpyTestCase.runTest() and have it invoke fail()!
Listing 14.9 shows the resulting test. We have highlighted in bold print the key dif-
ferences between this test and the previous one.

public void testRunBareInvokesTearDownOnTestFailure()
 throws Throwable {

 SpyTestCase spyTestCase = new SpyTestCase() {
 protected void runTest() throws Throwable {
 super.runTest();
 fail("I failed on purpose");
 }
 };

 try {
 spyTestCase.runBare();
 }
 catch (AssertionFailedError expected) {
 assertEquals("I failed on purpose", expected.getMessage());
 }

 List expectedMethodNames = new ArrayList() {
 {
 add("setUp");
 add("runTest");
 add("tearDown");
 }
 };

 assertEquals(
 expectedMethodNames,
 spyTestCase.getInvokedMethodNames());
}

First, we override SpyTestCase.runTest() and have it do two things: invoke
super.runTest() to record that the method was invoked, and then invoke fail()
to simulate a generic test failure. Next, we catch the expected AssertionFailed-
Error when we invoke runBare(); otherwise, that failure will propagate up the call
chain and make it look like our TestCase test failed. When we catch Assertion-
FailedError, we check its message so that we can be sure that it is the failure we
expect, and not some other failure occurring in the process of executing our test.
Otherwise, our expected result is the same: we expect runBare() to invoke
setUp(), runTest(), and then tearDown(). We execute the test and indeed, it
passes. If you write a third test and have setUp() throw an exception, you will see

Listing 14.9 TestCaseTest

571Test a template method’s
implementation
that JUnit does not invoke tearDown() in that case. While that piece of informa-
tion is not germane to this recipe, it is useful to know. As you can see, testing how
a template method handles the failure of one of its primitive operations is just like
testing the more general “what happens when this method throws an exception,”
which we described in recipe 2.8, “Test throwing the right exception.”

Finally, we could have made our above test stricter by implementing more of
our SpyTestCase. We can actually change the production implementation of run-
Bare() by having it invoke another method (say, setName("blah blah blah"),
which could be harmful), and our test would be none the wiser. This is a case
where we should consider testing not only that the template method does what we
expect, but that it also does not do what we do not expect. We could simply over-
ride all the methods in TestCase except runBare() to add their name to invoked-
MethodNames. This “more nosy” version of SpyTestCase would detect runBare()
invoking methods that it should not be invoking. The problem is that whenever
we add a method to TestCase, we would have to override it accordingly in
SpyTestCase to avoid an “incomplete intelligence report.” This makes our test
quite brittle, and we are skeptical of anything that gets in the way of refactoring.
There is an aspect-oriented solution to this problem: intercept every TestCase
method invocation and record the name of each method in invokedMethodNames.
This solution does not depend on knowledge of the specific methods that
TestCase declares, so it is not susceptible to change the way the hand-coded
SpyTestCase is. We present a complete solution in solution A.6, “Aspect-based uni-
versal Spy.”

◆ Related

■ 2.3—Test a constructor

■ 2.6—Test an interface

■ 2.8—Test throwing the right exception

■ A.6—Aspect-based Universal Spy

GSBase
This chapter covers
■ Testing event sources with EventCatcher
■ Testing object serialization and cloning
■ Testing legacy objects for equality
572

573GSBase
GSBase (http://gsbase.sourceforge.net) is an open source project maintained by
Mike Bowler. Mike is also the lead programmer for HtmlUnit, which we high-
lighted in chapter 13, “Testing J2EE Applications.” Mike decided to take his tool-
kit of useful Java classes—ones he had developed for his own use and found
handy—and create a public project around it, so GSBase contains some general-
purpose classes that you might be able to use in your own projects. In this toolkit
are a few utilities to make testing with JUnit easier. Mike is a long-time JUnit user
and a proponent of Test-Driven Development.

An experienced Java programmer, Mike has been writing Swing applications
since, as he puts it, “before Swing 1.0.” As a result, GSBase contains some utilities
for Swing programming, among which is EventCatcher, a way to verify Swing UI
events. If you write Swing applications—and they are making a comeback as we
write these words—then you can use EventCatcher to verify that your event lis-
tener receives the events you think it ought to receive. We include a recipe on
using EventCatcher in this chapter.

Mike has also given several presentations to Java user groups and at confer-
ences on object serialization. In addition to his in-depth knowledge of the topic,
he has built a universal serializability test, which helps you verify that you have
properly identified your serializable objects as such. We include a recipe for using
GSBase’s SerializabilityTest. This is especially important for J2EE applications,
where object serialization plays a key role in providing distributed object services.

GSBase also provides a simple test for the clone() method. It is still very com-
mon for programmers—in their haste—to forget to make their clone() method
public or to forget to add Cloneable to the list of interfaces their class implements.
We include a recipe for using TestUtil.testClone(), which not only tests your
implementation, but optionally verifies whether it is consistent with equals().

Finally, GSBase provides a test utility for JavaBeans: “appears equal.” If you have
used JavaBeans provided by another programmer or package that do not imple-
ment the equals() method, then you can use “appears equal” on those Java beans
in your tests. Although it is not a perfect replacement for equals(), it is generally
good enough for the vast majority of intended uses, so we include a recipe for
using this utility.

There is more to GSBase than we describe here, so we recommend visiting the
GSBase site and incorporating this excellent toolkit into your projects. You can
also find in table 15.1 the other recipes in this book that use GSBase as part of
their solutions.

574 CHAPTER 15

GSBase
15.1 Verify events with EventCatcher

◆ Problem

You want a simple way to verify the events that an Observable generates.

◆ Background

Verifying that an Observable generates the expected events is not a difficult task,
but when programming Swing applications in particular, event sources are every-
where. It is easy to fall into the trap of duplicating test code throughout your applica-
tion, when instead you ought to create a single object that knows how to listen for
events and verify them against the events you expect to receive. In short: you could
write your own Spy listener, but why not leverage good work already done by others?

◆ Recipe

GSBase provides the utility class EventCatcher which you can attach to any object.
It is a universal event listener that collects every event it “hears” and provides
access to those events as a List. Your typical test scenario will be the following,
using a GUI widget as an example:

1 Create the GUI widget whose behavior you want to verify.

2 Create an EventCatcher and tell it to listen to the GUI widget.

3 Make the widget do something interesting.

4 Iterate over the list of events caught by the EventCatcher and verify each
one—or even just the ones of interest.

Of course, the GUI widget could really be any event source, but because Mike orig-
inally wrote EventCatcher to use on Swing applications, it was written specifically
with that context in mind.

Table 15.1 Other recipes in this book that feature GSBase

Recipe GSBase feature

2.1—Test your equals method EqualsTester

2.9—Let collections compare themselves BaseTestCase.assertCollectionsEqual()

4.5—Scan the file system for tests
4.6—Separate the different kinds of test suites

RecursiveTestSuite, TestFilter

4.7—Control the order of some of your tests OrderedTestSuite

575Verify events with EventCatcher
Listing 15.1 shows an example of using EventCatcher to verify receiving the
HierarchyEvent that a Swing component produces when the component hierar-
chy changes—that is, when one component is added to the content pane of
another. To test more complex scenarios, you only need to make more assertions
about the events which you expect your Swing components to generate.

package junit.cookbook.gsbase.test;

import java.awt.event.HierarchyEvent;

import javax.swing.JFrame;
import javax.swing.JOptionPane;

import junit.framework.TestCase;

import com.gargoylesoftware.base.testing.EventCatcher;

public class ConfirmationDialogTest extends TestCase {

 public void testEvents() throws Exception {
 JOptionPane optionPane =
 new JOptionPane(
 "Are you sure?!",
 JOptionPane.QUESTION_MESSAGE,
 JOptionPane.YES_NO_CANCEL_OPTION);

 EventCatcher eventCatcher = new EventCatcher();
 eventCatcher.listenTo(optionPane);

 JFrame mainFrame = new JFrame("The Main Frame");
 mainFrame.getContentPane().add(optionPane); B

 assertEquals(1, eventCatcher.getEventCount());
 Object eventAsObject = eventCatcher.getEventAt(0);
 assertTrue(eventAsObject instanceof HierarchyEvent); C
 }
}

Generates a HierarchyEvent—Adding a Swing component to another component gen-
erates a HierarchyEvent, indicating that the hierarchy of components has changed.

Cannot try assertEquals()—Most Swing events do not implement equals() the
way a Value Object should, so there is little point in trying to compare an expected
HierarchyEvent with the one that Swing generated.

Listing 15.1 Using EventCatcher on a Swing component

B

C

576 CHAPTER 15

GSBase
◆ Discussion

Although Mike Bowler originally built EventCatcher to help him test Swing com-
ponents, it is useful to help with any event listener design. The EventCatcher is a
universal event listener, relying on time-honored naming conventions to discover
the events an object might generate at runtime. This means that as long as your
event source adheres to the usual Java naming conventions for the event listener
implementation pattern, you can use EventCatcher to help verify the behavior of
any event source.

When you invoke EventCatcher.listenTo(), the event catcher scans the meth-
ods on the event source you specify, looking for the types of events it might gener-
ate. Specifically, the EventCatcher searches for methods whose names start with
add and end with Listener, and which take exactly one argument, assuming that
such a method signals a type of event the object might generate. The Event-
Catcher then invokes addEventListener() for each Event, registering itself with
the event source as an EventListener.1

When the event source generates an event, it notifies its listeners by invoking a
method on them. The EventCatcher’s dynamic invocation handler intercepts this
method invocation and remembers the event so that you can ask for it later. How
does EventCatcher know that these method invocations are event notifications?
Once again, conventions to the rescue. An event notification is typically imple-
mented as a method invocation with one parameter: the event; therefore, Event-
Catcher assumes that the first parameter to any method invocation is an
EventObject. Also, because it is uncommon to invoke any method on an event lis-
tener other than the event notification method, it is quite safe to assume that any
method invocation is an event notification.

NOTE Sometimes it’s not an event notification—By default, EventCatcher handles
equals() and hashCode() differently, as you might have other tests that
invoke those methods. Any other method invocation is assumed to be an
event notification. If this fails for you, then subclass EventCatcher and aug-
ment the dynamic invocation handler to handle any other special cases you
might have. As of press time, the method getListener() returns a listener
for a given event type. Override that method to substitute your specialized
invocation handler for the one that EventCatcher creates by default.

Finally, we noted above that most event objects do not implement equals() in a
manner consistent with a Value Object. That means that we are typically unable to

1 Here, Event is any subclass of java.util.EventObject, such as AWTEvent or PropertyChangedEvent.

577Test serialization
compare an expected event object with the actual event object using the equals()
method. EventCatcher provides the next best thing. The method assertEvents-
AppearEquals() accepts a List of expected event objects and compares them with
the EventCatcher’s internal List using a simple, clever algorithm. Two event
objects “appear” to be equal if they come from the same class and if their corre-
sponding JavaBean properties have the same values. For a more thorough discus-
sion of the notion of “appears equal,” see recipe 15.4.

Certainly, the EventCatcher provides a wealth of features for testing compo-
nents that use the event/listener design, something rampant in the Swing UI
framework.

◆ Related

■ 15.4—Compare JavaBeans using “appears equal”

15.2 Test serialization

◆ Problem

You want to test that your serializable classes implement the feature correctly with-
out writing custom test code for each class.

◆ Background

Especially when working in J2EE it is important to implement serialization correctly.
It is one of the cornerstones of remote method invocation (RMI), and therefore of
J2EE. One of the difficulties in implementing this feature correctly and completely
is that the compiler helps you very little and the rules for serialization are not
straightforward. Serialization is not as well understood by the general Java program-
ming population as it should be, given its importance in J2EE programming. Any
help you can get in implementing serialization correctly should be welcome.

◆ Recipe

GSBase provides the utility method TestUtil.testSerialization() to execute a
simple yet effective serialization test. Writing a serialization test is simple, as list-
ing 15.2 shows.

package junit.cookbook.gsbase.test;

import com.gargoylesoftware.base.testing.TestUtil;

import junit.cookbook.util.Money;

Listing 15.2 Testing serialization

578 CHAPTER 15

GSBase
import junit.framework.TestCase;

public class SerializabilityTest extends TestCase {
 public void testSerializable() throws Exception {
 Money money = Money.dollars(1000);
 TestUtil.testSerialization(money, true);
 }
}

The first parameter to testSerialization() is the object to serialize. TestUtil
serializes and then deserializes the object, and if that proceeds without throwing
an exception, the test passes. The second parameter is a boolean flag indicating
whether to compare the deserialized object with the original for equality. The test
passes if the object is successfully serialized and then deserialized, and the deseri-
alized object is equal to the original object according to equals(). This is useful
for testing the serialization of Value Objects, such as Money.

◆ Discussion

One aspect of serialization that this utility does not cover is the “serial version
UID.” This is a number that identifies different versions of a serializable class. This
is important for objects serialized to disk, as it is necessary to know whether the
object on disk can be deserialized using the current (and presumably newer) ver-
sion of the class. If the class has changed in a backward-compatible way, then it
might keep its serial version UID; and if it has changed in an incompatible way,
then it should change its serial version UID to avoid attempting a deserialization
operation that is doomed to fail.2 There is no way to test this in a generic manner,
so GSBase has not attempted to provide a generic solution for this problem.

Worse, the only way to test serial versioning effectively is to serialize objects to
disk using different versions of a class, change the class, and then attempt deseri-
alizing that object using the newer version of the class. Although you can use the
Gold Master technique to do this, you can only verify whether the most recent ver-
sion of your serializable class has correctly decided whether to change its serial
version UID. Going back to older versions of the class requires reverting source
code to previous revisions, which is an entirely manual process.

◆ Related

■ 15.3—Test object cloning

2 Serialization can be a dicey subject and is worthy of its own complete tutorial. You can find Sun’s own
tutorial at http://java.sun.com/docs/books/tutorial/essential/io/providing.html.

579Test object cloning
15.3 Test object cloning

◆ Problem

You want to verify that your class implements clone() correctly without writing
custom test code each time you need it.

◆ Background

The most common mistake in implementing clone() is to do so in a way that is
inconsistent with equals().3 Typically, when you clone() an object you want the
clone to be indistinguishable from the original, and yet a different object in mem-
ory, often to avoid the aliasing problem with mutable objects. In most cases, your
implementation of equals() defines objects that are interchangeable—indeed,
that is the point of the equals() method. It would be nice to verify that you have
implemented clone() consistently with equals() without having to implement
the same tedious test over and over again.

◆ Recipe

GSBase provides the method TestUtil.testClone() which verifies your implemen-
tation of clone(). The parameters to testClone() are the object to clone and a
boolean flag indicating whether to compare the cloned object to the original using
equals(). The following is an example of using testClone().

public void testCloneMoney() throws Exception {
 Money moneyToClone = Money.dollars(1000);
 TestUtil.testClone(moneyToClone, true);
}

This test passes if Money provides a visible clone() method and the resulting
cloned Money object is equal to the original according to equals(). For any class
that needs to be Cloneable, you want to write a test like this one.

NOTE Cloneable considered harmful—Sometimes language designers get it wrong,
and the Java mechanism for cloning is an instance of this. We refer you
to Joshua Bloch’s book Effective Java, chapter 3, for discussions on the
various methods of the class Object that we are expected to override in
our subclasses.4 To summarize, clone() is not worth the effort; use copy

3 That and forgetting to implement the Cloneable interface and make clone() a public method.
4 http://java.sun.com/developer/Books/effectivejava/Chapter3.pdf. See item 10: Override clone()

judiciously. The book was published by Addison-Wesley in 2001.

580 CHAPTER 15

GSBase
constructors or creation methods based on the Prototype pattern
instead. The Java way of implementing object cloning is strange, confus-
ing, and prone to error. The only reason you should bother with
clone() is because you have to, such as the framework you are using
relies heavily on clone()and you cannot get away from it.

◆ Discussion

Now we will demonstrate how you would develop a clone() implementation test-
first using testClone(). We continue with our Money class, which already has a cor-
rect implementation of equals(), and allows us to check for equality after clon-
ing. Let us start with the test we wrote in the Recipe section and a Money object
that does not implement clone() at all. When we execute the test, the result is a
failure: Object is not cloneable. This indicates that Money does not implement
the Cloneable interface.

We change Money to implement this interface, execute the test again, and this
time the result is a different failure: Object does not have a public clone() method.
We declare this method on Money as follows, with a simple implementation that
will appease the compiler.5

public class Money implements Cloneable {
 // remaining code omitted

 public Object clone() {
 return new Object();
 }
}

We execute the test once more and the result is another, different failure: Objects
are different: original=[$1,000.00] copy=[java.lang.Object@10ef90c]. At this
point we need to change our implementation of clone() to return a Money object
representing the expected amount of money. The final implementation follows.

public Object clone() {
 return new Money(cents);
}

We execute the test one last time and verify that it passes. Let us summarize the
conditions that testClone() verifies:

■ Your class implements the interface java.lang.Cloneable.

5 Many test-drivers use the default implementation return null; in this situation. We prefer to return
a valid object to avoid NullPointerExceptions, which only leads to confusion.

581Compare JavaBeans
using “appears equal”
■ Your class provides a public clone() method—the default implementation
is protected!

■ (Optional) Your class implements clone() in a manner consistent with
equals()—only if you invoke testClone() with the check equality parame-
ter set to true.

This is the complete contract of Object.clone(), as described in the Javadoc for
class java.lang.Object. (Well, the Javadoc is a bit lax on this issue, but we inter-
pret the general intent as a contract, just to be safe.)

◆ Related

■ 15.2—Test serialization

15.4 Compare JavaBeans using “appears equal”

◆ Problem

You want like to use assertEquals() to compare two JavaBeans to one another,
but the JavaBean class does not implement equals() in a manner consistent with
a Value Object.

◆ Background

In spite of repeated suggestions to do so, many programmers do not implement
equals() correctly for their Value Objects. This is bad news for JUnit practitio-
ners, as so many of their tests use assertEquals() to verify the result of a given
behavior. If you are adding tests to legacy code or third-party code that you can-
not change, you might have no direct way to use assertEquals() on objects that,
by all rights, are Value Objects. JavaBeans typically fall into this category.

If you are not able to use assertEquals() then you are forced to compare your
expected values and the actual values on a property-by-property basis, making
tests longer than they need to be. There must be a better way.

◆ Recipe

GSBase allows you to determine whether two Java objects appear to be equal.
Although not a perfect equality test, this facility makes it possible to at least
approximate the equality of JavaBeans by automating the property-by-property
comparison you would otherwise need to code by hand. You can find this feature
in the class com.gargoylesoftware.base.testing.TestUtil with the methods
appearsEqual(), assertAppearsEqual(), and assertAppearsNotEqual().

582 CHAPTER 15

GSBase
The first method, appearsEqual(), takes two Objects and compares them for
apparent equality, returning true when they appear to be equal and false other-
wise. The assertion methods simply wrap appearsEqual() in the appropriate man-
ner, asserting either that the two objects appear equal or do not.

Listing 15.3 shows an example of using “appears equal” along with the Event-
Catcher (see recipe 15.1). As a convenience, EventCatcher provides the method
assertEventsAppearEquals() so that you do not need to ask for the actual events
and make the comparison yourself.

package junit.cookbook.gsbase.test;

import java.awt.Container;
import java.awt.event.HierarchyEvent;
import java.util.Arrays;
import java.util.List;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import junit.framework.TestCase;
import com.gargoylesoftware.base.testing.EventCatcher;

public class ConfirmationDialogTest extends TestCase {

 public void testEvents() throws Exception {
 JOptionPane optionPane =
 new JOptionPane(
 "Are you sure?!",
 JOptionPane.QUESTION_MESSAGE,
 JOptionPane.YES_NO_CANCEL_OPTION);

 EventCatcher eventCatcher = new EventCatcher();
 eventCatcher.listenTo(optionPane);

 JFrame mainFrame = new JFrame("The Main Frame");
 Container mainContentPane =
 mainFrame.getContentPane();
 mainContentPane.add(optionPane);

 HierarchyEvent expectedHierarchyEvent =
 new HierarchyEvent(
 optionPane,
 HierarchyEvent.HIERARCHY_CHANGED,
 optionPane,
 mainContentPane,
 HierarchyEvent.PARENT_CHANGED);

 List expectedEvents =
 Arrays.asList(
 new Object[] { expectedHierarchyEvent });

Listing 15.3 Verifying events with "appears equal"

The event
we expect

583Compare JavaBeans
using “appears equal”
 eventCatcher.assertEventsAppearEquals(
 expectedEvents);
 }
}

◆ Discussion

Although it is a handy construct, do not mistake “appears equal” for actual equal-
ity. The “appears equal” algorithm is simple and reasonable, but even the rela-
tively benign use of public fields can make a liar of it. The algorithm works as
follows. Each object is inspected for any readable properties by scanning for meth-
ods that take no parameters. The method appearsEqual() invokes each of these
methods on the two objects to compare them, and it fails if they return different
values. As usual with JUnit, if no assertion fails, then appearsEqual() declares that
the two objects appear to be equal. For any reasonably coded JavaBean, this algo-
rithm works very nicely, but if your objects contain public fields, rather than con-
form to the JavaBean specification, then “appears equal” simply will not work at
all for those objects.

NOTE An important detail about “appears equal”—The idea behind “appears equal”
is to find all the methods that could reasonably be property accessors,
invoke them on each of the two objects in question, and then compare
the return values for equality. As implemented in GSBase 2.0, appearsE-
qual() invokes all no-parameter methods, rather than just ones that fol-
low the JavaBean property-naming conventions of getX() or isX() for
readable properties. This means that appearsEqual() invoke such
methods as init() and clear(), which would cause problems for cer-
tain objects, creating unintended side effects.

All we can say on the matter is that appearsEqual() is intended to be
invoked with eventlike objects, which tend to be immutable bags of data,
having little or no behavior. Mike designed and built this method to use
on GUI events along with EventCatcher, so if you need to apply the idea
to other objects, and appearsEqual() is invoking the wrong methods on
those objects, then use appearsEqual() as a model to build your own
version, and then submit it to GSBase as a patch. Mike will consider it.

It is possible, we suppose, for JavaBeans to appear equal through their public,
readable properties, and yet have additional fields whose values differ.6 In this
case, it is up to you to decide the correct semantics: because the outside world

6 Perhaps this is largely a theoretical concern. Real-life examples are welcome, but we expect they are rare.

Did we catch the
expected events?

584 CHAPTER 15

GSBase
cannot tell the difference between the two objects—at least from a value perspec-
tive—perhaps they ought to be treated as apparently equal. Perhaps not. That is a
judgment call that you need to make, and often you will take one of two stances.
You might be conservative and not consider the two objects apparently equal until
you are certain that it is the case, or you might instead plunge ahead, assume that
they are apparently equal, and not worry about that assumption until it is proven
false. Without considering this issue in context—in other words, without having to
write a specific test—we cannot know what the answer is. The approach you take
depends on the goals of the test.

◆ Related

■ 15.1—Verify GUI events with EventCatcher

JUnit-addons
This chapter covers
■ Testing Comparable classes
■ Collecting tests from within archives
■ Organizing test data and sharing test resources
■ Ensuring that shared test fixtures clean themselves up
■ Reporting the name of each test as it executes
585

586 CHAPTER 16

JUnit-addons
Vladimir Bossicard is a long-time member of the JUnit community, and one of its
most vocal members as well. Perhaps the one trait that identifies him most easily
within the community is his insistence that we not content ourselves with whatever
feature set JUnit provides. If JUnit does not do something you need, then Vladimir
simply tells you to build it yourself, and then share it with the world through open
source. It is in this spirit that he has led the evolution of JUnit-addons: a collection
of helper classes for JUnit. Visit the JUnit-addons site at http://junit-addons.source-
forge.net. In this chapter we describe some problems that JUnit-addons solves.

In the first chapter of recipes we described how to test your implementation of
the equals() method. Related to the concept of object equality is object order,
which defines less-than and greater-than relationships on your objects. If you have
classes that implement the Comparable interface, then you will want to use Compa-
rabilityTestCase to verify your implementation of the compareTo() method. This
test case class provides a simple, standard set of tests for compareTo() so you can
avoid writing them for yourself—and possibly forgetting some part of the Compa-
rable.compareTo() contract.

In chapter 3, “Organizing and Building JUnit Tests,” we describe various ways to
automatically collect test case classes into a large test suite. These techniques have
generally assumed that your tests are sitting on the file system, either as loose class
files or as Java source files. JUnit-addons provides a number of SuiteBuilder
classes, including an implementation that collects tests from Java archives and *.zip
files. This chapter includes a recipe describing how to collect tests from within a
*.jar file.

In chapter 5, “Working with Test Data,” we describe how to manage test data
with properties files. If you would like to use this technique without duplicating
(yet again) the code to integrate the properties files into your tests, this chapter
contains a recipe for managing your properties file-based test data with Property-
Manager. If you need to go beyond properties files to manage shared test
resources, we describe how to use the ResourceManager to tame the proliferation
of global access to test resources, such as a database. If you use shared test
resources, then you might have problems with those resources correctly cleaning
up after themselves. JUnit has a minor flaw in its implementation of TestSetup
(see recipe 5.10, “Set up your fixture once for the entire suite”) that JUnit-addons
corrects with its version of this class. In this chapter we describe how to ensure that
your shared test fixture cleans itself up, even when its test suite ends badly.

Finally, going beyond merely augmenting JUnit, Vladimir has built his own JUnit
test runner. Among its additional features is an open test listener architecture that
allows you to monitor test execution and generate customized test reports. To help

587Test your class for compareTo()
you get started, we describe another technique for displaying the name of each test
as it executes, using JUnit-addons Test Runner. You can adapt this technique to
write test results in any format you need: XML, comma-delimited text, even to a
database table for sophisticated report generation. Never one to accept things the
way they are, Vladimir has provided a rich library of JUnit utilities with his JUnit-
addons that make any JUnit practitioner’s job easier.

16.1 Test your class for compareTo()

◆ Problem

You want to verify your implementation of the Comparable interface without writ-
ing custom tests for each Comparable class you have.

◆ Background

Any class that you store in a sorted collection (SortedSet, SortedList, the keys in a
SortedMap) needs to implement java.lang.Comparable; otherwise, the collection
cannot know how to keep the objects in sorted order. The behavior of Compara-
ble.compareTo() can be checked with a “universal compareTo() test,” much the way
we have described testing your implementation of equals() in recipe 2.1, “Test
your equals method.” Because a domain model might have dozens of Comparable
classes, it would be nice to have one way of ensuring that they all implement Compa-
rable correctly.

◆ Recipe

JUnit-addons provides junitx.extensions.ComparabilityTestCase to provide the
framework for testing your Comparable classes. It defines the tests your class needs
to pass and you provide the test data through an Abstract Test Case design (see
recipe 2.6, “Test an interface” for a discussion of the Abstract Test Case pattern).
Listing 16.1 shows the “abstract” part of this universal comparability test.

public abstract class ComparabilityTestCase
 extends TestCase {

 protected abstract Comparable createLessInstance()
 throws Exception;

 protected abstract Comparable createEqualInstance()
 throws Exception;

Listing 16.1 ComparabilityTestCase (abstract methods)

588 CHAPTER 16

JUnit-addons
 protected abstract Comparable createGreaterInstance()
 throws Exception;
}

To use this comparability test, create a subclass of ComparabilityTestCase and
then implement the required methods to return objects that you expect to be
ordered as follows: lessInstance, which is less than equalInstance, which is less
than greaterInstance.

Each invocation of these methods must return a new object. The Abstract Test
Case class provides all the tests: it verifies that the class under test respects the con-
tract of Comparable. Listing 16.2 shows one of the tests it provides.

public abstract class ComparabilityTestCase
 extends TestCase {

 public final void testReturnValues() {
 ComparableAssert.assertLesser(equal1, less);
 ComparableAssert.assertLesser(equal2, less);
 ComparableAssert.assertGreater(less, greater);
 ComparableAssert.assertEquals(equal1, equal2);
 ComparableAssert.assertGreater(equal1, greater);
 ComparableAssert.assertGreater(equal2, greater);
 }
}

Perhaps these assertions are a little confusing. They were to us, at first. Note that
in each one, the expected (or limit) value is the first parameter and the actual value
is the second. To read these assertions we have to work backwards, in a sense. For
example, read the first assertion as “less (the actual value) should be less than
equal1 (the limit value),” even though this goes against the common-sense con-
vention of reading parameters from left to right. Vladimir is simply using the
same coding convention as JUnit’s assertEquals(), where the value we are com-
paring is on the right, but the expected (or limit) value against which to compare
is on the left.

This test checks various pairs of objects for the appropriate lesser than, equal
to, or greater than relationship. Notice that it does not verify whether compareTo()
is consistent with equals(). It is common for the two methods to be consistent,
but it is not strictly necessary. To be consistent, compareTo() would have to return
0 when comparing objects that are equal according to equals(). If you need to

Listing 16.2 A test from ComparabilityTestCase

589Test your class for compareTo()
verify this additional constraint, then continue to the Discussion section of this
recipe. Listing 16.3 contains a sample comparability test, verifying String compar-
isons. Notice that the “create” methods return a new String each time, as the Com-
parabilityTestCase documentation indicates is needed.

package junit.cookbook.addons.test;

import junitx.extensions.ComparabilityTestCase;

public class StringCompareToTest extends ComparabilityTestCase {
 public StringCompareToTest(String name) {
 super(name);
 }

 protected Comparable createLessInstance() throws Exception {
 return new String("abc");
 }

 protected Comparable createEqualInstance() throws Exception {
 return new String("abcd");
 }

 protected Comparable createGreaterInstance() throws Exception {
 return new String("abcde");
 }
}

◆ Discussion

ComparabilityTestCase uses custom assertion methods from ComparableAssert,
also part of JUnit-addons (see recipe 17.4, “Extract a custom assertion”). These
custom assertion methods provide a uniform, informative failure message that
looks quite a bit like the failure message for JUnit’s own assertEquals().

If you need to further verify that compareTo() is consistent with equals(), you
need to add another test.

public void testConsistentWithEquals() throws Exception {
 assertEquals(
 "compareTo() is inconsistent with equals",
 0,
 createEqualInstance().compareTo(createEqualInstance()));
}

Perhaps by the time you read this, someone will have submitted this as a patch to
JUnit-addons.

Listing 16.3 Comparability test for class String

590 CHAPTER 16

JUnit-addons
◆ Related

■ 2.1—Test your equals method

■ 2.6—Test an interface

■ 17.4—Extract a custom assertion

16.2 Collect tests automatically from an archive

◆ Problem

You want to deploy your tests in a *.jar file, and then execute them without un-
packing them.

◆ Background

It is becoming increasingly common to ship the tests along with the production
code when releasing an application. You want to do this, too, but are having trou-
ble automatically collecting all the tests in a *.jar file. GSBase’s RecursiveTest-
Suite scans a file system directory tree for Java source files. JUnit-addons
DirectorySuiteBuilder scans a file system direction tree for Java class files. What
about classes packaged in a *.jar file? JUnit-addons provides a way to collect those
tests too.

◆ Recipe

JUnit-addons provides the class junitx.util.ArchiveSuiteBuilder to collect tests
from a *.jar file. All you do is instantiate one and tell it to browse either a ZipFile
object or the filename of a *.jar or *.zip file. We packaged up the JUnit tests in
junit-test.zip and put them somewhere on our file system to illustrate how to use
it.1 Listing 16.4 shows our AllTests class.

package junit.cookbook.addons.test;

import junit.framework.Test;
import junitx.util.ArchiveSuiteBuilder;

public class AllJUnitTestsInJar {
 public static Test suite() throws Exception {

Listing 16.4 Collecting the tests in a JAR file

1 To try this yourself, create a *.zip file from the junit folder inside the JUnit distribution. It contains both
the samples and JUnit’s own tests.

591Organize test data using
PropertyManager
 return new ArchiveSuiteBuilder().suite(
 "d:/junit3.8.1/junit-tests.jar");
 }
}

◆ Discussion

Of course, do not forget to place the *.jar file in your class path (along with all its
dependencies) when you execute AllTests! If you do not, then you will see
ClassNotFoundExceptions on the test case classes you are trying to execute. That is
really all there is to it.

You could add this to your suite of Deployment Tests so that when the applica-
tion is deployed in the target environment, the deployment script tests your appli-
cation in that environment. You can package the tests as a *.jar file to avoid
littering your deployment package with hundreds of extra Java class files. All it
takes is an extra <jar> task in your Ant buildfile to package the tests in a *.jar and
include them in your main deployment package. No one would be able to com-
plain that shipping the tests is too intrusive or unnecessarily complicates deploy-
ment. There are no excuses not to execute the tests.

◆ Related

■ Chapter 4—Managing Test Suites

16.3 Organize test data using PropertyManager

◆ Problem

You have a growing collection of system properties that you are using to pass data
into your tests. You are looking for a good way to manage these properties as your
tests evolve.

◆ Background

In recipe 5.4, “Using a properties file” we described how and why to use a proper-
ties file to store test data. If your test data consists of simple key-value pairs, then
the properties file is an excellent choice to store this data. Using properties, how-
ever, leads to duplicating the code to retrieve those properties: creating the Prop-
erties object, loading from a file, specifying the file name, specifying the root
directory for all the files in your test suite, and on and on. It would be nice to write

592 CHAPTER 16

JUnit-addons
this code once—or even better, to use something already written to manage all this
from a central location.

◆ Recipe

Use JUnit-addons PropertyManager to manage your properties file-based test data.
It is very simple to use: specify the properties filename as a system property, and
then invoke class-level methods on the PropertyManager class to retrieve your data.
To specify your properties filename, set the propertyManager.file system prop-
erty.

java -DpropertyManager.file=/home/jbrains/projects/props.properties

➾ junit.textui.TestRunner AllTests

Now you can retrieve your test data by invoking the method PropertyManager.
getProperty(). The PropertyManager utility eliminates the need to code the sup-
port for reading a properties file yourself. Stand on the shoulders of giants!2

◆ Discussion

One disadvantage to PropertyManager is that it manages one properties file at a
time. If you need to manage multiple properties files, then you need to switch to
JUnitPP (see recipe 5.9, “Using JUnitPP”), manage those properties files your-
self, or consolidate them in order to use PropertyManager. Fortunately one can
always consolidate many properties files into one: create a “namespace” for each
file’s properties, and then change each property in the file from xyz to this-
FileNamespace.xyz. As long as the prefix thisFileNamespace is different for each
file, you can safely consolidate the properties files into one large one. This might
make maintaining the data easier, or it might make that task more confusing,
depending on the amount and nature of the data. Try both and measure the
results. A sufficiently powerful text editor, such as emacs or jEdit can make it easy
to perform the necessary search-and-replace operations to switch back between
the two approaches.

◆ Related

■ 5.4—Using a properties file

■ 5.9—Using JUnitPP

2 Although this phrase is generally attributed to Sir Isaac Newton, apparently it goes back to the twelfth
century. It is amazing the trivia you can find on the Web. (www.warble.com/jherbert/giants.html)

593Manage shared test resources
16.4 Manage shared test resources

◆ Problem

You want a simple way to manage a resource that all your tests share—such as a
database— without duplicating custom lookup code throughout your tests.

◆ Background

Duplication is the root of all evil in programming. Expensive, external resources
make Object Testing difficult. Put the two together...well, we would rather not put
the two together. Duplicating expensive, complex code is about as bad as it gets in
object-oriented design, and it is entirely avoidable. If you use a testing resource (a
data source, a JNDI directory, or some data files) in multiple test case classes, and if
you refactor mercilessly the code that gains access to those resources, then you can
end up with a design very similar to the solution we propose in this recipe. If that is
true, then you might as well just follow this recipe and cut out the middle man.

◆ Recipe

There is one straightforward solution: use a central Registry [PEAA, 480] of
resources. There are essentially two ways to use a Registry: either register a
resource the first time you use it or register all the resources you need in one big
TestSetup that you execute for your entire test suite (see recipe 5.10, “Set up your
fixture once for the entire suite”). There are good and bad points with each.

■ Register each resource as you use it—This makes it easy to start using new
resources; however, it can make it more difficult to understand where
objects are coming from. If a test dies because of a resource problem, you
have to search all the tests to find the test suite that initializes that resource.

■ Register all resources in one TestSetup wrapper—This solves the key problem
with the other approach by keeping all your shared resources in one place;
however, you need to wrap any test suite you execute in this Resource-
TestSetup, otherwise the tests fail. This generally requires a customized test
execution script and might be incompatible with IDE-based test runners
such as the one in Eclipse.

Whichever approach you take, JUnit-addons provides the class junitx.util.
ResourceManager to help you manage your test sources. The class itself is simple
enough: it is a collection of named resources, and you have access to the usual
operations: add, remove, get and contains. Any kind of object can be a resource.

594 CHAPTER 16

JUnit-addons
Listing 16.5 shows an example of using a DataSource as a resource, adapted from
recipe 10.10, “Test legacy JDBC code with the database.” We opt for the second
approach for initializing the ResourceManager. We have highlighted our use of the
ResourceManager in bold print.

package junit.cookbook.addons.jdbc.live.test;

import java.io.File;
import java.sql.*;
import java.util.Set;
import javax.sql.DataSource;
import junit.cookbook.coffee.data.CatalogStore;
import junit.cookbook.coffee.data.jdbc.CatalogStoreJdbcImpl;
import junit.framework.*;
import junitx.util.ResourceManager;
import org.dbunit.DatabaseTestCase;
import org.dbunit.database.*;
import org.dbunit.dataset.IDataSet;
import org.dbunit.dataset.xml.FlatXmlDataSet;
import com.diasparsoftware.jdbc.JdbcResourceRegistry;

public class FindProductsTest extends DatabaseTestCase {
 private JdbcResourceRegistry jdbcResourceRegistry;

 public FindProductsTest(String name) {
 super(name);
 }

 public static Test suite() {
 return new ResourceManagerTestSetup(
 new TestSuite(FindProductsTest.class));
 }

 protected void setUp() throws Exception {
 System.setProperty("dbunit.qualified.table.names", "true");
 jdbcResourceRegistry = new JdbcResourceRegistry();
 super.setUp();
 }

 protected void tearDown() throws Exception {
 jdbcResourceRegistry.cleanUp();
 super.tearDown();
 }

 public void testFindAll() throws Exception {
 Connection connection = makeJdbcConnection();
 CatalogStore store = new CatalogStoreJdbcImpl(connection);
 Set allProducts = store.findAllProducts();
 assertEquals(3, allProducts.size());
 }

Listing 16.5 Using ResourceManager to manage a DataSource

595Manage shared test resources
 public void testFindByName() throws Exception {
 Connection connection = makeJdbcConnection();
 CatalogStore store = new CatalogStoreJdbcImpl(connection);
 Set allProducts = store.findBeansByName("Sumatra");
 assertEquals(1, allProducts.size());
 }

 private DataSource getDataSource() {
 return (DataSource) ResourceManager.getResource("dataSource");
 }

 private Connection makeJdbcConnection() throws SQLException {
 Connection connection = getDataSource().getConnection();
 jdbcResourceRegistry.registerConnection(connection);
 return connection;
 }

 protected IDatabaseConnection getConnection() throws Exception {
 Connection connection = makeJdbcConnection();
 return new DatabaseConnection(connection);
 }

 protected IDataSet getDataSet() throws Exception {
 return new FlatXmlDataSet(
 new File("test/data/datasets/findProductsTest.xml"));
 }
}

As you can see we did not make any significant coding changes to introduce the
ResourceManager, so you ought to have little trouble incorporating it into your
project. For completeness, we show our ResourceManagerTestSetup in listing 16.6.

package junit.cookbook.addons.jdbc.live.test;

import junit.cookbook.coffee.jdbc.test.CoffeeShopDatabaseFixture;
import junit.extensions.TestSetup;
import junit.framework.Test;
import junitx.util.ResourceManager;

public class ResourceManagerTestSetup extends TestSetup {
 public ResourceManagerTestSetup(Test test) {
 super(test);
 }

 protected void setUp() throws Exception {
 ResourceManager.addResource(
 "dataSource",
 CoffeeShopDatabaseFixture.makeDataSource());
 }

Listing 16.6 ResourceManagerTestSetup

596 CHAPTER 16

JUnit-addons
 protected void tearDown() throws Exception {
 ResourceManager.removeResource("dataSource");
 }
}

This is all it takes to get started using the JUnit-addons ResourceManager, and as you
can see, it is quite handy, and you can register as many resources as your tests need.
For testing against a live database—if you must—the combination of Resource-
Manager and DbUnit is quite powerful.

◆ Discussion

Now because we only have one test suite that uses the ResourceManager, we wrapped it
directly in a ResourceManagerTestSetup to execute it. Without ResourceManagerTest-
Setup, any invocation of getResource() returns null. When we add a second test suite
that uses the ResourceManager, we need to ensure that it too executes within a
ResourceManagerTestSetup. How to do this depends on the environment.

If you use Eclipse and execute your tests with the built-in test runner, you have a
few options, none of which are encouraging. You could create a suite() method in
each test case class that wraps itself in a ResourceManagerTestSetup; you could cre-
ate an AllTests class (see recipe 4.3, “Collect all the tests in a package”) and wrap
it in a ResourceManagerTestSetup; or you could use the register-as-you-go design,
but then each test would need to be able to register the resource it needs in case
you do not execute the test that initializes the resource for you. Looking for some-
thing even better than the best of these options leads you in the direction of using
the JUnit-addons test runner, which we describe towards the end of this recipe.

If you use Ant and <batchtest> to collect all the tests in your source tree, then
you have at least two options. You can extend the <batchtest> task to wrap a
ResourceManagerTestSetup around the suite it would otherwise collect. If you do
this, please publish it as open source, because the community could certainly use
it. If you do not want to learn about Ant tasks at this moment, you can convert your
<batchtest> task into to a special AllTests class. This class’s suite() method just
wraps a ResourceManagerTestSetup around a suite collected using DirectorySuit-
eBuilder. If you also use <junitreport> to report your test results, then you can
duplicate <batchtest>’s XML output by writing a custom XML-based TestListener
and registering it to the JUnit-addons test runner. After some thought, perhaps the
custom Ant task is easier! Do whichever makes you more comfortable.

Finally, you should consider using JUnit-addons test runner, which provides a
natural integration for the ResourceManager. No surprise there, as they came from

597Ensure your shared test fixture
tears itself down
the same project! You can let this custom test runner manage your resources auto-
matically by doing the following:

1 Create a resource wrapper class that implements junitx.runner.Resource.
This is a resource factory class.

2 Override Resource.init() to initialize your resource.

3 Add an entry to test.properties such as junitx.resource.1=com.mycom.
MyResourceFactory.

The number at the end of the property name controls the order in which the
resources are initialized. Now when you execute any test suite with the JUnit-
addons test runner and this test.properties file, the test runner manages your
resources and you can obtain them using ResourceManager. If you have more than
two or three resources to manage, we highly recommend this last approach.

◆ Related

■ 4.3—Collect all the tests in a package

■ 5.10—Set up your fixture once for the entire suite

16.5 Ensure your shared test fixture tears itself down

◆ Problem

You have a test suite whose tests share a common fixture. When something goes
wrong in the middle of executing the suite, JUnit does not invoke your shared fix-
ture’s tearDown() method and you have no way to force it to do so.

◆ Background

The more complex your test fixtures become, the more likely it is that you will
encounter this problem. If you are writing tests against a database, for example, you
might decide to set up your test data in your one-time setUp() and delete your test
data in your one-time tearDown(). If your database administrators decide to add
more referential integrity constraints to the database while you are not looking,
then the next time you execute your database tests, you might not be able to clean
up the test data. This might cause all future database tests to fail, even though those
tests—and the production code they test—might be perfectly fine. Test isolation is
important! Perhaps your best solution is to eliminate the need for one-time setup,
but you might not be in a position to perform the considerable refactorings that
you need to reach that point. You need to cope with this problem now.

598 CHAPTER 16

JUnit-addons
◆ Recipe

JUnit-addons provides an alternative implementation of TestSetup that executes
tearDown() inside a finally block, ensuring that it is invoked even in the pres-
ence of errors during fixture setup. The difference between the two TestSetup
classes is slight, but important. Listing 16.7 shows the standard JUnit implementa-
tion of TestSetup.run().

package junit.extensions;

public class TestSetup extends TestDecorator {
 public void run(final TestResult result) {
 Protectable p= new Protectable() {
 public void protect() throws Exception {
 setUp();
 basicRun(result);
 tearDown();
 }
 };
 result.runProtected(this, p);
 }
}

Listing 16.8 shows the the JUnit-addons version.

package junitx.extensions;

public class TestSetup extends TestDecorator {
 public void run(final TestResult result) {
 Protectable p = new Protectable() {
 public void protect() throws Exception {
 try {
 setUp();
 basicRun(result);
 } finally {
 tearDown();
 }
 }
 };
 result.runProtected(this, p);
 }
}

Listing 16.7 The standard JUnit implementation of TestSetup.run()

Listing 16.8 The JUnit-addons implementation of TestSetup.run()

599Report the name of each test
as it executes
We have highlighted the difference in bold print: the JUnit-addons version
invokes tearDown() even if the test suite fails somehow. This ensures that your shared
test fixture tears itself down properly, no matter what happens during your test
run. When you need a shared test fixture, use the JUnit-addons version of Test-
Setup, rather than the standard JUnit version. It could be as simple as replacing
imports for junit.extensions.TestSetup with imports for junitx.extensions.
TestSetup throughout your test source.

◆ Discussion

It is commonly held in the JUnit community that a shared test fixture is a “smell.”
That is, if you find yourself wanting to have many tests share a fixture, then there
is a design issue that you have not fully addressed. In the case of testing against a
live database, the problem is, well, the database: we believe that the majority of
your testing ought to be done without a live database, as we described throughout
Chapter 10, “Testing and JDBC.” You can minimize the amount of testing you per-
form against a live database through some aggressive refactoring. Still, we recog-
nize that it is not always easy to perform these refactorings: there is urgent work to
do, and although we find these refactorings important, not everyone shares our
opinion, perhaps including your project manager. The shared test fixture is a cop-
ing strategy for these situations, and JUnit-addons provides a better way to imple-
ment shared test fixtures with their version of TestSetup. We recommend using
this version over the one that ships with standard JUnit.

◆ Related

■ 5.10— Set up your fixture once for the entire suite

16.6 Report the name of each test as it executes

◆ Problem

You want a real-time report of the tests as they execute, perhaps including the
name of the test, the suite to which it belongs, and the result.

◆ Background

The text-based test runner that comes with JUnit provides only a compact and
very brief report of the test run as it happens. Specifically, it prints a dot for each
test it executes and adds an “E” for an error or an “F” for a failure. It does not
report the name of each test as the execution proceeds. You might decide that

600 CHAPTER 16

JUnit-addons
you want this feature, if for no other reason than to have a sense that the tests you
expect to execute are actually doing so.

Beyond this there is one situation we have encountered where we needed to
know the names of the tests as they executed.3 If you write a test that uncovers a
deadlock situation, it is impossible to use the JUnit text-based test runner to deter-
mine which test reproduces the deadlock. At this point you have a few options,
none of them particularly nice.

■ Use a graphical test runner, wait for the deadlock situation to happen, and
then look at the test runner’s status bar. It shows you name of the last test to
execute completely, from which you might be able to deduce which test
contains the deadlock.4

■ Remove test suites from and add them back to your test run, hoping to iso-
late the test suite that contains the offending test. From there you can
remove test methods from and add them back to the one test suite, hoping
to isolate the test method that contains the offending test. Binary search will
not help you here: you cannot rely on the order of execution of tests.

■ Isolate the test suite that contains the offending test, as in the previous
option, and then add System.out.println(getName()); into the setUp()
method so that the name of the test prints to the console before the test
executes. Remember to take it out when you have finished! Remember to
put it back when you need it next time!

Forget it! None of these is useful on an ongoing basis, and each requires special-
ized knowledge of JUnit to do. You want a solution that lasts, that’s easy to turn on
and off and that anyone can use.

◆ Recipe

What you need is a better test runner. Gathering information about which test is
currently executing is not the responsibility of the test itself, but of the test run-
ner, so you should add this feature to the test runner. Fortunately, you can add a
simple TestRunListener to the JUnit-addons TestRunner whose job is to print to
the console the name of the test about to be executed. Listing 16.9 shows a quick-
and-dirty implementation of such a test run listener.

3 Undoubtedly there are more, but we prefer to recount our experience rather than speculate.
4 Of course, Murphy's Law says that the next test—the one that uncovers the deadlock—is in a different

test suite, and you have no idea which test suite the test runner is executing now!

601Report the name of each test
as it executes
package junit.cookbook.addons.listener;

import junit.framework.Test;
import junit.framework.TestResult;
import junitx.runner.listener.AbstractRunListener;

public class DumpTestNameListener
 extends AbstractRunListener {

 public void testStarted(Test test, TestResult result) {
 System.out.println("> " + test);
 }

 // The remaining event handler methods do nothing
}

To use this extra listener, specify it in a “runner properties” file. This is a proper-
ties file that the JUnit-addons runner uses to register listeners at runtime. Because
we want the default output as well as our small amount of customized reporting,
we want the following runner properties file:

runner.properties
junitx.runner.listener.0=junitx.runner.listener.DefaultConsole
junitx.runner.listener.1=junit.cookbook.addons.listener.DumpTestNameListener

The DefaultConsole listener is the one that the JUnit-addons runner registers if
you do not specify your own listeners. If you specify custom listeners but still want
the default listener to run, then you need to include it, probably in the first posi-
tion in the listener list.

Now that you have created the listener and placed it in the runner properties
file, you need to specify that properties file when you launch the JUnit-addons test
runner. You specify a runner properties file by passing the option -runner.prop-
erties <filename> to the test runner, as in the following command.

> java -classpath <your classpath> junitx.runner.TestRunner

➾ -runner.properties <runner properties file>

➾ -class <test suite or test case class>

NOTE A minor defect in the JUnit-addons test runner documentation—Unfortunately,
at press time, the JUnit-addons test runner documentation was incorrect
in describing how to specify the runner.properties file. It mentions
using –runner.properties=<filename>, but our experiments showed
that this does not work. The way we specify the runner properties in this
recipe is correct. Other than this minor problem, the JUnit-addons docu-
mentation is quite good!

Listing 16.9 DumpTestNameListener

toString() includes
the test name

602 CHAPTER 16

JUnit-addons
The following is some sample output from a test run using the DumpTestNameListener.

> testRunHeader(junit.cookbook.listener.test.TestRunReporterTest)
*> testRunFooter_RunEnds(junit.cookbook.listener.test.TestRunReporterTest)
*> testRunFooter_RunStops(junit.cookbook.listener.test.TestRunReporterTest)
*> testTestStarted_TestCase(junit.cookbook.listener.test.TestRunReporterTest)
*> testTestIgnored(junit.cookbook.listener.test.TestRunReporterTest)
*> testTestFailure(junit.cookbook.listener.test.TestRunReporterTest)
*> testTestError(junit.cookbook.listener.test.TestRunReporterTest)
*> testTestSuccess(junit.cookbook.listener.test.TestRunReporterTest)
*> testTestStarted_TestSuite(junit.cookbook.listener.test.TestRunReporterTest)
*> testTestStarted_TestSuite_TwoTests

➾ (junit.cookbook.listener.test.TestRunReporterTest)
*> testTestStarted_TestSuite_ZeroTests

➾ (junit.cookbook.listener.test.TestRunReporterTest)
*

Elapsed time: 0.061 sec (11 tests)

The default run listener DefaultConsole provides the asterisks (*) and the “Elapsed
time” message. The run listener DumpTestNameListener provides the name of each
test as it executes.

◆ Discussion

The architecture of the JUnit-addons test runner is very similar to JUnit’s stan-
dard test runners, with one key exception that interests us now: JUnit’s test run-
ners do not provide a method to register additional TestListeners when running
tests. Internally, JUnit’s test runners send events to a TestListener, which can
report on each test as it executes. The text-based test runner prints dots and “E”s
and “F”s to the console; the graphical test runner advances the progress bar and
decides whether to turn it red (the result of a failure or error). You could cer-
tainly write your own test runner to report test execution the way you want, but it
would take much more work than it should: you just want to add one more
TestListener to the TestRunner!

◆ Related

■ 6.1—See the name of each test as it executes

■ 6.2—See the name of each test as it executes with a text-based test runner

Odds and ends
This chapter covers
■ Testing file-based features without disrupting the file system
■ Testing the syntax of your tests
■ Customizing assertions for test readability
■ Testing hidden behavior
603

604 CHAPTER 17

Odds and ends
There are always a few more things that authors want to say, but cannot find the
appropriate chapter in which to say them. At that point, there are essentially two
options: leave those things out of the book or create a catchall chapter in which to
put them. We opted for the latter. This chapter contains recipes that simply did
not make their way into one of the other chapters, for one reason or another.

We do not recommend writing tests that rely heavily on the file system; but if
you need to do it, then we provide a recipe that describes some of the unexpected
problems with cleaning up files between tests (see recipe 17.1, “Clean up the file
system between tests”). We further describe one way to reduce the degree to
which your tests depend on the file system in recipe 17.2, “Test your file-based
application without the file system.”

Some of the problems that novice JUnit users experience have to do with incor-
rect JUnit syntax. We see at least one or two such messages on the mailing lists per
month. In recipe 17.3, “Verify your test case class syntax,” we describe a tool that
helps you avoid spending time hunting down a problem related to a typo, rather
than a “real” problem. If you have to program alone, then this recipe helps elimi-
nate one source of problems.

The more tests you write, the more complex your assertions become. Patterns
emerge. Some people have questions about refactoring test code, wondering if it
is any different from refactoring production code. Read recipe 17.4, “Extract a
custom assertion” to see that there really is no difference: a custom assertion is sim-
ply the result of removing certain kinds of duplication from your tests.

Finally, we offer some recipes that use JUnitX (www.extreme-java.de/junitx/),
a package that allows you to test the non-public parts of your classes. While we
strongly recommend that you test entirely through publicly accessible methods, we
recognize that not everyone agrees with this sentiment. Moreover, especially when
testing legacy code, it is often advantageous to write tests for private methods
before extracting them to a public interface or refactoring them some other way.
This chapter contains a few recipes about testing non-public parts: testing a leg-
acy method with no return value and testing a private method. Relying on pri-
vate implementation details is discouraged, in general, but if you need to do it,
then JUnitX helps you do it.

605Clean up the file system between tests
17.1 Clean up the file system between tests

◆ Problem

You want to write isolated tests for code that writes to the file system, so you need
to clean up the file system between tests, but that does not appear to work as you
would expect.

◆ Background

When a Java application writes to the file system using the file I/O libraries, file
system changes occur asynchronously relative to the Java application. In other
words, the Java application does not wait for the file system operations to com-
plete. Ordinarily, the file system operation takes so little time to complete that
this slight drift in execution time has no impact on your application; however, it
easily affects well-isolated tests.

Consider a test fixture whose tearDown() method cleans up the directory you
used for the test. (Which directory that is does not concern us for the moment.)
The fixture is something similar to that found in listing 17.1.

public class FileSystemOutputStrategyTest extends TestCase {
 private File expectedOutputFile;

 protected void setUp() throws Exception {
 expectedOutputFile = new File("./test/output/a/b/c/d.html");
 }

 public void testWriteOutputToDirectory() throws Exception {
 // Try writing output to file
 // Verify the file exists
 }

 protected void tearDown() throws Exception {
 if (expectedOutputFile.exists())
 expectedOutputFile.delete();
 }
}

When you have about five tests using this fixture, you begin to notice that the file
created in test #3 has not been deleted by the time test #4 executes, causing the
latter to fail. You do not have the test isolation you think you have.

The next impulse is to clean up the file in both setUp() and tearDown(), which
is not a bad idea, anyway. Listing 17.2 shows the new code.

Listing 17.1 A fixture that tries to delete its files

delete() complains when
a file does not exist

606 CHAPTER 17

Odds and ends
public class FileSystemOutputStrategyTest extends TestCase {
 private File expectedOutputFile;

 protected void setUp() throws Exception {
 expectedOutputFile = new File("./test/output/a/b/c/d.html");

 if (expectedOutputFile.exists())
 expectedOutputFile.delete();
 }

 public void testWriteOutputToDirectory() throws Exception {
 // Try writing output to file
 // Verify the file exists
 }

 protected void tearDown() throws Exception {
 if (expectedOutputFile.exists())
 expectedOutputFile.delete();
 }
}

This does not seem to solve the problem, particularly if your tests are short and
execute quickly. Anything else seems like a hack, so what do you do?

◆ Recipe

Sadly, we only see two options.

1 Change the production code to eliminate the file system from the equation,
a strategy we discuss in recipe 17.2, “Test your file-based application without
the file system.”

2 Slow the tests down.

That’s right, folks: slow the tests down. It pains us even to type those words.
If your test involves asynchronous communication—such as invoking file sys-

tem operations—and it does not stop to acknowledge the other party completing
their part of the test, then you need to slow the test down. This is what we mean:

protected void tearDown() throws Exception {
 if (expectedOutputFile.exists()) {
 expectedOutputFile.delete();
 pauseSoTheFileHasTimeToDelete();
 }
}

Listing 17.2 Cleaning up the file in setUp() and teardown()

Ugh! Duplication

Ugh! Duplication

607Clean up the file system between tests
You can implement this pause method with something as simple as
Thread.sleep(250)—sleep for 250 milliseconds. Although this might work, there
are a few drawbacks. First, the time to sleep depends on several factors, including
CPU speed, hard drive speed, file size, and disk fragmentation. (This is not an
exhaustive list, either.) Next, this pause slows your test suite down, discouraging
you from executing it as often as you otherwise would. Finally, the decision to
pause or not to pause has nothing to do with the test! It is a constraint of your produc-
tion code’s implementation details. It ought to be irrelevant. Now if you are test-
ing code that you built strictly to use with a file system, such as Prevayler
(www.prevayler.org), then the rules are different. For most business applications,
though, the file system is an incidental tool and not an integral part of the archi-
tecture. Your tests ought not to have to worry about these low-level details. This is
why we recommend factoring out the file system.

Nevertheless, if you inherit legacy code coupled to the file system and you need to
add tests—possibly to enable future refactoring—then you need to apply this little
hack until you can move to something better. This is another of those recipes that is
good to know, not because you want to apply the technique, but because you might
be forced to apply it at some point so that you can eventually phase out the need for
it, similar to recipe 4.7, “Control the order of some of your tests.”

◆ Discussion

If you apply this technique, you need to be aware of the possibility for spurious
“false failures.” That is, from time to time your file system tests fail only because
tearDown() did not pause long enough before the next test began to execute.
This wastes time in two ways: either you will carefully investigate each such failure
and find it was a false alarm or, much worse, you will begin to ignore those failures
and decide not to investigate a real defect in the same part of the code. One of
the goals of Programmer Testing is to minimize the mean time between injecting
a defect and discovering it. If you ignore failures, you defeat this purpose.

When we trade the cost of having these false failures against the cost of factor-
ing out the file system, we tend to lean in the direction of the refactoring as soon
as is feasible. Of course we do not want to sacrifice delivering business value to
make the tests slightly better, but that depends on the number of tests. Five?
Twenty? Two hundred? The more file system tests there are, the higher the cost of
leaving the dependency on the file system in place. As always, crunch the num-
bers, and if they do not convince you, then leave the dependency in and log how
much time you spend dealing with the problems that arise as a result. It is better
to measure the impact than speculate about it.

608 CHAPTER 17

Odds and ends
◆ Related

■ 4.7—Control the order of some of your tests

■ 17.2—Test your file-based application without the file system

17.2 Test your file-based application without the file system

◆ Problem

You have an application that interacts with the file system and you want to test it
without involving the file system.

◆ Background

It is a common question: “I have a class that reads data from a file. How do I test it?”
The straightforward answer is to read the data from the file and verify it against the
data you expect. The bad news is that in applications not designed to be tested, this
approach has some serious disadvantages. First, it is common to see the file name
hard coded in the class. A simple test involves putting known data in a file, pointing
the file-reading object at the file, and then verifying the data it reads. If the test can-
not tell the file-reading object which file to use, then there is no way to write this test
without disturbing the production application we are trying to test. Next, it is com-
mon to see one class with two responsibilities: reading raw text from the file and
parsing that text into objects. Remember the Single Responsibility Principle?1

◆ Recipe

The file system is yet another expensive, external resource. As an external
resource, it is sensitive to changes occurring outside your Java application and its
tests, so you want to depend on it as little as possible. It is fortunate, then, that the
Java class libraries were designed with this in mind: its I/O libraries make it easy to
separate the act of reading and writing data from the data sources. The data
might come from a file, a network connection, another Java Virtual Machine, or
even just a String in memory. The key to testing file-based components is to sepa-
rate them from the file system as much as possible. Make your integration to the
file system as thin as possible.

1 J. B., in particular, finds it difficult to do more than one thing at a time, which is one reason he is so keen
on respecting the Single Responsibility Principle. His objects ought not to be more capable than he is.

609Test your file-based application
without the file system
Let us return to the Coffee Shop application we examined in part 2. Suppose
we would like to read the coffee catalog data as comma-delimited text stored in a
file. We would need a class to read the file, parse the text, and create a Coffee-
Catalog object. We might end up with the simple class in listing 17.3.

package junit.cookbook.coffee.data;

import java.io.*;
import java.util.regex.*;

import junit.cookbook.coffee.model.CoffeeCatalog;

import com.diasparsoftware.java.util.Money;

public class CoffeeCatalogFileReader {
 private Pattern catalogLinePattern = Pattern
 .compile("(.+),(.+),(.+)");

 public CoffeeCatalog load() throws IOException {
 CoffeeCatalog catalog = new CoffeeCatalog();

 BufferedReader reader = new BufferedReader(
 new FileReader(new File("data/catalog.txt")));

 while (true) {
 String line = reader.readLine();

 if (line == null) break;

 Matcher matcher = catalogLinePattern.matcher(line);
 if (matcher.matches()) {
 String productId = matcher.group(1);
 String coffeeName = matcher.group(2);
 String unitPriceAsString = matcher.group(3);
 Money unitPrice = Money
 .parse(unitPriceAsString);

 catalog.addCoffee(productId, coffeeName,
 unitPrice);
 }
 }

 return catalog;
 }
}

We typed this all in without even testing it. (Calm down.) Because we have not
tested it at all, we want to do that now, but the only way to test this code as is
involves using the real catalog file and verifying the data it contains. This is
straightforward, so let us test it. Here is our production coffee catalog file.

Listing 17.3 CoffeeCatalogFileReader

610 CHAPTER 17

Odds and ends
762,Sumatra,$7.50
800,Special Blend,$9.50
900,Colombiano,$10.00

Listing 17.4 shows our test.

package junit.cookbook.coffee.data.test;

import junit.cookbook.coffee.data.CoffeeCatalogFileReader;
import junit.cookbook.coffee.model.CoffeeCatalog;
import junit.framework.TestCase;

import com.diasparsoftware.java.util.Money;

public class CoffeeCatalogFileTest extends TestCase {
 public void testReadCatalogFile() throws Exception {
 CoffeeCatalogFileReader reader = new CoffeeCatalogFileReader();

 CoffeeCatalog expected = new CoffeeCatalog();
 expected.addCoffee("762", "Sumatra", Money.dollars(7, 50));
 expected.addCoffee("800", "Special Blend", Money.dollars(9, 50));
 expected.addCoffee("900", "Colombiano", Money.dollars(10, 0));

 assertEquals(expected, reader.load());
 }
}

There is one little problem with our test: it cannot pass. The problem is simple: we
keep our tests in a separate Eclipse project and the CoffeeCatalogFileReader hard
codes a relative filename—relative to the directory in which its Eclipse project is
located. Either we move CoffeeCatalogFileReader into the test’s project or the test
into the file reader’s project. Neither option is particularly good, so we need to
refactor. We add a parameter to CoffeeCatalogFileReader.load() so that it can
accept the file from which to load. Listing 17.5 shows the new version of the test.

package junit.cookbook.coffee.data.test;

import java.io.File;

import junit.cookbook.coffee.data.CoffeeCatalogFileReader;
import junit.cookbook.coffee.model.CoffeeCatalog;
import junit.framework.TestCase;

import com.diasparsoftware.java.util.Money;

public class CoffeeCatalogFileTest extends TestCase {
 public void testReadCatalogFile() throws Exception {

Listing 17.4 CoffeeCatalogFileTest

Listing 17.5 CoffeeCatalogFileTest with a relative filename

611Test your file-based application
without the file system
 CoffeeCatalogFileReader reader = new CoffeeCatalogFileReader();

 CoffeeCatalog expected = new CoffeeCatalog();
 expected.addCoffee("762", "Sumatra", Money.dollars(7, 50));
 expected.addCoffee("800", "Special Blend", Money.dollars(9, 50));
 expected.addCoffee("900", "Colombiano", Money.dollars(10, 0));

 assertEquals(
 expected,
 reader.load(
 new File("../CoffeeShopEngine/data/catalog.txt")));
 }
}

Now the test passes, but there is still a problem: what happens when, next week,
someone adds a few new coffee products to the catalog? When this happens, the
test will fail, and really for no good reason. In order to avoid this, we ought to use
a different file. We copy the production catalog file to a local directory and
change our test accordingly, to the version in listing 17.6.

package junit.cookbook.coffee.data.test;

import java.io.File;

import junit.cookbook.coffee.data.CoffeeCatalogFileReader;
import junit.cookbook.coffee.model.CoffeeCatalog;
import junit.framework.TestCase;

import com.diasparsoftware.java.util.Money;

public class CoffeeCatalogFileTest extends TestCase {
 public void testReadCatalogFile() throws Exception {
 CoffeeCatalogFileReader reader = new CoffeeCatalogFileReader();

 CoffeeCatalog expected = new CoffeeCatalog();
 expected.addCoffee("762", "Sumatra", Money.dollars(7, 50));
 expected.addCoffee("800", "Special Blend", Money.dollars(9, 50));
 expected.addCoffee("900", "Colombiano", Money.dollars(10, 0));

 assertEquals(
 expected,
 reader.load(new File("test/data/catalog.txt")));
 }
}

Even better, but now we have a complex test environment. If someone moves our
test file, or forgets to copy it to the right place, or someone decides to change its

Listing 17.6 CoffeeCatalogFileTest using a test data directory

612 CHAPTER 17

Odds and ends
contents—any of these things results in a false failure. It would be better just to
put the test data right next to the test itself, to essentially eliminate the possibility
of someone changing one without the other. The simplest solution is to parse the
information from a String. In order to do this, we need CoffeeCatalog-
FileReader.load() to accept a Reader, not a File, as its parameter. It is nice to see
that with Java’s well-designed I/O library, this is an easy change. Listing 17.7 shows
the new test.

package junit.cookbook.coffee.data.test;

import java.io.StringReader;

import junit.cookbook.coffee.data.CoffeeCatalogFileReader;
import junit.cookbook.coffee.model.CoffeeCatalog;
import junit.framework.TestCase;

import com.diasparsoftware.java.util.Money;

public class CoffeeCatalogFileTest extends TestCase {
 public void testReadCatalogFile() throws Exception {
 String catalogText =
 "762,Sumatra,$7.50\r\n"
 + "800,Special Blend,$9.50\r\n"
 + "900,Colombiano,$10.00\r\n";

 CoffeeCatalog expected = new CoffeeCatalog();
 expected.addCoffee("762", "Sumatra", Money.dollars(7, 50));
 expected.addCoffee("800", "Special Blend", Money.dollars(9, 50));
 expected.addCoffee("900", "Colombiano", Money.dollars(10, 0));

 CoffeeCatalogReader reader = new CoffeeCatalogReader();

 assertEquals(
 expected,
 reader.load(new StringReader(catalogText)));
 }
}

We have not had to change the production code much, either, except to rename
the class. After all, it does not read from a file any more. Listing 17.8 shows the
final version, with the changes highlighted in bold print.

package junit.cookbook.coffee.data;

import java.io.*;

Listing 17.7 CoffeeCatalogFileTest with an inline file

Listing 17.8 CoffeeCatalogReader

613Test your file-based application
without the file system
import java.util.regex.*;
import com.diasparsoftware.java.util.Money;
import junit.cookbook.coffee.model.CoffeeCatalog;

public class CoffeeCatalogReader {
 private Pattern catalogLinePattern =
 Pattern.compile("(.+),(.+),(.+)");

 public CoffeeCatalog load(Reader catalogDataReader)
 throws IOException {

 CoffeeCatalog catalog = new CoffeeCatalog();
 BufferedReader reader = new BufferedReader(catalogDataReader);

 while (true) {
 String line = reader.readLine();

 if (line == null)
 break;

 Matcher matcher = catalogLinePattern.matcher(line);
 if (matcher.matches()) {
 String productId = matcher.group(1);
 String coffeeName = matcher.group(2);
 String unitPriceAsString = matcher.group(3);
 Money unitPrice = Money.parse(unitPriceAsString);

 catalog.addCoffee(productId, coffeeName, unitPrice);
 }
 }
 return catalog;
 }
}

But what about reading from a file? The newly named CoffeeCatalogReader now
has no dependency at all on the source of the data, but only its format. Whichever
object uses the CoffeeCatalogReader is now responsible for providing it with a
valid Reader object configured to read well-formed catalog data. Perhaps the Coffee-
ShopController servlet should have this responsibility. If so, we can use a mock
objects approach to verify that it provides the proper parameter to CoffeeCatalog-
Reader.load(). Not only is the test very robust (no dependency on external
resources), but the design is more flexible. If someone needs to read catalog data
from a network connection, they can do it without changing CoffeeCatalog-
Reader at all. The Open/Closed Principle at work!2

2 www.objectmentor.com/resources/articles/ocp.pdf

614 CHAPTER 17

Odds and ends
◆ Discussion

If you are given a legacy system that interacts with files, then you might not be
able to apply this recipe. In that case, you need to cope with the application’s
dependency on the file system. See recipe 17.1 to achieve test isolation in the face
of such a dependency.

◆ Related

■ 17.1—Clean up the file system between tests

■ Open/Closed Principle
(www.objectmentor.com/resources/articles/ocp.pdf)

■ Single Responsibility Principle
(www.objectmentor.com/resources/articles/srp)

17.3 Verify your test case class syntax

◆ Problem

You want to verify that your test case classes adhere to the basic syntax rules of
JUnit, but many common problems cannot be caught by the compiler.

◆ Background

You have a large suite of test cases, including dozens or even hundreds of test case
classes. It is virtually impossible—at least highly undesirable—to inspect all your
test case classes by hand or execute each individually to uncover problems such as
incorrectly overriding setUp() and tearDown(), or not providing a proper suite()
method. Moreover, whenever someone changes the tests, she runs the risk of rein-
troducing the kind of problem that can easily go unnoticed. You would like to run
some sanity check on your tests to give you some confidence that they at least
“make sense.”

◆ Recipe

JUnit-addons provides a nifty tool to help: the TestClassValidator. The idea
behind this tool is to examine the source of a test case class and highlight any
potential defects in it that compilers cannot catch, such as typing setup() rather
than setUp() or failing to make the suite() method class level. Listing 17.9 shows
a test case class with a number of problems (or potential problems) we have high-
lighted in bold print.

615Verify your test case class syntax
public class ValidationExample
 extends TestCase {

 public ValidationExample(String name) {
 super(name);
 }

 public Test suite() {
 return null;
 }

 public void setup() {
 }

 public void tearDown() {
 }

 public void atestDummy() {
 assertTrue(true);
 }
}

To execute the TestClassValidator, issue the following command.

java junitx.tool.TestClassValidator classname

For the above class, TestClassValidator provides the following report.

TestClassValidator, by Vladimir R. Bossicard
 WARN > junitx.example.ValidationExample: method potentially misspelled

<setup>
 ERROR> junitx.example.ValidationExample: method 'suite' must be static
 INFO > junitx.example.ValidationExample: method seems to be a test

<atestDummy>

The method potentially misspelled is setup(), which ought to be setUp(). This is
a common source of questions on the JUnit mailing lists. The next problem is
clear enough: the suite() method must be class level (static) in order for JUnit
to use it to collect your tests. Finally, the method atestDummy() looks like a test:
after all, it has test in the name and makes an assertion, so you probably just
slipped on the keyboard just before running your build process. The TestClass-
Validator notices when you make the kind of mistake that a compiler does not
catch, but that might affect your tests. It is not as good as having someone pro-
gram with you, but it helps.

Listing 17.9 A test case class in need of validation

616 CHAPTER 17

Odds and ends
◆ Discussion

If you validate your test classes before executing them, you can save yourself the
embarrassment of hiding a defect for weeks (months!) before finding it. The point
of ongoing testing is to find defects as soon as you inject them into the code. If you
mistype a test method name and that test does not execute, and that is the only test
that exposes a certain defect...well, you might finally uncover the defect later—
much later. The longer you wait to uncover a defect after creating it, the more
effort it takes to understand the defect and to fix it. If you are going to spend time
writing tests, you want them to execute. They are not there to “look pretty.”

If you have other test case validation rules you would like to enforce with
TestClassValidator, then you can subclass ClassValidator and add your own
rules. If you would like to report the errors differently, you can provide your own
implementation of ClassValidatorListener and listen for validation events of var-
ious severities: warning, information, or error. This is another example of the
commitment of JUnit-addons to simple, flexible design.

Another way to verify these kinds of coding issues is to use a style checker, such as
PMD (http://pmd.sourceforge.net/) or checkstyle (http://checkstyle.sourceforge.
net/). Although one generally thinks of these tools as ways to enforce a team’s
coding style, they simply verify that source code conforms to some standard, so we
can certainly use them to verify that source code conforms to the demands of a
framework such as JUnit. As this is not a book about coding standards, we recom-
mend you visit the various web sites of these coding standards tools to see whether
they might help you on your project. They have become part of the standard tool-
kit for Java Open Source projects, particularly the Jakarta projects (http://
jakarta.apache.org).

Robert Wenner provided a more clever solution to the specific problem of
mistyping setup() and teardown(). It is not a general-purpose solution, but if you
make this mistake often enough, then you might want to try it. He recommends
adding these two methods to your Base Test Case class (see recipe 3.6, “Introduce
a Base Test Case”).

 private final void setup() {
 }

 private final void teardown() {
 }

Now in your test case class if you accidentally type setup() rather than setUp(),
the compiler catches the error. Is this solution too clever? We do not think so.

617Extract a custom assertion
If you happen to have considerable trouble with this kind of mistake—we all have
our blind spots—then we think it is worth trying.

◆ Related

■ PMD (http://pmd.sourceforge.net/)

■ checkstyle (http://checkstyle.sourceforge.net/)

17.4 Extract a custom assertion

◆ Problem

You notice repetition in the assertions you write and want to remove that duplication.

◆ Background

As you write more and more tests for your system, you begin to develop a kind of
application testing language wherein you express larger, more complex thoughts in
your assertions. These assertions have both a structural aspect and a domain-ori-
ented aspect. The structural aspect has to do with data structures: you expect this
list to contain that item, or you expect this Value Object to have those properties.
The domain-oriented aspect gives meaning to your data structures: this cus-
tomer’s order should contain those items, or the subtotal of the shopcart should
be $157. You can manage domain complexity by building a rich object model
and, in particular, designing good Value Objects. The more complex are the val-
ues they represent, the more compact are the assertions you can make about the
return value of a method. As your design becomes more structurally complex, you
begin to require three or four actual assertions to make what you logically consider
a single, “macroassertion.” One way to manage this complexity is through custom
assertions, the topic of this recipe.

◆ Recipe

Just as you extract any duplicate code into a method, you should extract repetitive
assertions into a custom assertion. There are a number of kinds of duplication
that we recommend extracting into a customized assertion. Some of the duplica-
tion is obvious and some is not so obvious. The real talent is in identifying obscure
duplication and dealing with it. The programmers who can do this are the master
designers. We will start with an example from a discussion on the JUnit Yahoo!

618 CHAPTER 17

Odds and ends
group, with some obvious duplication. We are verifying that a collection contains
a specific object: that a rainbow contains the color orange. Here is our assertion.

assertTrue(rainbow.contains(Color.orange));

As long as this assertion passes, all is well; however, when it fails, the first question
we usually ask is, “All right, which colors are in the rainbow?!” To find that out, we
add a failure message to the assertion, which would print the contents of rainbow.
The new assertion might look like this:

assertTrue(
 "Rainbow " + rainbow.colorListAsString()
 + " unexpectedly does not contain " + Color.orange,
 rainbow.contains(Color.orange));

Aside from the fact that this failure message makes the assertion more difficult to
read, the method colorListAsString() looks quite suspect here, as it is not neces-
sarily a method the rest of your application needs. In a Yahoo! group discussion,
Vladimir Bossicard expressed it best when he asked, “Do you really need the
method colorListAsString()? If this method is not in your public API, you’re
writing an additional method just in the case of a failing test. It doesn’t help your
design at all.” We have discussed elsewhere in this book and out in the public dis-
cussion groups whether one ought to add methods to a public interface “just for
testing.” While we do not mind adding methods to support testing, we have to
admit that adding a method to support a failing test just does not feel right. But
Vladimir is not through. He goes on to say, “Let’s finish the tests—and be careful
when you’re copying/pasting the code!”

assertTrue(
 "Rainbow " + rainbow.colorListAsString()
 + " unexpectedly does not contain " + Color.orange(),
 rainbow.contains(Color.orange));
assertTrue(
 "Rainbow " + rainbow.colorListAsString()
 + " unexpectedly does not contain " + Color.blue(),
 rainbow.contains(Color.blue));
assertTrue(
 "Rainbow " + rainbow.colorListAsString()
 + " unexpectedly does not contain " + Color.yellow(),
 rainbow.contains(Color.yellow));
assertTrue(
 "Rainbow " + rainbow.colorListAsString()
 + " unexpectedly does not contain " + Color.red(),
 rainbow.contains(Color.red));
assertTrue(
 "Rainbow " + rainbow.colorListAsString()

619Extract a custom assertion
 + " unexpectedly does not contain " + Color.green(),
 rainbow.contains(Color.green));

The duplication is quite obvious, and we certainly need to rid ourselves of it. We can
apply a purely mechanical refactoring, noticing that only the color changes from
assertion to assertion. We extract the following method into our test case class:

public static void assertRainbowContains(Color color) {
 assertTrue(
 "Rainbow " + rainbow.colorListAsString()
 + " unexpectedly does not contain " + color,
 rainbow.contains(color));
}

And now our assertions are much easier to read:

assertRainbowContains(Color.orange);
assertRainbowContains(Color.blue);
assertRainbowContains(Color.yellow);
assertRainbowContains(Color.red);
assertRainbowContains(Color.green);

Or, as Vladimir reminds us, we could simply use the JUnit-addons ListAssert:

import junitx.framework.ListAssert;
...
ListAssert.assertContains(rainbow, Color.orange);
ListAssert.assertContains(rainbow, Color.blue);
ListAssert.assertContains(rainbow, Color.yellow);
ListAssert.assertContains(rainbow, Color.red);
ListAssert.assertContains(rainbow, Color.green);

Either way, we have removed duplication in our assertions by applying the Extract
Method refactoring [Refactoring, 110], perhaps the most fundamental refactoring
of them all. Moreover, much of the power of the various JUnit extensions, includ-
ing HtmlUnit, JUnit-addons, GSBase, and XMLUnit, comes from their extensive
libraries of custom assertions. It is a simple, but powerful technique.

◆ Discussion

Here are a few tips for writing your custom assertions:.
Make them class-level (static) methods. Because they are just algorithms that

do not operate on any particular instance of a class, this makes sense. Remember,
too, that if you are using XMLUnit and your test case class extends XMLTestCase,
then you will not be able to also extend the class that defines your custom asser-
tions. If your custom assertions are class-level methods, then this does not present
a problem.

620 CHAPTER 17

Odds and ends
Even if your custom assertions build customized failure messages, provide an
optional parameter for an additional failure message. For example, when using
ListAssert, you automatically get a failure message telling you that the list does
not contain the expected item, but that does not tell you what the list and
expected item mean in your object model. You will likely want to add some
domain-specific detail to your failure message.

After you have collected a good number of custom assertions—say five or
more—move them into either a CustomAssert class (such as StringAssert, File-
Assert, or ListAssert, which are all part of JUnit-addons) or into a Base Test Case
(as GSBase does). This makes it easier to find the custom assertion when you want
to use it.

◆ Related

■ Chapter 15—GSBase

■ Chapter 16—JUnit-addons

17.5 Test a legacy method with no return value

◆ Problem

You need to test a method with no return value. You would like to be able to apply
recipe 2.2, “Test a method that returns nothing,” but you are unable to change
the production code to create an observable side effect. You need an alternative.

◆ Background

Perhaps the most annoying aspect of working with legacy code is that if the original
authors did not design for testability, then you have to jump through hoops to write
effective tests. In particular, there might be no publicly observable side effect for a
given behavior—that is, you want to test a class feature, but its behavior can only be
observed from within the class itself. Perhaps only privately accessible data is affected
with no way to query that data. In this situation you typically have three options:

1 Make the private data visible by adding a query method.

2 Write a higher-level (or more coarsely grained) test that involves other
production objects.

3 Bypass the Java protection mechanism in your tests.

JUnitX provides a way to do the latter, which might be the solution you need.

621Test a legacy method
with no return value
◆ Recipe

Create a PrivateTestCase using JUnitX that allows you to execute non-public
methods and gives you access to non-public data. Use this extra power to make
assertions about the state of the object before and after you invoke the desired
methods. Following are the steps to create a PrivateTestCase:

1 Create a subclass of PrivateTestCase.

2 In the package containing the class under test, create a subclass called
TestProxy of junitx.framework.TestProxy. You can find the code for this
class in listing 17.3. The code for this class is the same for every package
that requires it.

3 Write the test in your subclass of PrivateTestCase, which invokes the
method with no return value.

4 Use the PrivateTestCase methods get(), getInt(), getLong(), getBool-
ean(), and so on to make assertions about the private data that the
method changes.

There is one common design that creates a need to use this technique: the Observer/
Observable pattern as it is often implemented in Java. Even though Java provides its
own implementation of this in the java.util package, many programmers feel the
need to reproduce this design themselves. Because we are talking about legacy code,
let us first consider the code we wish to test, shown in listing 17.10.

package junit.cookbook.patterns;

public class Observable {
 private Observer[] observers = new Observer[9];
 private int totalObs = 0;
 private int state;

 public void attach(Observer o) {
 observers[totalObs++] = o;
 }

 public int getState() {
 return state;
 }

 public void setState(int in) {
 state = in;
 notifyObservers();
 }

Listing 17.10 An implementation of Observable

622 CHAPTER 17

Odds and ends
 private void notifyObservers() {
 for (int i = 0; i < totalObs; i++)
 observers[i].update();
 }
}

In its current state, the only way to verify that an Observer is correctly attached is
to attach one, trigger an update, and then verify that it was correctly notified.
While that does not sound like much to do, it is important to realize the imple-
mentation detail you need to know to write that simple test: that the way to trigger
an update is to invoke the method setState(). Your test depends on the mecha-
nism for notifying observers, even though all you want to verify is that Observable
registers your Observer correctly. We ought to be able to test that behavior inde-
pendently of the way observers are notified.

Listing 17.11 shows the test that uses JUnitX’s facility for gaining access to private
data. We have highlighted the key line of code in bold print. This is the line that uses
JUnitX’s get() method to retrieve the value of the private variable observers.

package junit.cookbook.patterns.test;

import junit.cookbook.patterns.Observable;
import junit.cookbook.patterns.Observer;
import junitx.framework.PrivateTestCase;
import junitx.framework.TestAccessException;

public class ObservableTest
 extends PrivateTestCase
 implements Observer {

 public ObservableTest(String name) {
 super(name);
 }

 public void testAttachObserver()
 throws TestAccessException {

 Observable observable = new Observable();
 observable.attach(this);

 Observer[] observers =
 (Observer[]) get(observable, "observers");

 assertTrue(arrayContains(observers, this));
 }

 private boolean arrayContains(
 Object[] objects,

Listing 17.11 ObservableTest

Self-Shunt pattern

Read private
instance variable

Refactor to
utility class

623Test a legacy method
with no return value
 Object object) {

 for (int i = 0; i < objects.length; i++)
 if (object.equals(objects[i]))
 return true;

 return false;
 }

 public void update() {
 }
}

This test implements the Self-Shunt pattern: the test case class itself implements a
required interface—in this case, Observer—to avoid the need to create an anony-
mous implementation and use it in the test case. We recommend reading Michael
Feathers’ “The ‘Self-Shunt’ Unit Testing Pattern” for details on this useful technique.

For the sake of completeness, listing 17.12 shows the standard implementation
of TestProxy. To gain access to non-public parts of a class, you must write a ver-
sion of this class in the same package as that class. The class must be named
TestProxy—JUnitX’s rules, not ours.

package junit.cookbook.patterns;

import junitx.framework.TestAccessException;

public class TestProxy extends junitx.framework.TestProxy {

 public Object newInstance(Object[] arguments)
 throws TestAccessException {

 try {
 return getProxiedClass()
 .getConstructor(arguments)
 .newInstance(arguments);
 }
 catch (Exception e) {
 throw new TestAccessException(
 "could not instantiate "
 + getTestedClassName(),
 e);
 }
 }

 public Object newInstanceWithKey(
 String constructorKey,
 Object[] arguments)
 throws TestAccessException {

Listing 17.12 TestProxy

Intentionally empty

Place in package containing production code

Class must
be named
TestProxy

624 CHAPTER 17

Odds and ends
 try {
 return getProxiedClass()
 .getConstructor(constructorKey)
 .newInstance(arguments);
 }
 catch (Exception e) {
 throw new TestAccessException(
 "could not instantiate "
 + getTestedClassName(),
 e);
 }
 }
}

◆ Discussion

We have already advised the reader against using non-public parts of a class to
write tests. Although there are varying opinions on the matter—as a search of the
Web certainly illustrates—we believe that in judging the trade-off between encap-
sulation and testability, we lean towards testability. What is the point of a good
design if we cannot directly verify the code’s behavior? If we have to choose
between working code and well-designed code, we opt for working code, because
we know that we can refactor working code. Now with JUnitX, there is another
option: we can maintain the production code’s design by writing more compli-
cated tests, such as the ones we have seen using JUnitX. We prefer simpler code to
more complicated code, and we hold tests to the same standards as production
code in this respect. For that reason, we tend to favor good designs that allow for
simple tests over (arguably) better designs that require more complicated tests.
You have to live with your own decision here, so do what you think is right.

We recommend the technique in this recipe either as a last resort or as a step-
ping-stone towards a more testable design.3 The idea here is to “jam in” the tests
you need so that you can feel confident refactoring the design towards something
more testable. You might think that adding a query method for the private data
you need violates encapsulation “just for testing.” Although we cannot argue with
that statement, we believe that making a class easier to test is worth a temporary
violation of encapsulation.4 Our typical approach is to break encapsulation, write

3 See recipe 4.7, “Control the order of some of your tests,” for another example of using a testing tool as
a temporary refactoring aid.

4 We say “temporary” because there is almost always another well-encapsulated solution to the same prob-
lem that is easier to test. We have a wonderful proof, but there is not enough space here to explain it.

625Test a private method if you must
the tests we need, and then refactor back towards a well-encapsulated solution
using the tests as a safety net. We think it’s better than nothing.

We also mentioned the possibility of writing Integration Tests in place of
Object Tests in this situation. It might be possible to use a collaborating class to
observe the side effect of the behavior you want to test. We prefer not to resort to
a less isolated test, because we lose the ability to identify the cause of a problem
from the particular test that fails. The decision to treat the legacy system as a black
box depends on your intent to change its design. If you plan to replace the legacy
system with another implementation (which you test thoroughly with JUnit), then
it might be wise to freeze some portion of the legacy system’s API, capture it in an
interface, and write tests against the new interface. As you build the replacement
system, you can verify its behavior against the interface-level tests to ensure its
behavior is consistent with the legacy system. If, however, you plan to refactor the
legacy system towards a more testable design, then JUnitX provides you the means
to begin creating a refactoring-friendly safety net. We applaud your courage and
advise that you proceed with caution.

◆ Related

■ 2.2—Test a method that returns nothing

■ Michael Feathers, “The ‘Self-Shunt’ Unit Testing Pattern”
(www.objectmentor.com/resources/articles/SelfShunPtrn.pdf)

17.6 Test a private method if you must

◆ Problem

You would like to test a private method and prefer not to or are unable to make
the method public “just for testing.”

◆ Background

Not everyone agrees with the philosophy of testing classes entirely through a public
interface. We respectfully agree to disagree. You have a private method that is com-
plex enough to warrant its own tests, but nevertheless is not important enough to
promote to the public interface or refactor to a collaborating class. You could test
the method indirectly through the public methods that invoke it, but you would
rather test it in isolation, which is a laudable goal.

626 CHAPTER 17

Odds and ends
It is also possible that you’ve been painted into this corner, inheriting code that
was not designed to be tested. In that case, your goal might be to create a refactor-
ing safety net before attempting to move code around. In that case, you might
have no choice but to test the private method before deciding how to refactor
the class.

◆ Recipe

JUnitX provides the ability to gain access to private methods. See recipe 17.5,
“Test a legacy method with no return value,” for instructions on how to enable
JUnitX to access the private parts of the class you want to test. After you have done
that, invoke the method invoke() which is described in table 17.1.

We can return to the example from recipe 17.5. In the previous recipe, we used
JUnitX to gain access to the private variable observers to verify that the method
attach() works. Here we invoke the private method notifyObservers() to verify
that it indeed notifies its observers. Here is the test, which uses EasyMock to
implement a Spy Observer:

public void testNotifyListeners() throws Exception {
 MockControl observerControl =
 MockControl.createControl(Observer.class);
 Observer observer = (Observer) observerControl.getMock();

 observer.update();
 observerControl.setVoidCallable();

 observerControl.replay();

 Observable observable = new Observable();
 observable.attach(observer);

 invoke(observable, "notifyObservers", new Object[0]);

 observerControl.verify();
}

Table 17.1 Parameters to JUnitX’s PrivateTestCase.invoke() method

Parameter Description

Object object The object on which to invoke the method

String methodKey The name of the method to invoke

Object[] arguments An array of the arguments to pass to the method. The array must be
the same length as the number of parameters the method expects.

627Test a private method if you must
We have highlighted in bold print the line of code that uses JUnitX to invoke the
private method notifyObservers() with no parameters. This test passes, telling
us that Observable works with a single observer. We could next attach the
observer more than once, and then expect the observable to invoke update()
more than once. With EasyMock, that is easy.

public void testMultipleListeners() throws Exception {
 MockControl observerControl =
 MockControl.createControl(Observer.class);
 Observer observer = (Observer) observerControl.getMock();

 observer.update();
 observerControl.setVoidCallable(5);

 observerControl.replay();

 Observable observable = new Observable();
 for (int i = 0; i < 5; i++)
 observable.attach(observer);

 invoke(observable, "notifyObservers", new Object[0]);

 observerControl.verify();
}

Using EasyMock, we say that we expect observer.update() to be invoked five
times. Next, we attach the same observer five times to the observable, in order to
receive five notifications. This test also passes, so we can be certain that the observ-
able supports five observers. Change five to whatever number you like, if you feel
you need to test further. We are satisfied and stop here. The key to this recipe is
seeing how to use JUnitX to invoke private methods. If you must do it—and we
recommend against it—then at least you know an easy way to do it.

◆ Discussion

So what’s so bad about testing private methods, anyway? Perhaps the greatest
problem is that private methods are private for a reason: the author intended
for nothing but this one class to have any knowledge of the particulars of its
implementation. Most notably, private methods might change—both their
behavior and their interface—with no expected impact to any other part of the
system. That is the power of private methods.5 In that sense, private methods
support refactoring very well by providing the design with a degree of freedom of

5 It is interesting, of course, that this notion of privacy is not universal and that other languages get along
swimmingly without it. It must be a matter of taste, because somehow people manage to write good soft-
ware in Smalltalk.

628 CHAPTER 17

Odds and ends
change. When we invoke a private method directly, though, we destroy this
degree of freedom. With each test we add for a private method, we introduce a
dependency: when the production code changes, the test has to change. In this
way, the private method introduces the same kind of dependency that a public
method introduces: if the method changes, then the tests must change. You might
as well make the method public at that point.

You can achieve private/public access control by placing public methods on
an interface and private methods on an implementation, much the way that an
EJB is designed. If you want to test a particular implementation of the interface,
then write tests for that implementation class; and if you want to test adherence to
the behavior of methods on the interface, then introduce an Abstract Test Case
(See recipe 2.6, “Test an interface”). Client code uses each implementation only
through its interface, restricting the methods it can invoke while allowing you to
test the implementation details as thoroughly as you need. In a sense, we can do
away with private/public access entirely by introducing the appropriate inter-
faces. We don’t recommend changing all your code tomorrow, but this is an idea
worth considering for new code.

◆ Related

■ 2.6—Test an interface

■ 17.5—Test a legacy method with no return value

Complete solutions
629

630 APPENDIX A

Complete solutions
Here you can find complete solutions to some of the problems we raise in the rec-
ipes. We did not want to confuse these recipes with code samples that are hun-
dreds of lines long, but we thought it important to include the complete
solutions, so we have done so here. Consult table A.1 to see the recipes to which
these solutions correspond.

A.1 Define a test suite in XML

◆ Solution

We first present the Parameterized Test Case that tests the split() method. The
custom test suite method in listing A.1 specifies the location of the XML docu-
ment containing the test data.

package junit.cookbook.suites.test;

import java.util.*;

import junit.cookbook.util.Money;
import junit.framework.*;

public class AllocateMoneyXmlBasedTest extends TestCase {
 private Money amountToSplit;
 private int nWays;
 private Map expectedCuts;
 private Map actualCuts;

 public AllocateMoneyXmlBasedTest(Money amountToSplit,
 int nWays, Map expectedCuts) {

Table A.1 The complete solutions, and the recipes to which they correspond

Complete solution Follow up to recipe

A.1—Define a test in XML 4.9—Define a test suite in XML

A.2—Parameterized Test Case overriding runTest() 4.8—Build a data-driven test suite

A.3—Ignore the order of elements in an XML document 9.2—Ignore the order of elements in an XML document

A.4—Test an XSL stylesheet in isolation 9.6—Test an XSL stylesheet in isolation

A.5—Validate XML documents in your tests 9.7—Validate XML documents in your tests

A.6—Aspect-based universal Spy 14.6—Test a Template Method’s implementation

A.7—Test a BMP entity bean 11.6—Test a BMP entity bean

Listing A.1 AllocateMoneyXmlBasedTest

631Define a test suite in XML
 super("testAllocate");

 this.amountToSplit = amountToSplit;
 this.nWays = nWays;
 this.expectedCuts = expectedCuts;
 }

 public static Test suite() throws Exception {
 TestSuite suite = new TestSuite();

 String testFileName
 = "/junit/cookbook/suites/test"
 + "/allocate-money-tests.xml";

 List tests = AllocateMoneyTestBuilder
 .makeTests(testFileName);

 for (Iterator i = tests.iterator(); i.hasNext();) {
 AllocateMoneyTest eachTest = (AllocateMoneyTest) i
 .next();
 suite.addTest(eachTest);
 }
 return suite;
 }

 public void testAllocate() {
 List allocatedAmounts = amountToSplit.split(nWays);
 Map actualCuts = organizeIntoBag(allocatedAmounts);
 assertEquals(expectedCuts, actualCuts);
 }

 private Map organizeIntoBag(List allocatedAmounts) {
 Map bagOfCuts = new HashMap();

 for (Iterator i = allocatedAmounts.iterator(); i
 .hasNext();) {

 Money eachAmount = (Money) i.next();
 incrementCountForCutAmount(bagOfCuts, eachAmount);
 }
 return bagOfCuts;
 }

 private void incrementCountForCutAmount(Map bagOfCuts,
 Money eachAmount) {

 Object cutsForAmountAsObject = bagOfCuts
 .get(eachAmount);

 int cutsForAmount;
 if (cutsForAmountAsObject == null) {
 cutsForAmount = 0;
 } else {
 cutsForAmount = ((Integer) cutsForAmountAsObject)
 .intValue();
 }

See listing 4.6

632 APPENDIX A

Complete solutions
 bagOfCuts.put(eachAmount,
 new Integer(cutsForAmount + 1));
 }
}

Next is the code for the object that builds the tests by parsing an XML document,
and converting each test element into an AllocateMoneyTest object.

package junit.cookbook.suites.test;

import java.io.*;
import java.text.ParseException;
import java.util.*;

import javax.xml.parsers.*;
import javax.xml.transform.TransformerException;

import junit.framework.Assert;

import org.apache.xpath.XPathAPI;
import org.w3c.dom.*;
import org.xml.sax.SAXException;

import com.diasparsoftware.java.util.Money;

public class AllocateMoneyTestBuilder extends Assert {
 private String testFileName;

 public AllocateMoneyTestBuilder(String testFileName) {
 this.testFileName = testFileName;
 }

 public static List makeTests(String testFileName)
 throws Exception {

 return new AllocateMoneyTestBuilder(testFileName)
 .makeTests();
 }

 private List makeTests() throws Exception {
 List tests = new ArrayList();

 Document document = makeDocument(testFileName);

 NodeList testNodes = XPathAPI.selectNodeList(
 document, "/tests/test");

 for (int i = 0; i < testNodes.getLength(); i++) {
 Node eachTestNode = testNodes.item(i);

 AllocateMoneyTest eachAllocateMoneyTest
 = makeAllocateMoneyTest(eachTestNode);

Listing A.2 AllocateMoneyTestBuilder

Test data
elements

633Define a test suite in XML
 tests.add(eachAllocateMoneyTest);
 }

 return tests;
 }

 private AllocateMoneyTest makeAllocateMoneyTest(Node eachTestNode)
 throws TransformerException, ParseException {

 Money amountToSplit = parseAsMoney(eachTestNode,
 "input/amount-to-split");

 int nWays = parseAsInt(eachTestNode,
 "input/number-of-ways");

 NodeList expectedCutNodes = XPathAPI.selectNodeList(
 eachTestNode, "expected-result/cut");

 Map expectedCuts = parseExpectedCuts(expectedCutNodes);

 AllocateMoneyTest eachAllocateMoneyTest = new AllocateMoneyTest(
 amountToSplit, nWays, expectedCuts);

 return eachAllocateMoneyTest;
 }

 private Document makeDocument(String documentFileName)
 throws FactoryConfigurationError,
 ParserConfigurationException, SAXException, IOException {

 DocumentBuilderFactory factory = DocumentBuilderFactory
 .newInstance();
 DocumentBuilder builder = factory.newDocumentBuilder();

 InputStream testDataAsStream = AllocateMoneyTestBuilder.class
 .getResourceAsStream(documentFileName);

 Document document = builder.parse(testDataAsStream);
 return document;
 }

 private Map parseExpectedCuts(NodeList expectedCutNodes)
 throws TransformerException, ParseException {

 Map expectedCuts = new HashMap();

 for (int i = 0; i < expectedCutNodes.getLength(); i++) {
 Node eachCutNode = expectedCutNodes.item(i);

 Money cutAmount = parseAsMoney(eachCutNode,
 "amount");
 int numberOfCuts = parseAsInt(eachCutNode, "number");

 expectedCuts.put(cutAmount, new Integer(
 numberOfCuts));
 }

Make a test
from each test

data element

634 APPENDIX A

Complete solutions
 return expectedCuts;
 }

 private static int parseAsInt(Node fromNode,
 String xpathToInt) throws TransformerException {

 String intAsString = getNodeText(fromNode, xpathToInt);
 return Integer.parseInt(intAsString);
 }

 private static String getNodeText(Node fromNode,
 String xpath) throws TransformerException {

 Text text = (Text) XPathAPI.selectSingleNode(fromNode,
 xpath).getFirstChild();

 return text.getData();
 }

 private static Money parseAsMoney(Node fromNode,
 String xpathToMoneyObject) throws TransformerException,
 ParseException {

 String moneyAsString = getNodeText(fromNode,
 xpathToMoneyObject);

 return new Money(moneyAsString);
 }
}

A.2 Parameterized Test Case overriding runTest()

◆ Solution

This is a Parameterized Test Case that overrides runTest() and provides a mean-
ingful name for each test. The test data is hard coded directly into the suite()
method, although it could easily be extracted into a file.

NOTE Be careful!—Overriding runTest() does not work if you are using a JUnit-
related framework that already overrides this method for its own pur-
pose. For example, you cannot employ this technique with Cactus,
because its test case classes override runTest() to determine whether to
execute the test entirely on the client or on the server. If your test case
class extends something other than junit.framework.TestCase, then
we recommend you look at the source for that customized test case class
and ensure that this approach is compatible with those customizations.

635Parameterized Test Case
overriding runTest()
package junit.cookbook.suites.test;

import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

import junit.cookbook.util.Money;
import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class AllocateMoneyTestOverridesRunTest extends TestCase {
 private Money amountToSplit;
 private int nWays;
 private Map expectedCuts;
 private Map actualCuts;

 public AllocateMoneyTestOverridesRunTest(
 String testName,
 Money amountToSplit,
 int nWays,
 Map expectedCuts) {

 super(testName);

 this.amountToSplit = amountToSplit;
 this.nWays = nWays;
 this.expectedCuts = expectedCuts;
 }

 public static Test suite() throws Exception {
 TestSuite suite = new TestSuite();

 Map oneGSixWays = new HashMap();
 oneGSixWays.put(new Money(166, 66), new Integer(2));
 oneGSixWays.put(new Money(166, 67), new Integer(4));
 suite.addTest(
 new AllocateMoneyTestOverridesRunTest(
 "testAllocate/Requires Rounding",
 new Money(1000, 0),
 6,
 oneGSixWays));

 Map oneGTwoWays =
 Collections.singletonMap(
 new Money(500, 0),
 new Integer(2));
 suite.addTest(
 new AllocateMoneyTestOverridesRunTest(
 "testAllocate/Goes Evenly",
 new Money(1000, 0),

Listing A.3 AllocateMoneyTestOverridesRunTest

636 APPENDIX A

Complete solutions
 2,
 oneGTwoWays));

 Map oneGOneWay =
 Collections.singletonMap(
 new Money(1000, 0),
 new Integer(1));
 suite.addTest(
 new AllocateMoneyTestOverridesRunTest(
 "testAllocate/One Way",
 new Money(1000, 0),
 1,
 oneGOneWay));

 return suite;
 }

 protected void runTest() throws Throwable {
 List allocatedAmounts = amountToSplit.split(nWays);
 Map actualCuts = organizeIntoBag(allocatedAmounts);
 assertEquals(expectedCuts, actualCuts);
 }

 private Map organizeIntoBag(List allocatedAmounts) {
 Map bagOfCuts = new HashMap();

 for (Iterator i = allocatedAmounts.iterator();
 i.hasNext();
) {

 Money eachAmount = (Money) i.next();
 int cutsForAmount =
 getNumberOfCutsForAmount(bagOfCuts, eachAmount);

 bagOfCuts.put(
 eachAmount,
 new Integer(cutsForAmount + 1));
 }
 return bagOfCuts;
 }

 private int getNumberOfCutsForAmount(Map cuts, Money amount) {

 Object cutsForAmountAsObject = cuts.get(amount);
 int cutsForAmount;
 if (cutsForAmountAsObject == null) {
 cutsForAmount = 0;
 }
 else {
 cutsForAmount =
 ((Integer) cutsForAmountAsObject).intValue();
 }
 return cutsForAmount;
 }
}

637Ignore the order of elements
in an XML document
The greatest difference between this and the other Parameterized Test Case is
that it overrides runTest(), allowing you to give the tests meaningful names.

A.3 Ignore the order of elements in an XML document

◆ Solution

As we prepared the complete code solution, we noticed that the test itself con-
tained some duplication, so we refactored a little further and the test is now about
as compact (yet still expressive) as it can be. This test, and the accompanying
methods, compares two web deployment descriptors to see whether the “action
servlet”has the expected initialization parameters.

package junit.cookbook.xmlunit.test;

import java.io.*;
import java.util.*;

import javax.xml.transform.TransformerException;

import org.apache.xpath.XPathAPI;
import org.custommonkey.xmlunit.*;
import org.w3c.dom.*;
import org.xml.sax.InputSource;

public class StrutsDeploymentTest extends XMLTestCase {
 public void testActionServletInitializationParameters()
 throws Exception {

 assertEquals(
 getInitializationParametersAsMapFromFile(
 "test/data/struts/expected-web.xml"),
 getInitializationParametersAsMapFromFile(
 "test/data/struts/web.xml"));
 }

 private Map getInitializationParametersAsMapFromFile(
 String filename) throws Exception {

 File webXmlFile = new File(filename);
 Document webXmlDocument = buildXmlDocument(webXmlFile);
 return getInitializationParametersAsMap(webXmlDocument);
 }

 private Document buildXmlDocument(File file)
 throws Exception {

 return XMLUnit.buildTestDocument(new InputSource(

Listing A.4 StrutsDeploymentTest

638 APPENDIX A

Complete solutions
 new FileInputStream(file)));
 }

 private Map getInitializationParametersAsMap(
 Document webXmlDocument) throws TransformerException {

 Map initializationParameters = new HashMap();

 NodeList initParamNodes = XPathAPI
 .selectNodeList(
 webXmlDocument.getDocumentElement(),
 "/web-app/servlet[servlet-name='action']/init-param");

 int matchingNodes = initParamNodes.getLength();

 assertFalse(
 "Found no nodes. Something wrong with XPath statement",
 matchingNodes == 0);

 for (int i = 0; i < matchingNodes; i++) {
 Node currentNode = initParamNodes.item(i);

 addInitializationParameter(
 initializationParameters, currentNode);
 }

 return initializationParameters;
 }

 private void addInitializationParameter(
 Map initializationParameters, Node currentNode) {

 String name = null;
 String value = null;

 NodeList childNodes = currentNode.getChildNodes();
 for (int i = 0; i < childNodes.getLength(); i++) {
 Node each = childNodes.item(i);
 if ("param-name".equals(each.getNodeName())) {
 name = getText(each);
 } else if ("param-value".equals(each.getNodeName())) {
 value = getText(each);
 }
 }

 initializationParameters.put(name, value);
 }

 private String getText(Node each) {
 String nodeText = each.getFirstChild().getNodeValue();

 // What a shame we have to innoculate ourselves
 // against the DOM API returning us a null!
 return (nodeText == null) ? null : nodeText.trim();
 }
}

B

639Test an XSL stylesheet in isolation
Verify that there are indeed matching nodes to check; otherwise, your XPath state-
ment could be wrong and the test will not notice it! Instead, it will happily match
empty node lists against each other and pass.

To make this code more reusable, simply extract the String action from the
XPath expression that finds the initialization parameter nodes. This is the name
of the Struts Action servlet, so it is a “magic value” for our purposes. Note, how-
ever, that param-name and param-value are (arguably) not magic values, as they
are part of the well-known and slow-to-change servlet specification. We suppose
that if the servlet specification changed tomorrow, you would have much bigger
problems than having hard coded those two values.

Notice that we used the XMLUnit convenience method buildTestDocument() to
parse our XML from a file. If your application uses a different parser than your
tests, then you can register the two parsers with XMLUnit so that it can parse your
control (expected) document with one parser and your test (actual) document
with the other. If, as in this example, there is no difference, then you can use
either buildControlDocument() or buildTestDocument() to parse XML, and rather
arbitrarily, we chose the latter.

A.4 Test an XSL stylesheet in isolation

◆ Solution

We have taken the solution that we presented in recipe 9.6, “Test an XSL
stylesheet in isolation,” and expanded and refactored it. We added two tests: one
for the case of one item in the shopcart and another for the case of three items in
the shopcart. In the process, we decided to verify the content of the shopcart
using plain XPath, rather than XMLUnit. Here is the entire test case class, fol-
lowed by the reasoning behind our approach.

package junit.cookbook.coffee.presentation.xsl.test;

import java.io.FileInputStream;
import java.io.StringReader;

import javax.xml.transform.*;
import javax.xml.transform.stream.StreamSource;
import junit.cookbook.coffee.display.ShopcartItemBean;

import org.apache.xpath.XPathAPI;

B

Listing A.5 DisplayShopcartXslTest

640 APPENDIX A

Complete solutions
import org.custommonkey.xmlunit.Transform;
import org.custommonkey.xmlunit.XMLTestCase;
import org.w3c.dom.*;

import com.diasparsoftware.java.util.Money;

public class DisplayShopcartXslTest extends XMLTestCase {
 private String displayShopcartXslFilename =
 "../CoffeeShopWeb/Web Content/WEB-INF"
 + "/style/displayShopcart.xsl";

 private Source displayShopcartXsl;

 protected void setUp() throws Exception {
 displayShopcartXsl =
 new StreamSource(
 new FileInputStream(displayShopcartXslFilename));
 }

 public void testEmpty() throws Exception {
 String shopcartXmlAsString =
 "<?xml version=\"1.0\" ?>"
 + "<shopcart>"
 + "<subtotal>$0.00</subtotal>"
 + "</shopcart>";

 Document displayShopcartDom =
 doDisplayShopcartTransformation(shopcartXmlAsString);

 assertShopcartTableExists(displayShopcartDom);
 assertSubtotalEquals("$0.00", displayShopcartDom);

 assertXpathNotExists(
 "//tr[@class='shopcartItem']",
 displayShopcartDom);
 }

 public void testOneItem() throws Exception {
 String shopcartXmlAsString =
 "<?xml version=\"1.0\" ?>"
 + "<shopcart>"
 + "<item id=\"762\">"
 + "<name>Special Blend</name>"
 + "<quantity>1</quantity>"
 + "<unit-price>$7.25</unit-price>"
 + "<total-price>$7.25</total-price>"
 + "</item>"
 + "<subtotal>$7.25</subtotal>"
 + "</shopcart>";

 Document displayShopcartDom =
 doDisplayShopcartTransformation(shopcartXmlAsString);

 assertShopcartTableExists(displayShopcartDom);
 assertSubtotalEquals("$7.25", displayShopcartDom);

641Test an XSL stylesheet in isolation
 assertShopcartItemAtRowIndexEquals(
 new ShopcartItemBean(
 "Special Blend",
 "762",
 1,
 Money.dollars(7, 25)),
 displayShopcartDom,
 1);
 }

 public void testThreeItems() throws Exception {
 // NOTE: Be sure to put line breaks after each <item>
 // tag to avoid overstepping the limit for characters
 // on a single line.

 String shopcartXmlAsString =
 "<?xml version=\"1.0\" ?>"
 + "<shopcart>\n"
 + "<item id=\"762\">"
 + "<name>Special Blend</name>"
 + "<quantity>1</quantity>"
 + "<unit-price>$7.25</unit-price>"
 + "<total-price>$7.25</total-price>"
 + "</item>\n"
 + "<item id=\"001\">"
 + "<name>Short</name>"
 + "<quantity>2</quantity>"
 + "<unit-price>$6.50</unit-price>"
 + "<total-price>$13.00</total-price>"
 + "</item>\n"
 + "<item id=\"803\">"
 + "<name>Colombiano</name>"
 + "<quantity>4</quantity>"
 + "<unit-price>$8.00</unit-price>"
 + "<total-price>$32.00</total-price>"
 + "</item>\n"
 + "<subtotal>$52.25</subtotal>"
 + "</shopcart>";

 Document displayShopcartDom =
 doDisplayShopcartTransformation(shopcartXmlAsString);

 assertShopcartTableExists(displayShopcartDom);
 assertSubtotalEquals("$52.25", displayShopcartDom);

 assertShopcartItemAtRowIndexEquals(
 new ShopcartItemBean(
 "Special Blend",
 "762",
 1,
 Money.dollars(7, 25)),
 displayShopcartDom,
 1);

642 APPENDIX A

Complete solutions
 assertShopcartItemAtRowIndexEquals(
 new ShopcartItemBean(
 "Short",
 "001",
 2,
 Money.dollars(6, 50)),
 displayShopcartDom,
 2);

 assertShopcartItemAtRowIndexEquals(
 new ShopcartItemBean(
 "Colombiano",
 "803",
 4,
 Money.dollars(8, 0)),
 displayShopcartDom,
 3);
 }

 public void assertSubtotalEquals(
 String expectedSubtotal,
 Document displayShopcartDom)
 throws TransformerException {

 assertXpathEvaluatesTo(
 expectedSubtotal,
 "//table[@name='shopcart']//td[@id='subtotal']",
 displayShopcartDom);
 }

 public void assertShopcartTableExists(
 Document displayShopcartDom)
 throws TransformerException {

 assertXpathExists(
 "//table[@name='shopcart']",
 displayShopcartDom);
 }

 public void assertShopcartItemAtRowIndexEquals(
 ShopcartItemBean expectedShopcartItemBean,
 Document displayShopcartDom,
 int rowIndex)
 throws TransformerException {

 Node productIdAttributeNode =
 XPathAPI.selectSingleNode(
 displayShopcartDom,
 "//tr[@class='shopcartItem']["
 + rowIndex
 + "]/@id"); B
 assertNotNull(

643Test an XSL stylesheet in isolation
 "Cannot find product ID at row index " + rowIndex,
 productIdAttributeNode);

 String productId =
 ((Attr) productIdAttributeNode).getValue();

 NodeList columnNodes =
 XPathAPI.selectNodeList(
 displayShopcartDom,
 "//tr[@class='shopcartItem']["
 + rowIndex
 + "]/td");

 String actualCoffeeName =
 getTextAtNode(columnNodes.item(0));
 String actualQuantityAsString =
 getTextAtNode(columnNodes.item(1));
 String actualUnitPriceAsString =

 getTextAtNode(columnNodes.item(2));

 ShopcartItemBean actualShopcartItemBean =
 new ShopcartItemBean(
 actualCoffeeName,
 productId,
 Integer.parseInt(
 actualQuantityAsString),
 Money.parse(
 actualUnitPriceAsString));

 assertEquals(
 "Wrong shopcart item in row #" + rowIndex,
 expectedShopcartItemBean,
 actualShopcartItemBean); D
 }

 public String getTextAtNode(Node tableDataNode) {
 return tableDataNode.getFirstChild().getNodeValue();
 }

 public Document doDisplayShopcartTransformation(
 String shopcartXmlAsString)
 throws
 TransformerConfigurationException,
 TransformerException {

 Source shopcartXml =
 new StreamSource(
 new StringReader(shopcartXmlAsString));

 Transform transform =
 new Transform(shopcartXml, displayShopcartXsl);

 return transform.getResultDocument();
 }
}

C

644 APPENDIX A

Complete solutions
Because the coffee product ID is not something we want to display to the end user,
but is something we want to verify, we need to include it in the table row as the
table row’s ID.

Rather than write four separate assertions for the information in the four col-
umns, we use plain XPath to retrieve the table data cells in this table row and cre-
ate a ShopcartItemBean from the data we display on the page.

This is the simpler assertion we can make as a result of the previous design deci-
sion. The alternative was to invoke assertXpathEvaluatesTo() for each column in
the row. We did not like the resulting duplication, which is the reason for our
design choice.

For completion, listing A.6 shows an XSL stylesheet that passes these tests.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 xmlns:xalan="http://xml.apache.org/xslt">

<xsl:template match="/">
 <html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=ISO-8859-1" />
 <meta name="GENERATOR" content="IBM WebSphere Studio" />
 <meta http-equiv="Content-Style-Type" content="text/css" />
 <link href="theme/Master.css" rel="stylesheet" type="text/css" />
 <title>Your Shopcart</title>
 </head>
 <body>

 <xsl:apply-templates />

 </body>
 </html>
</xsl:template>

<xsl:template match="shopcart">
 <h1>your shopcart contains</h1>
 <table name="shopcart" border="1">
 <thead>
 <tr>
 <th>Name</th>
 <th>Quantity</th>
 <th>Unit Price</th>
 <th>Total Price</th>
 </tr>

Listing A.6 XSL stylesheet for displaying a shopcart

B

C

D

645Validate XML documents in your tests
 </thead>
 <tbody>

 <xsl:apply-templates />

 <tr>
 <td colspan="3">Subtotal</td>
 <td class="subtotal" id="subtotal">
 <xsl:value-of select="subtotal" />
 </td>
 </tr>
 </tbody>
 </table>

 <form action="coffee" method="POST"><input type="submit"
 name="browseCatalog" value="Buy More Coffee!" /></form>
</xsl:template>

<xsl:template match="item">
 <tr class="shopcartItem" id="{@id}">
 <td><xsl:value-of select="name" /></td>
 <td><xsl:value-of select="quantity" /></td>
 <td><xsl:value-of select="unit-price" /></td>
 <td><xsl:value-of select="total-price" /></td>
 </tr>
</xsl:template>

</xsl:stylesheet>

Even for such a relatively simple web page we have had to write approximately 100
lines of custom assertions and XML parsing code to implement our tests. It would
likely be less effort to switch to HtmlUnit at this point, as we describe in recipe
12.10, “Verify web page content without a web server.”

A.5 Validate XML documents in your tests

◆ Solution

The following is an example of an XSL transformation service that validates
incoming XML documents on demand. Although this solution validates only the
XML document to transform, you could easily use the same approach to validate
the XSL stylesheet as well. The keys to the solution are:

1 Provide a method to enable document validation.

2 Provide a method to ask whether the document is valid.

3 Provide a method to return a collection of validation problems, if any.

646 APPENDIX A

Complete solutions
package junit.cookbook.xmlunit;

import java.io.*;
import java.util.ArrayList;
import java.util.Collection;

import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

import org.apache.xerces.parsers.DOMParser;
import org.w3c.dom.Document;
import org.xml.sax.*;

public class TransformXmlService {
 private Transformer transformer;
 private Reader stylesheetReader;
 private boolean sourceDocumentValidationEnabled;
 private Collection validationProblems = new ArrayList();

 public TransformXmlService(Reader stylesheetReader) {
 this.stylesheetReader = stylesheetReader;
 }

 public void transform(StreamSource source, Result result)
 throws TransformerException, SAXException, IOException { B
 if (sourceDocumentValidationEnabled) {
 Document sourceDocument =
 validateAndReturnSourceDocument(source);

 getTransformer().transform(
 new DOMSource(sourceDocument),
 result);
 }
 else {
 getTransformer().transform(source, result);
 }
 }

 private Document validateAndReturnSourceDocument(
 StreamSource source)
 throws
 SAXNotRecognizedException,
 SAXNotSupportedException,
 SAXException,
 IOException {

 DOMParser parser = new DOMParser();
 parser.setFeature(
 "http://xml.org/sax/features/validation",
 true); C

Listing A.7 TransformXmlService

647Validate XML documents in your tests
 validationProblems.clear();

 parser.setErrorHandler(new ErrorHandler() { D
 public void error(SAXParseException exception)
 throws SAXException {

 validationProblems.add(exception);
 }

 public void fatalError(SAXParseException exception)
 throws SAXException {

 validationProblems.add(exception);
 }

 public void warning(SAXParseException exception)
 throws SAXException {
 }
 });

 parser.parse(new InputSource(source.getReader()));
 Document sourceDocument = parser.getDocument();
 return sourceDocument;
 }

 public void setTransformer(Transformer transformer) {
 this.transformer = transformer;
 }

 public Transformer getTransformer() {
 if (transformer == null) {
 try {
 transformer =
 TransformerFactory.newInstance().newTransformer(
 new StreamSource(stylesheetReader));
 }

 catch (TransformerConfigurationException e) {
 throw new RuntimeException(
 "Unable to create transformer",
 e);
 }
 }
 return transformer;
 }

 public void transform(
 String xmlDocumentAsString,
 Writer resultWriter)
 throws TransformerException, SAXException, IOException {

 transform(
 new StreamSource(new StringReader(xmlDocumentAsString)),
 new StreamResult(resultWriter));
 }

648 APPENDIX A

Complete solutions
 public void setSourceDocumentValidationEnabled(
 boolean sourceDocumentValidationEnabled) {

 this.sourceDocumentValidationEnabled =
 sourceDocumentValidationEnabled;
 }

 public boolean isSourceDocumentValid() {
 if (sourceDocumentValidationEnabled)
 return validationProblems.isEmpty();
 else
 return true;
 }

 public Collection getValidationProblems() {
 return validationProblems;
 }
}

We must demand the incoming XML document as a StreamSource, rather than
just a Source, in order to be able to run it through an XML parser. This adds a
constraint to clients using this solution. If you need to process documents from a
SAXSource or a DOMSource, then you need to adapt this solution slightly.

Consult your XML parser’s documentation—or write some Learning Tests—to
verify that your XML parser supports this feature. We verified this with the Xerces
2.5.0 parser.

The key to the solution: this is the standard way to collect errors during XML pars-
ing, including validation errors. You can choose here which kinds of messages to
collect. In particular, we ignore warnings, although you might wish to treat them
as errors worth reporting.

The last three methods are the ones your tests will use to enable validation and
verify that incoming XML documents are valid. Your XML processing service, what-
ever it does, should then decide whether to invoke validateAndReturnSourceDoc-
ument(). This performs the actual validation. Although we have used this
technique in the context of XSL transformation, you can use this technique any-
where you process XML documents. In the interest of performance, however, do
not parse and validate the XML document unless the client has enabled valida-
tion, as validating large XML documents is particularly expensive.

B

C

D

649Aspect-based universal Spy
A.6 Aspect-based universal Spy

◆ Solution

We need an aspect to intercept every method invocation in a test and record
those invocations so that we can verify them later. This is much like method trac-
ing, which is a core application of Aspect-Oriented Programming. Many thanks to
Ramnivas Laddad, author of AspectJ in Action (Manning, 2003) for his solution,
which uses the Wormhole pattern in chapter 8 of that book.

First, let us look at the class under test. To illustrate the power of this tech-
nique, we want to verify that a public method invokes a private method, some-
thing we would ordinarily need to do by observing some side effect of the private
method. In the case of this trivial class, there is no side effect to observe!

package com.mycompany;

public class SomeClass {
 public void publicMethod() {
 privateMethod();
 }

 private void privateMethod() { }
}

We choose to test this using the “Log String” technique that Kent Beck describes in
Test-Driven Development: By Example. First we collect the names of the invoked meth-
ods, and then we verify the contents of that collection for the methods we expect.
Unlike Kent’s implementation, however, we do not need to implement a mock
version of SomeClass that collects the name of each invoked method. Here is the
test we want to write.

package com.mycompany.tests;

import com.mycompany.SomeClass;
import java.util.*;
import junit.cookbook.patterns.test.aspectj.UniversalSpyFixture;
import junit.framework.TestCase;

public class SomeClassTest extends UniversalSpyFixture {
 public void testPublicInvokesPrivate()
 throws Exception {

 setExpectedMethodNames(
 Arrays.asList(
 new Object[]{"publicMethod", "privateMethod"}));

Listing A.8 Testing SomeClass with the universal Spy

650 APPENDIX A

Complete solutions
 new SomeClass().publicMethod();
 }
}

Here we simply specify the names of the methods we expect to be invoked, then
invoke the one method that causes the other to be invoked. Think of a long line of
dominoes: we expect them all to fall after we topple only the first one. We achieve
this method tracing without having to write a mock version of SomeClass. Instead,
we use a universal Spy consisting of three parts.

■ The Spy itself, which contains the list of methods invoked during a test

■ The UniversalSpyFixture, a test fixture that contains a universal Spy cap-
turing all the relevant method invocations for each test

■ An aspect that intercepts method invocations and records the name of the
invoked method (If you are not familiar with AspectJ, we recommend Ram-
nivas’s excellent book on the subject.)

In decreasing order of complexity (and therefore interest), let us first look at the
aspect in question.

package junit.cookbook.patterns.test.aspectj;

import java.util.*;
import junit.framework.*;

public aspect RecordTestCaseInvokedMethodNames {
 public pointcut testExecution(UniversalSpyFixture testCase)
 : execution(* UniversalSpyFixture+.test*(..))
 && this(testCase);

 public pointcut anyMethodInvocation(UniversalSpyFixture testCase)
 : execution(* *.*(..))
 && cflowbelow(testExecution(testCase))
 && !within(junit.cookbook.patterns.test.aspectj.*);

 before(UniversalSpyFixture testCase)
 : anyMethodInvocation(testCase) {

 testCase.getSpy().signalInvokedMethod(
 thisJoinPointStaticPart.getSignature().getName());
 }

 after(UniversalSpyFixture testCase) returning
 : testExecution(testCase) {

 Assert.assertEquals(

Listing A.9 The universal Spy aspect

651Aspect-based universal Spy
 testCase.getExpectedMethodNames(),
 testCase.getSpy().getInvokedMethodNames());
 }
}

The pointcut1 anyMethodInvocation() intercepts any method invoked within a
test case, excluding methods of the universal Spy machinery itself, which do not
interest us anyway. The two pieces of advice are simple enough: before invoking
any method within the execution of a test, have the universal Spy record the name
of the method about to be invoked. After the test finishes executing, verify that
the expected method names (which the test itself sets at some point) matches the
collection of methods actually invoked.

The UniversalSpyFixture simply provides a fixture with a universal Spy and a
placeholder for the list of method names you expect each test to invoke.

package junit.cookbook.patterns.test.aspectj;

import java.util.*;
import junit.framework.TestCase;

public abstract class UniversalSpyFixture extends TestCase {
 private List expectedMethodNames;
 private UniversalSpy spy = new UniversalSpy();

 public List getExpectedMethodNames() {
 return expectedMethodNames;
 }

 public void setExpectedMethodNames(List names) {
 expectedMethodNames = names;
 }

 public UniversalSpy getSpy() {
 return spy;
 }
}

And finally the UniversalSpy itself is a collector for invoked method names.

1 A pointcut is a construct that selects execution points in a program as well as their surrounding context.
For a more detailed definition, and more information about cross-cutting elements in Aspect-Oriented
Programming, see Ramnivas Laddad, AspectJ in Action (Manning, 2003), section 2.1.2.

Listing A.10 UniversalSpyFixture

652 APPENDIX A

Complete solutions
package junit.cookbook.patterns.test.aspectj;

import java.util.*;

public class UniversalSpy {
 private List invokedMethodNames = new ArrayList();

 protected void signalInvokedMethod(String methodName) {
 invokedMethodNames.add(methodName);
 }

 public List getInvokedMethodNames() {
 return Collections.unmodifiableList(invokedMethodNames);
 }
}

You can reuse this code as is in your tests, as long as you do not mind recording all
method invocations inside each test. If you need to narrow your focus to, say, an
individual class, then you need to change the aspect RecordTestCaseInvoked-
MethodNames, making its pointcuts match only those methods or objects in which
you have an interest.

NOTE Building the solution—Compiling aspects and weaving them into source
code is a little different than compiling plain vanilla Java code. In particu-
lar, you need to compile all the source files and all the desired aspects
together at one time.2 If you attempt to compile them separately, then
you will not get the desired result.3 You need to compile the code with
this command (the important part is the sourceroots value, and not the
directory to which the compiled code is to be written):

ajc -sourceroots "com/mycompany;

➾ junit/cookbook/patterns/test/aspectj" -d .

Listing A.11 UniveralSpy

2 See Ramnivas Laddad, AspectJ in Action (Manning, 2003), section 3.4, “Tips and tricks.”
3 Worse, as we found out, the test passes even when the required aspect is not weaved into the code. The

simplest solution we found was to move the assertion from the aspect into the test to ensure that the
assertion is executed and fails when the aspect is not weaved into the code.

653Test a BMP entity bean
A.7 Test a BMP entity bean

◆ Solution

Starting with a BMP entity bean that implements everything in one place, we
applied a few refactorings to reach a final design that is significantly easier to test.
Here is where we started—this is the original BMP entity bean. This listing is par-
ticularly long at about 250 lines, and it is just the beginning. There is a large
amount of code in this solution.

package junit.cookbook.coffee.model.ejb;

import java.rmi.RemoteException;
import java.sql.*;

import javax.ejb.*;
import javax.naming.*;
import javax.sql.DataSource;
import junit.cookbook.coffee.data.*;

public class OrderBmpBean implements EntityBean {
 private EntityContext context;
 private DataSource dataSource;

 private Integer customerId;

 public Integer getCustomerId() {
 return customerId;
 }

 public Integer ejbFindByPrimaryKey(Integer orderId)
 throws FinderException, RemoteException {

 Connection connection = null;
 PreparedStatement statement = null;

 try {
 connection = getConnection();

 statement =
 connection.prepareStatement(
 "select orderId from orders.orders "
 + "where orderId = ?");

 statement.setInt(1, orderId.intValue());
 ResultSet resultSet = statement.executeQuery();

 if (resultSet.next() == false) {
 throw new ObjectNotFoundException(
 "Order ID <" + orderId.toString() + ">");
 }

Listing A.12 A BMP entity bean for orders

654 APPENDIX A

Complete solutions
 return orderId;
 }
 catch (NamingException report) {
 throw new FinderException(report.toString());
 }
 catch (SQLException report) {
 throw new FinderException(report.toString());
 }
 finally {
 try {
 if (statement != null)
 statement.close();

 if (connection != null)
 connection.close();
 }
 catch (SQLException ignored) {
 }
 }
 }

 public Integer ejbCreate(Integer orderId, Integer customerId)
 throws CreateException, RemoteException {

 this.customerId = customerId;

 Connection connection = null;
 PreparedStatement statement = null;

 try {
 connection = getConnection();

 statement =
 connection.prepareStatement(
 "insert into orders.orders (orderId, customerId) "
 + "values (?, ?)");

 statement.setInt(1, orderId.intValue());
 statement.setInt(2, customerId.intValue());

 statement.executeUpdate();

 return orderId;
 }
 catch (Exception wrap) {
 throw new EJBException(
 "Unable to create order with ID <" + orderId + ">",
 wrap);
 }
 finally {
 try {
 if (statement != null)
 statement.close();

 if (connection != null)

655Test a BMP entity bean
 connection.close();
 }
 catch (SQLException ignored) {
 }
 }
 }

 public void ejbPostCreate(Integer orderId, Integer customerId) {
 }

 private Connection getConnection()
 throws SQLException, NamingException {
 return getDataSource().getConnection();
 }

 private DataSource getDataSource() throws NamingException {
 if (dataSource == null) {
 Context rootContext = new InitialContext();
 Object object =
 rootContext.lookup("java:/comp/env/jdbc/OrderData");
 dataSource = (DataSource) object;
 }
 return dataSource;
 }

 public void ejbLoad() throws EJBException, RemoteException {
 Connection connection = null;
 PreparedStatement statement = null;
 ResultSet resultSet = null;

 Integer orderId = (Integer) context.getPrimaryKey();

 try {
 connection = getConnection();

 statement =
 connection.prepareStatement(
 "select * from orders.orders where orderId = ?");

 statement.setInt(1, orderId.intValue());

 resultSet = statement.executeQuery();
 resultSet.next();

 customerId = new Integer(resultSet.getInt("customerId"));
 }
 catch (Exception wrap) {
 throw new EJBException(
 "Unable to load order with ID <" + orderId + ">",
 wrap);
 }
 finally {
 try {
 if (resultSet != null)
 resultSet.close();

656 APPENDIX A

Complete solutions
 if (statement != null)
 statement.close();

 if (connection != null)
 connection.close();
 }
 catch (SQLException ignored) {
 }
 }
 }

 public void ejbRemove()
 throws RemoveException, EJBException, RemoteException {
 Connection connection = null;
 PreparedStatement statement = null;

 Integer orderId = (Integer) context.getPrimaryKey();

 try {
 connection = getConnection();

 statement =
 connection.prepareStatement(
 "delete from orders.orders where orderId = ?");

 statement.setInt(1, orderId.intValue());

 statement.executeUpdate();
 }
 catch (Exception wrap) {
 throw new EJBException(
 "Unable to remove order with ID <" + orderId + ">",
 wrap);
 }
 finally {
 try {
 if (statement != null)
 statement.close();

 if (connection != null)
 connection.close();
 }
 catch (SQLException ignored) {
 }
 }
 }

 public void ejbStore() throws EJBException, RemoteException {
 Connection connection = null;
 PreparedStatement statement = null;

 Integer orderId = (Integer) context.getPrimaryKey();

 try {
 connection = getConnection();

657Test a BMP entity bean
 statement =
 connection.prepareStatement(
 "update orders.orders set customerId = ? "
 + "where orderId = ?");

 statement.setInt(1, customerId.intValue());
 statement.setInt(2, orderId.intValue());

 statement.executeUpdate();
 }
 catch (Exception wrap) {
 throw new EJBException(
 "Unable to store order with ID <" + orderId + ">",
 wrap);
 }
 finally {
 try {
 if (statement != null)
 statement.close();

 if (connection != null)
 connection.close();
 }
 catch (SQLException ignored) {
 }
 }
 }

 public void setEntityContext(EntityContext context)
 throws EJBException, RemoteException {

 this.context = context;
 }

 public void unsetEntityContext()
 throws EJBException, RemoteException {

 this.context = null;
 }

 public void ejbActivate() throws EJBException, RemoteException {
 }

 public void ejbPassivate() throws EJBException, RemoteException {
 }
}

In its current state, this entity bean needs to be tested in the container, and so it
requires working test data, a correctly populated JNDI directory, and all the associ-
ated startup and shutdown costs. First, we moved almost all the code out to a new
class, leaving behind only JNDI lookups and managing the primary key. Here is
the entity bean after this refactoring.

658 APPENDIX A

Complete solutions
package junit.cookbook.coffee.model.ejb;

import java.rmi.RemoteException;

import javax.ejb.*;
import javax.naming.*;
import javax.sql.DataSource;

import junit.cookbook.coffee.data.OrderRow;
import junit.cookbook.coffee.data.jdbc.*;

public class OrderBmpBean implements EntityBean {
 private EntityContext context;
 private OrderBmpBeanLogic logic;

 public String getCustomerId() {
 return logic.getCustomerId();
 }

 public void setCustomerId(String customerId) {
 logic.setCustomerId(customerId);
 }

 public void setEntityContext(EntityContext context)
 throws EJBException, RemoteException {

 this.context = context;
 makeBeanLogicObject();
 }

 protected void makeBeanLogicObject() {
 DataSourceConnectionProvider connectionProvider =
 new DataSourceConnectionProvider(lookupDataSource());

 OrderStoreCommandExecuter orderStoreCommandExecuter =
 new OrderStoreCommandExecuterJdbcImpl(
 new OrderStoreCommandExecuterEjbImpl(
 new SimpleOrderStoreCommandExecuter()),
 connectionProvider);

 this.logic =
 new OrderBmpBeanLogic(
 new OrderStoreJdbcImpl(),
 orderStoreCommandExecuter);
 }

 public void unsetEntityContext()
 throws EJBException, RemoteException {

 this.context = null;
 }

 public Integer ejbFindByPrimaryKey(Integer orderId)
 throws FinderException, RemoteException {

Listing A.13 A thinner BMP entity bean for orders

659Test a BMP entity bean
 return logic.ejbFindByPrimaryKey(orderId);
 }

 public Integer ejbCreate(Integer orderId, String customerId)
 throws CreateException, RemoteException {

 return logic.ejbCreate(orderId, customerId);
 }

 public void ejbPostCreate(Integer orderId, String customerId) {
 }

 public void ejbLoad() throws EJBException, RemoteException {
 logic.ejbLoad(getOrderId());
 }

 public void ejbRemove()
 throws RemoveException, EJBException, RemoteException {

 logic.ejbRemove(getOrderId());
 }

 public void ejbStore() throws EJBException, RemoteException {
 logic.ejbStore();
 }

 public void ejbActivate() throws EJBException, RemoteException {
 }

 public void ejbPassivate() throws EJBException, RemoteException {
 }

 public static DataSource lookupDataSource() {
 try {
 Context rootContext = new InitialContext();
 Object object =
 rootContext.lookup("java:comp/env/jdbc/OrderData");
 return (DataSource) object;
 }
 catch (NamingException wrap) {
 throw new EJBException(
 "Unable to retrieve data source",
 wrap);
 }
 }

 public Integer getOrderId() {
 return (Integer) context.getPrimaryKey();
 }
}

There is a combination of paper-thin EJB lifecycle methods, a JNDI lookup, and a
considerable amount of work to create the OrderBmpBeanLogic object, which we

660 APPENDIX A

Complete solutions
have highlighted in bold print. This is where most of the action now takes place.
This Bean Logic class uses an OrderStore—a persistent store for order objects—
and a specialized OrderStoreCommandExecuter, which hides the ugliness of han-
dling JDBC exceptions and generating EJB exceptions. The OrderStore is modeled
after the CatalogStore we developed in chapter 10, “Testing and JDBC,” so we sim-
ply present the interface first, and then the JDBC implementation that our entity
bean needs to store order objects in the database. The OrderStore operates on
OrderRow objects—each represents a row in the orders.orders table, relating each
order to the customer who placed it, using their primary keys.

package junit.cookbook.coffee.data;

public interface OrderStore {
 boolean exists(Integer orderId);
 void create(OrderRow orderRow);
 OrderRow findByOrderId(Integer orderId);
 void remove(Integer orderId);
 void update(final OrderRow orderRow);
}

Each of these methods corresponds to an EJB lifecycle method. For example,
OrderBmpBean.ejbFindByPrimaryKey() needs to check that the OrderRow exists
using OrderStore.exists(). The JDBC implementation of OrderStore uses the
Diasparsoft Toolkit JDBC classes to simplify its implementation. The result is the
following class named OrderStoreJdbcImpl.

package junit.cookbook.coffee.data.jdbc;

import java.sql.*;
import java.util.*;

import junit.cookbook.coffee.data.*;
import junit.cookbook.coffee.model.*;

import com.diasparsoftware.java.sql.PreparedStatementData;
import com.diasparsoftware.jdbc.*;

public class OrderStoreJdbcImpl implements OrderStore {
 private JdbcQueryExecuter executer;

 public void open(Connection connection) {
 this.setExecuter(new JdbcQueryExecuter(connection));
 }

 public void close() {
 this.executer = null;
 }

Listing A.14 JDBC implementation of OrderStore

661Test a BMP entity bean
 private JdbcQueryExecuter getExecuter() {
 if (executer == null) {
 throw new IllegalStateException(
 "Please provide me with a database connection first.");
 }
 return executer;
 }

 private void setExecuter(JdbcQueryExecuter executer) {
 this.executer = executer;
 }

 public boolean exists(Integer orderId) {
 PreparedStatementData countOrdersByIdStatementData =
 new PreparedStatementData(
 "select count(orderId) from orders.orders "
 + "where orderId = ?",
 Collections.singletonList(orderId));

 int rowCount =
 getExecuter().executeCountStatement(
 countOrdersByIdStatementData);

 return (rowCount > 0);
 }

 public void create(final OrderRow orderRow) {

 List parameters = new ArrayList() {
 {
 add(orderRow.orderId);
 add(orderRow.customerId);
 }
 };

 PreparedStatementData insertStatementData =
 new PreparedStatementData(
 "insert into orders.orders (orderId, customerId) "
 + "values (?, ?)",
 parameters);

 getExecuter().executeInsertStatement(insertStatementData);
 }

 public OrderRow findByOrderId(final Integer orderId) {
 PreparedStatementData selectStatementData =
 new PreparedStatementData(
 "select * from orders.orders where orderId = ?",
 Collections.singletonList(orderId));

 List orders =
 getExecuter().executeSelectStatement(
 selectStatementData,
 new OrderRowMapper());

662 APPENDIX A

Complete solutions
 return (OrderRow) orders.get(0);
 }

 public void remove(Integer orderId) {
 PreparedStatementData deleteStatementData =
 new PreparedStatementData(
 "delete from orders.orders where orderId = ?",
 Collections.singletonList(orderId));

 getExecuter().executeDeleteStatement(deleteStatementData);
 }

 public void update(final OrderRow orderRow) {
 List parameters = new ArrayList() {
 {
 add(orderRow.customerId);
 add(orderRow.orderId);
 }
 };

 PreparedStatementData updateStatementData =
 new PreparedStatementData(
 "update orders.orders set customerId = ? "
 + "where orderId = ?",
 parameters);

 getExecuter().executeUpdateStatement(updateStatementData);
 }

 public static class OrderRowMapper extends JdbcRowMapper {
 public Object makeDomainObject(ResultSet row)
 throws SQLException {

 Integer orderId = (Integer) row.getObject("orderId");
 String customerId = row.getString("customerId");

 return new OrderRow(orderId, customerId);
 }
 }
}

Each of the methods of this class follows the same basic rhythm: collect the parame-
ters, create a PreparedStatementData object, and then execute the corresponding
SQL statement. To enable transactional behavior, we want the JDBC connection to
be passed in from outside. For this reason, we originally had a constructor that
took a connection as a parameter; however, to avoid unnecessary object creation
and to simplify other code, we moved to an open/close design: to use the JDBC-
based OrderStore, you “open” it with a database connection, then “close” it when
you have finished. Closing the JDBC-based OrderStore does not close the database
connection—never close connections you do not own—but causes it to release its

663Test a BMP entity bean
reference to the connection, so as not to leak connections. So much for Order-
Store and its JDBC-based implementation.

Next are the OrderStoreCommandExecuters. These evolved when we extracted
duplication out of the original entity bean’s lifecycle methods. Notably, each
method was doing two things:

■ Obtaining a database connection, invoking some JDBC client code, and
closing the database connection.

■ Invoking some OrderStore code, and wrapping all DataStoreExceptions
into EJBExceptions.

We wanted to remove this duplication, so we extracted the first pattern into its
own method, then moved that method into its own class. Here is the result. When-
ever we see “invoke some code” inside a recurring implementation pattern, we
know that the Command pattern is lurking in there, and sure enough, as we refac-
tored, the class OrderStoreCommand appeared, as if out of nowhere. We had origi-
nally implemented the JDBC client code in Closure objects,4 but realized that a
Command is essentially just a type-safe Closure, so we created the class Order-
StoreCommand and the associated command executers. This first one ensures that
when we execute an OrderStoreCommand on a JDBC-based OrderStore, we manage
the database connection correctly.

package junit.cookbook.coffee.data.jdbc;

import java.sql.*;

import junit.cookbook.coffee.data.*;

public class OrderStoreCommandExecuterJdbcImpl
 implements OrderStoreCommandExecuter {

 private OrderStoreCommandExecuter executer;
 private ConnectionProvider connectionProvider;

 public OrderStoreCommandExecuterJdbcImpl(
 OrderStoreCommandExecuter executer,
 ConnectionProvider connectionProvider) {

 this.executer = executer;
 this.connectionProvider = connectionProvider;
 }

4 See the Jakarta Commons Collections package for more about the interface Closure.
(http://jakarta.apache.org/commons/collections.html)

Listing A.15 OrderStoreCommand

664 APPENDIX A

Complete solutions
 public void execute(
 OrderStore orderStore,
 OrderStoreCommand orderStoreCommand,
 String exceptionMessage) {

 OrderStoreJdbcImpl orderStoreJdbcImpl =
 (OrderStoreJdbcImpl) orderStore;

 Connection connection = connectionProvider.getConnection();
 orderStoreJdbcImpl.open(connection);

 try {
 executer.execute(
 orderStoreJdbcImpl,
 orderStoreCommand,
 exceptionMessage);
 }
 finally {
 try {
 orderStoreJdbcImpl.close();
 connection.close();
 }
 catch (SQLException ignored) {
 }
 }
 }
}

You can see how this class implements the pattern: obtain a connection, open the
JDBC-based OrderStore, execute the JDBC client code (the “order store com-
mand”), and then ensure (with a finally block) that the connection is closed. We
also implemented the second pattern—wrapping a DataStoreException inside an
EJBException—as a command executer. Here is the code.

package junit.cookbook.coffee.model.ejb;

import javax.ejb.EJBException;

import junit.cookbook.coffee.data.*;

import com.diasparsoftware.store.DataStoreException;

public class OrderStoreCommandExecuterEjbImpl
 implements OrderStoreCommandExecuter {

 private OrderStoreCommandExecuter executer;

 public OrderStoreCommandExecuterEjbImpl(
 OrderStoreCommandExecuter executer) {

 this.executer = executer;
 }

Listing A.16 EJB-based OrderStoreCommand executer

665Test a BMP entity bean
 public void execute(
 OrderStore orderStore,
 OrderStoreCommand orderStoreCommand,
 String exceptionMessage) {

 try {
 executer.execute(
 orderStore,
 orderStoreCommand,
 exceptionMessage);
 }
 catch (DataStoreException wrap) {
 throw new EJBException(exceptionMessage, wrap);
 }
 }
}

These command executers implement the Decorator pattern: each performs its
specific work, then asks the next command executer to do its work, eventually
ending with a command executer that simply executes the command. This pat-
tern makes it simpler to add behavior to the act of executing a command by liter-
ally adding behavior on top of behavior. We can reuse the JDBC Decorator
without the EJB Decorator when we abandon BMP entity beans and move to plain-
vanilla Java objects using JDBC. All we have to do is create a JDBC-based command
executer that wraps the “just execute the command” command executer, which
we named SimpleOrderStoreCommandExecuter. Here is the code:

package junit.cookbook.coffee.data;

public class SimpleOrderStoreCommandExecuter
 implements OrderStoreCommandExecuter {

 public void execute(
 OrderStore orderStore,
 OrderStoreCommand orderStoreCommand,
 String exceptionMessage) {

 orderStoreCommand.execute(orderStore);
 }
}

We think this is worthy of a name starting with “simple.” It even ignores the excep-
tion message, as it does not handle any exceptions. Returning to OrderBmpBean-
Logic, we see how these command executers fit together.

OrderStoreCommandExecuter orderStoreCommandExecuter =
 new OrderStoreCommandExecuterJdbcImpl(
 new OrderStoreCommandExecuterEjbImpl(

666 APPENDIX A

Complete solutions
 new SimpleOrderStoreCommandExecuter()),
 connectionProvider);

When OrderBmpBeanLogic uses this command executer to execute an OrderStore-
Command, it first manages the database connection properly (JDBC command exe-
cuter), then wraps any exceptions in an EJBException (EJB command executer),
then finally executes the command. If we were to reuse the OrderBmpBeanLogic out-
side the context of an EJB (and really at that point we should invent a better
name), then we could change the above code to the following, removing the EJB
command executer and thereby letting DataStoreExceptions be reported as they
are. If you were to remove EJBs from a typically designed J2EE application, think of
all the exception handlers you would have to change! Here, it is a one-line change.

OrderStoreCommandExecuter orderStoreCommandExecuter =
 new OrderStoreCommandExecuterJdbcImpl(
 new SimpleOrderStoreCommandExecuter()),
 connectionProvider);

No more EJBExceptions! It really is that simple. Now enough is enough: let us
look at OrderBeanBmpLogic. It contains methods that correspond to the entity
bean lifecycle methods, and to create one of these, you supply an OrderStore and
a command executer. This class essentially does what the corresponding entity
bean would do without relying on an EJB container or even a database-aware
OrderStore. It would work entirely in memory too!

package junit.cookbook.coffee.model.ejb;

import java.rmi.RemoteException;

import javax.ejb.*;

import junit.cookbook.coffee.data.*;

public class OrderBmpBeanLogic {
 private OrderStore orderStore;
 private OrderStoreCommandExecuter executer;
 private OrderRow orderRow;

 public OrderBmpBeanLogic(
 OrderStore orderStore,
 OrderStoreCommandExecuter executer) {

 this.orderStore = orderStore;
 this.executer = executer;
 }

 public Integer ejbFindByPrimaryKey(final Integer orderId)
 throws ObjectNotFoundException {

Listing A.17 Business logic POJO for orders

667Test a BMP entity bean
 OrderStoreCommand orderStoreLogic = new OrderStoreCommand() {
 private boolean orderExists;

 public void execute(OrderStore orderStore) {
 orderExists = orderStore.exists(orderId);
 }

 public Object getReturnValue() {
 return new Boolean(orderExists);
 }
 };

 String failureMessage =
 "Unable to find order with ID <" + orderId + ">";

 executer.execute(orderStore, orderStoreLogic, failureMessage);

 boolean orderExists =
 ((Boolean) orderStoreLogic.getReturnValue())
 .booleanValue();

 if (orderExists)
 return orderId;
 else
 throw new ObjectNotFoundException(failureMessage);
 }

 public Integer ejbCreate(Integer orderId, String customerId) {
 orderRow = new OrderRow(orderId, customerId);

 OrderStoreCommand command = new OrderStoreCommand() {
 public void execute(OrderStore orderStore) {
 orderStore.create(orderRow);
 }
 };

 String failureMessage =
 "Unable to create order with ID <"
 + orderRow.orderId
 + ">";

 executer.execute(orderStore, command, failureMessage);

 return orderId;
 }

 public void ejbLoad(final Integer orderId) {
 OrderStoreCommand command = new OrderStoreCommand() {
 private OrderRow orderRow;

 public void execute(OrderStore orderStore) {
 orderRow = orderStore.findByOrderId(orderId);
 }

 public Object getReturnValue() {
 return orderRow;

668 APPENDIX A

Complete solutions
 }
 };

 String failureMessage =
 "Unable to load order with ID <" + orderId + ">";

 executer.execute(orderStore, command, failureMessage);

 orderRow = (OrderRow) command.getReturnValue();
 }

 public void ejbStore() {
 OrderStoreCommand command = new OrderStoreCommand() {
 public void execute(OrderStore orderStore) {
 orderStore.update(orderRow);
 }
 };

 String failureMessage =
 "Unable to store order with ID <"
 + orderRow.orderId
 + ">";

 executer.execute(orderStore, command, failureMessage);
 }

 public void ejbRemove(final Integer orderId) {
 OrderStoreCommand command = new OrderStoreCommand() {
 public void execute(OrderStore orderStore) {
 orderStore.remove(orderId);
 }
 };

 String failureMessage =
 "Unable to remove order with ID <" + orderId + ">";

 executer.execute(orderStore, command, failureMessage);
 }

 public String getCustomerId() {
 return orderRow.customerId;
 }

 public void setCustomerId(String customerId) {
 orderRow.customerId = customerId;
 }

 public OrderRow getOrderRow() {
 return orderRow;
 }
}

Each method has the same rhythm: create an OrderStoreCommand, create a failure
message in case any exceptions are thrown, and then execute the command.

669Test a BMP entity bean
Some commands have return values for those methods that return a value. Look
at how simple the commands are: they merely delegate their work to the Order-
Store, which defines a method for each command. The nice thing about this class
is that it works with any kind of OrderStore (not just ones that use a database) and
provides maximum flexibility for executing the OrderStoreCommands. In particu-
lar, testing OrderBeanBmpLogic is a breeze. Here are a few tests, using EasyMock to
fake out the OrderStore and the command executer.

package junit.cookbook.coffee.model.ejb.test;

import java.sql.SQLException;

import javax.ejb.*;

import junit.cookbook.coffee.data.*;
import junit.cookbook.coffee.model.ejb.OrderBmpBeanLogic;
import junit.framework.TestCase;

import org.easymock.MockControl;

import com.diasparsoftware.store.DataStoreException;

public class OrderBmpBeanLogicTest extends TestCase {
 private OrderBmpBeanLogic logic;
 private MockControl orderStoreControl;
 private OrderStore mockOrderStore;

 protected void setUp() throws Exception {
 orderStoreControl =
 MockControl.createNiceControl(OrderStore.class);

 mockOrderStore = (OrderStore) orderStoreControl.getMock();

 OrderStoreCommandExecuter simpleExecuter =
 new OrderStoreCommandExecuter() {
 public void execute(
 OrderStore orderStore,
 OrderStoreCommand orderStoreCommand,
 String exceptionMessage) {

 orderStoreCommand.execute(orderStore);
 }
 };

 logic =
 new OrderBmpBeanLogic(mockOrderStore, simpleExecuter);
 }

 public void testFindByPrimaryKey_Found() throws Exception {
 mockOrderStore.exists(new Integer(762));
 orderStoreControl.setReturnValue(true);

Listing A.18 Testing the POJO for orders

670 APPENDIX A

Complete solutions
 orderStoreControl.replay();

 assertEquals(
 new Integer(762),
 logic.ejbFindByPrimaryKey(new Integer(762)));

 orderStoreControl.verify();
 }

 public void testFindByPrimaryKey_NotFound() throws Exception {
 mockOrderStore.exists(new Integer(762));
 orderStoreControl.setReturnValue(false);

 orderStoreControl.replay();

 try {
 logic.ejbFindByPrimaryKey(new Integer(762));
 fail("Found object?");
 }
 catch (ObjectNotFoundException expected) {
 }

 orderStoreControl.verify();
 }

 public void testLoad() throws Exception {
 Integer orderId = new Integer(762);
 OrderRow orderRow = new OrderRow(orderId, "jbrains");

 mockOrderStore.findByOrderId(orderId);
 orderStoreControl.setReturnValue(orderRow);

 orderStoreControl.replay();

 logic.ejbLoad(orderId);
 assertEquals(orderRow, logic.getOrderRow());

 orderStoreControl.verify();
 }

 public void testLoad_DataStoreException() throws Exception {
 Integer orderId = new Integer(762);
 OrderRow orderRow = new OrderRow(orderId, "jbrains");

 mockOrderStore.findByOrderId(orderId);
 DataStoreException exception =
 new DataStoreException(
 "Unable to find order",
 new SQLException());

 orderStoreControl.setThrowable(exception);

 orderStoreControl.replay();

 try {
 logic.ejbLoad(orderId);
 fail("Should have thrown an exception");

671Test a BMP entity bean
 }
 catch (DataStoreException expected) {
 assertSame(exception, expected);
 }

 orderStoreControl.verify();
 }
}

Of course, we need to test the command executers in isolation; fortunately, that is
easy to do. First we need to verify that the EJB-based command executer does its
job of turning DataStoreExceptions into EJBExceptions.

package junit.cookbook.coffee.model.ejb.test;

import javax.ejb.EJBException;

import junit.cookbook.coffee.data.*;
import junit.cookbook.coffee.model.ejb.OrderStoreCommandExecuterEjbImpl;
import junit.framework.TestCase;

import org.easymock.MockControl;

import com.diasparsoftware.store.DataStoreException;

public class OrderStoreCommandExecuterEjbImplTest extends TestCase {
 private MockControl orderStoreControl;
 private OrderStore mockStore;

 public void testStoreThrowsException() throws Exception {
 final DataStoreException cause = new DataStoreException();

 OrderStoreCommand crashTestDummyCommand =
 new OrderStoreCommand() {

 public void execute(OrderStore orderStore) {
 throw cause;
 }
 };

 orderStoreControl =
 MockControl.createNiceControl(OrderStore.class);

 mockStore = (OrderStore) orderStoreControl.getMock();

 String failureMessage = "I expect failure";

 OrderStoreCommandExecuterEjbImpl executer =
 new OrderStoreCommandExecuterEjbImpl(
 new SimpleOrderStoreCommandExecuter());

 try {

Listing A.19 OrderStoreCommandExecuterEjbImplTest

672 APPENDIX A

Complete solutions
 executer.execute(
 mockStore,
 crashTestDummyCommand,
 failureMessage);

 fail("Executer did not throw EJBException");
 }
 catch (EJBException expected) {
 assertTrue(
 expected.getMessage().startsWith(failureMessage));

 assertSame(cause, expected.getCausedByException());
 }
 }
}

This test uses a Crash Test Dummy, OrderStoreCommand, hard coded to throw a
DataStoreException. As we have described elsewhere, it is easier to simulate error
conditions than try to recreate them. This test verifies not only that the EJB com-
mand executer throws an EJBException, but it verifies the exception message and
the root cause. This is an example of the technique we describe in recipe 2.8,
“Test throwing the right exception.” We can test the JDBC command executer
similarly: we use a mock object approach and verify that the command executer
obtains a connection, invokes the command, and then closes the connection. See
Chapter 10, “Testing and JDBC,” for examples of using the SQL/JDBC part of the
Mock Objects package.

This has been a rather extensive example of refactoring a J2EE component to
make it easier to test. It turns out that we spent approximately 12 hours to apply
these refactorings, and you might wonder whether the benefits (easier to test) are
worth the cost (12 hours of refactoring). From our experience, the trade-off is a
no-brainer: the benefits far outweigh the cost. The alternative is to test the BMP
entity bean in a live container against a live database. We have already discussed
the hidden costs in testing against a live database. It should be clear that maintain-
ing live test data and executing slow tests has an unbounded cost, as opposed to the
12 hours we spent applying these refactorings. Moreover, we have uncovered sev-
eral small, generic components, or at least components that we can easily make
more generic (such as the command executers). These components will help us
build other entity beans, as well as simplify their tests. Assuming that we use BMP
entity beans often in our system, we will recover our costs quickly.

The most compelling return on the investment in these refactorings is yet to
come: if we build all future entity beans to be testable, then our progress will be
steadier, safer, and ultimately faster.

Essays on testing
673

674 APPENDIX B

Essays on testing
The following is a short collection of essays on testing, ones to which the recipes
refer in order to cover some essential ground. Because this is a book about reci-
pes, we wanted to limit the amount of free-range prose. Still, there are a few con-
cepts that are not effectively written as recipes but are nonetheless fundamental to
understanding some of our reasoning in the recipes. To keep the spirit of recipes,
each essay is divided into two parts: The point and The details.

As you might hope, we give you the point first, rather than waiting until the end
of the essay. Once you have read the point, you can decide whether to keep read-
ing. If we have piqued your interest, great; but if not, come back to it later. You
choose.

Also, as these are essays, they include some opinions. We may sometimes fall
into the trap of proclaiming our opinion as truth, and if we do that, do not believe
it. Take it as literary license, gather some experience, make some observations,
and then judge for yourself. If we turn out to be wrong we will not mind your say-
ing so, although food and drink might soften the blow.

Enjoy.

B.1 Too simple to break

◆ The point

Some code is too simple to break. We think you should concentrate your effort on
testing code that might break, rather than testing code that clearly cannot. The
trick, of course, is to decide how simple is “too simple.”

◆ The details

Let us begin with one of the classic testing questions: “Should I test getters and
setters?” We discuss this in detail in chapter 2, “Elementary Tests,” so we will only
summarize here. This simple question divides the Programmer Testing commu-
nity in two: many believe you ought to test these methods like any other and the
rest believe that they are too simple to break. The first camp cites this common prob-
lem as a reason to test these methods:

private String lastName;

public void setLastName(String lastName) {
 lastName = lastName;
}

675Too simple to break
Here is an example where an ambiguous statement—which lastName variable is
being assigned to which?—creates a potential problem for the programmer.1 This
statement simply assigns the value of the formal parameter lastName to itself,
which is certainly not what the programmer wants, and so is certainly a defect. The
first of the two camps would say, “If we do not test our setters, then we will not
catch these kinds of defects.” Well, yes and no. Yes, in that if we write no test for
this method then no test will catch this defect; however, this is such an elementary
error that there are other safety nets in place to catch it: the compiler, the IDE, or
a style-checking package such as PMD. Our toolset has improved to the point
where it is almost impossible for a defect such as this to survive long enough to be
executed! Long before that time, either the compiler or your IDE will warn you:
“this statement has no effect”—and if it does not warn you, then spend some time
figuring out how to enable the warning. If another tool can detect a problem
more simply than a JUnit test can, then the course is clear: use the tool, rather
than JUnit.

Now, we are not saying that testing this method is a bad thing. No one will shun
you if you decide to test it; however, the return on investment for this kind of test
is quite low, and it pays to remember the goal of testing. The idea is to spend a
certain amount of time and effort on uncovering ways in which the system
behaves differently from what you would expect (called “defects”), with the goal
of saving money (time, effort, sanity) by catching these problems as soon as possi-
ble after you created them. There is, therefore, a trade-off between the effort you
expend on testing and the confidence level that you attain in the process. At some
point, spending more effort on testing is not worth the corresponding increase in
your confidence in the code—or at least, that the code does not fail in a painful
way. It is for this reason alone that we have the notion of too simple to break. If test-
ing were free, we would test absolutely every line of code absolutely every way we
could imagine.

Back to our getters and setters:, there are some kinds of setters that warrant
being tested. In particular, a setter that updates more than one variable based on
some calculation is a good candidate to be tested. We would test this setter
because it does something more complex than merely assign a value to a variable.
It is possible for us to write code that the compiler does not criticize, that the IDE
does not criticize, and have it do the wrong thing. This is a reasonable definition

1 The statement is ambiguous to the programmer, but not to the Java compiler, and that is where the trou-
ble begins.

676 APPENDIX B

Essays on testing
for complex enough to be tested. Still, there are some such methods that we would
generally not bother testing.

It is common in Object-Oriented Programming to see a large amount of “dele-
gation.” That is, an object that wraps another and delegates much of its behavior
to the object it wraps. The Decorator design pattern is built on this notion: the
Decorator performs some small service, but mostly invokes the object it decorates.
In Java, the I/O libraries contain examples of Decorators. If you browse the source
for, say, ObjectOutputStream, you will notice that some of its methods merely
invoke the corresponding method on the BlockDataOutputStream it contains.
Consider the method ObjectOutputStream.write(int), for example:

public void write(int val) throws IOException {
 bout.write(val);
}

We believe that this method—indeed any method that merely delegates its job to
another object—is too simple to break. There is no way for this method to fail a test,
assuming that the neighboring classes have been reasonably well tested. Our rea-
soning goes like this: the only things that could go wrong are either that bout is
null or that BlockDataOutputStream.write() is broken. This method cannot pos-
sibly be held responsible for either of these unfortunate circumstances; therefore,
we ought to focus our attention on ensuring that those two things never happen,
rather than worrying about this method. This method is too simple to break on its
own, and that is what we really mean by this catchphrase: a method that cannot
break in any way on its own is a method not worth testing.

There may be no complete way to classify methods as being too simple to break.
We have provided a couple of reasonable heuristics in this essay, and if you partic-
ipate in the JUnit mailing lists, you will occasionally see this topic discussed—
often in gory detail. We recommend that you test until fear turns to boredom: if
you think it might break, then test it until your thinking changes. If you are just
starting out with JUnit, then you may find it comforting to test getters and setters,
just to get your feet wet with testing. If you have just spent four hours debugging a
problem related to a malfunctioning setter, then you might decide to be extra vig-
ilant about testing setters—for a while. We recommend focusing your energy on
code that can easily break, rather than code that may be too simple to break, but
never forget that they’re just rules.2

2 www.xprogramming.com/Practices/justrule.htm

677Strangeness and transitivity
◆ Postscript

Not everyone agrees with our assessment of what constitutes too simple to break.
Among these people the most vocal is Simon Chappell, who errs more on the side
of caution when testing objects. He believes that it is important to test getters and
setters, and does so. In reviewing this essay for the book, Simon pointed out one
additional reason not to be overly cavalier about code being too simple to break.

This (testing behaviors we claim are too simple to break) is also a way that I help
to future-proof our system. Knowing that it is a strategic system, it’ll be around
for a while and I may not always be working on it or leading the development
effort. And while I might know all there is to know about the value objects and
understand all of their consequences, I have no way other than leaving appro-
priate tests to communicate that effectively to the developers that come after
me. (Yes, I could document it, but we know how often such documents get
read and how diligently they are updated!) Leaving a full(er) suite of tests that
are incorporated into the build process is the best investment that I can make
in the future of any system that I write.

We use mean time between failures (MTBF) to measure the likelihood that a given
piece of code will fail to do what we expect. Each of us has a slightly different
internal MTBF threshold, past which code is too simple to break. If we focus entirely
on MTBF without considering the lifetime of the system, then we may not make
good decisions regarding what is too simple to break. As the system’s lifetime
increases and MTBF remains constant, the likelihood of a defect occurring
increases, so perhaps for longer-lived systems we ought to lower our too simple to
break threshold and err more on the side of caution, as Simon does.

B.2 Strangeness and transitivity

◆ The point

The way we typically define equals() for Java objects is such that the transitivity
property is guaranteed, so there is no need to test explicitly for it: testing for
reflexivity and symmetry is enough. There are, however, ways to implement
equals() that might look reasonable, but do not work, and you need the transitive
property to expose the defect. The good news is that once you know which kind of
equals() implementation is troublesome, essentially all troublesome equals()
implementations fall into this category.

678 APPENDIX B

Essays on testing
◆ The details

You will have to excuse us, as this description is going to be a bit mathematical in
nature. If that does not interest you, then here is a shorter version: as long as your
objects define equals() in terms of fieldwise equality, then you do not have to
worry about whether GSBase’s EqualsTester might steer you wrong, because it
would not be able to. By “fieldwise equality” we mean comparing the correspond-
ing fields for equality, such as in this simple case from the Coffee Shop application:

public class CoffeeCatalogItem {
 public String productId = "";
 public String coffeeName = "";
 public Money unitPrice = Money.ZERO;

 public boolean equals(Object other) {
 if (other instanceof CoffeeCatalogItem) {
 CoffeeCatalogItem that = (CoffeeCatalogItem) other;

 return this.productId.equals(that.productId)
 && this.coffeeName.equals(that.coffeeName)
 && this.unitPrice.equals(that.unitPrice);
 }
 else {
 return false;
 }
 }
}

According to this equals() method, two CoffeeCatalogItem objects are equal if
their corresponding fields are equal. This is an example of defining equals() in
terms of fieldwise equality. For these kinds of objects, there is no need to test the
transitive property, which follows from the reflexive and symmetric properties.
We can generalize this a little with some semiformal reasoning.3

Suppose your equals() method is reflexive (a.equals(a)) and symmetric
(a.equals(b) means that b.equals(a) and the other way around). Now suppose
further that these objects are equal because there is no difference between
them—in other words, aside from being in different regions of memory, there is
no way to distinguish one from the other. This means that you can substitute
these objects for one another and no collaborating object will notice a difference.
Value Objects typically fall into this category. What about transitivity in this case?
Well, let us see.

3 Just because it is informal, does not make it incorrect; it just tries to use symbols as little as possible. Do not
confuse formality with rigor. (Similarly, do not confuse formal software processes with effective ones.)

679Strangeness and transitivity
Pick three objects a, b, c with the properties that a.equals(b) and b.equals(c).
What about a.equals(c)? Is it true or false? Well, if there is no way to tell the dif-
ference between a and b, then we ought to be able to substitute a in place of b
without changing the behavior of any program that uses them. We are just apply-
ing the definition we have given of “no difference between a and b.” So we can put
a wherever b is. Specifically, take b.equals(c), put a in place of b, and you have
a.equals(c). We have proven transitivity. This proof is not very formal, but it is
certainly rigorous: we defined equals() a certain way, applied our definition, and
reached the conclusion we needed to reach.

But then how can a reasonable implementation of equals() ever be reflexive
and symmetric but not transitive? It turns out that this is surprisingly easy to do.
Consider our Money class again. Someone comes along and implements Money a lit-
tle differently: in particular, they try to handle the rounding error problem by
relaxing the notion of equality, rather than rounding off the amount in the con-
structor. You may already know that floating-point arithmetic is inherently inaccu-
rate for computers, because it is impossible to represent 0.1 exactly using a finite
number of bits. You may even have seen this classic infinite loop:

public class FloatingPointArithmeticDemo {
 public static void main(String[] args) {
 for (float i = 0.0f; i != 1.0f; i += 0.1f);
 System.out.println("Done.");
 }
}

Wait as long as you want—it takes an incredibly long time for this program to
print “Done.” It takes the massive accumulation of rounding errors and repeated
overflow of the variable i. We do not know how long it takes, but we guess it takes
years, at least, and the fact that it terminates at all is an accident—without the abil-
ity to overflow, it would never happen! The problem is that 0.1f is not quite 1/10,
and when you compound that error, it takes only a few operations for the error to
be noticeable.

All right—how does our fictional Money-implementing programmer deal with
this problem? Well, rather than round off to the nearest cent, our intrepid pro-
grammer stores the amount of money as a floating-point value and says, “Hey—
half a cent is pretty close. If two Money objects are within half a cent, that’s good
enough for me.” He creates the class TolerantMoney and implements equals()
this way:

public class TolerantMoney {
 private double amount;

680 APPENDIX B

Essays on testing
 // ...

 public boolean equals(Object other) {
 if (other instanceof TolerantMoney) {
 TolerantMoney that = (TolerantMoney) other;
 return Math.abs(this.amount - that.amount) <= 0.005d;
 }
 else {
 return false;
 }
 }

 public int hashCode() {
 return 0;
 }
}

Look! He even uses double, rather than float, to achieve the greatest precision
Java allows.4 So what could be wrong with this? Here is a test for the equals()
property, checking the RST properties:

import junit.framework.TestCase;

public class TolerantMoneyTransitivityTest extends TestCase {
 public void testRstProperties() throws Exception {
 TolerantMoney a = new TolerantMoney(1.00d);
 TolerantMoney b = new TolerantMoney(1.0033d);
 TolerantMoney c = new TolerantMoney(1.0067d);
 TolerantMoney d = new TolerantMoney(1.01d);

 // Reflexive property OK...
 assertEquals(a, a);
 assertEquals(b, b);
 assertEquals(c, c);
 assertEquals(d, d);

 // Symmetric property OK...
 assertEquals(a, b);
 assertEquals(b, a);

 assertEquals(b, c);
 assertEquals(c, b);

 assertEquals(c, d);
 assertEquals(d, c);

 // Transitive property?
 assertEquals(a, b);
 assertEquals(b, c);
 assertEquals(c, d);
 // therefore...

4 Well, there is BigDecimal, but it turns out that that would not help, anyway.

681Isolate expensive tests
 assertEquals(a, d);
 }
}

We have highlighted in bold print the assertion that fails. The transitive property
does not hold, so our programmer’s equals() implementation does not respect
the contract of Object.equals(). What went wrong?

The problem is that our programmer attempted to define equals() as “close
enough.” He decided that two Money amounts are equal if they are just close
enough to one another—“Who cares about half a penny?”—as it were. A relation
like this can never satisfy the transitive property, and so can never be used as a valid
implementation of equals().5

“Fine,” you may say to yourself, “I can’t imagine I’d ever want to do that, any-
way.” That is partly our point: when we first looked at GSBase’s EqualsTester, we
noticed that it is does not explicitly test the transitivity property. When we asked
Mike Bowler about it, he merely said that it had never been a problem for him—
in other words, excluding those checks from his EqualsTester had never resulted
in an incorrect equals() method passing all his tests. The reason? Most equals()
implementations define themselves in terms of fieldwise equality, and not in
terms of “close enough.” Moreover, although we do not know how to prove it, it
appears to us that any equals() method that fails only the transitive property must
be related to this “close enough” notion somehow. So as long as you say that val-
ues are either identical or not identical, you will never have an equals() method
that satisfies the reflexive and symmetric properties (thereby passing all Equals-
Tester’s tests) but that does not satisfy the transitive property (and is therefore an
incorrect implementation).

There...we bet you will sleep a little more soundly tonight.

B.3 Isolate expensive tests

◆ The point

We use mock objects to shield ourselves from expensive external resources during
testing. It is unwise to just pile on the mock objects in an attempt to work around
the problem. Eventually you do need to test that part of your system that depends on,
say, a database. If you isolate those tests, then you can continue to benefit from

5 You want proof? Start here: http://planetmath.org/encyclopedia/ArchimedeanProperty.html. The rest
is an exercise to the reader. (Sorry, we just could not resist writing that at least once.)

682 APPENDIX B

Essays on testing
them without having them get in the way of your flow while you work. This
involves some refactoring, and is therefore difficult to do in legacy systems that
you are not allowed to change.

◆ The details

Let’s dive right on into an example. We have a RequestPoller and a RequestPro-
cessor. We do not know what a request processor does, except that it processes
files somehow—hence the name. The RequestPoller, among other things,
retrieves all the files in a directory and then submits them to a RequestProcessor
for processing. If you find these responsibilities vague, we do not blame you,
because so do we. That is the nature of sitting down to code you did not write. We
are thankful that we have a test to help us understand what these objects do! Spe-
cifically, we have the following test:

package junit.cookbook.essays.test;

import java.io.File;
import java.util.*;

import junit.cookbook.essays.*;
import junit.framework.TestCase;
import junitx.framework.ArrayAssert;

public class RequestPollerTest extends TestCase {
 private File[] expectedFiles =
 new File[] {
 new File("c:/unittest/tmp/file1.xml"),
 new File("c:/unittest/tmp/file2.xml"),
 new File("c:/unittest/tmp/file3.xml"),
 new File("c:/unittest/tmp/file4.xml")};

 public void setUp() throws Exception {
 (new File("c:/unittest/tmp")).mkdirs();
 for (int i = 0; i < expectedFiles.length; i++) {
 File newFile = expectedFiles[i];
 newFile.createNewFile();
 }
 }

 public void tearDown() throws Exception {
 for (int i = 0; i < expectedFiles.length; i++) {
 File newFile = expectedFiles[i];
 newFile.delete();
 }
 (new File("c:/unittest/tmp")).delete();
 (new File("c:/unittest")).delete();
 }

 public void testPoll() throws Exception {

683Isolate expensive tests
 File directory = new File("c:/unittest/tmp/");
 final List actualFiles = new ArrayList();
 RequestProcessor processor = new RequestProcessor() {
 public void process(File[] files) {
 actualFiles.addAll(Arrays.asList(files));
 }
 };

 RequestPoller poller = new RequestPoller(
 directory, processor);

 poller.poll();

 ArrayAssert.assertEquals(
 "Unexpected poll values",
 expectedFiles,
 actualFiles.toArray());
 }
}

We find it helpful to describe what the test does in words, as this helps us focus on
the responsibilities under test. When we ask a poller to poll, we want to verify that
the poller’s processor processes all the files in a given directory. From this we can
infer the responsibilities of each object.

■ The processor is responsible for processing a given list of files, whatever
“processing” means.

■ The poller is responsible both for retrieving files from a directory and ask-
ing the processor to process those files.

There is a clue in that last sentence: this test attempts to verify two distinct respon-
sibilities for one object. A test that tries to do two things at once is easily dis-
tracted. In particular, it is incapable of telling us where the problem is when it
fails. Beyond this, however, the glaring problem with this test is the excessive test
fixture setup: the test creates a directory, puts files in that directory, then cleans it
up. This seems to be an awful lot of work, considering that we do not care how the
request processor processes the files. We should not need to create actual files on the
file system to verify that the request poller does its job properly, because only the
processor needs to deal with the content of those files. To test the poller, we
should only need the correct list of objects representing files, irrespective of
whether those files are really on the file system.

Well, perhaps not. The RequestPoller does have the responsibility of correctly
retrieving all the files in a directory, and something there could go wrong,
depending on whether the RequestPoller ought to retrieve just the files in the
directory or all the files in that subtree of the file system. Should it recursively

684 APPENDIX B

Essays on testing
retrieve all files in each subdirectory or not? There might be enough doubt
around this issue to warrant some tests. The important point is this: those tests
have nothing whatsoever to do with processing the files or submitting the files for
processing. You may ask, “Who cares?”

We care. Let us describe how coupling to external test data makes a program-
mer’s job difficult. First you write one test that depends on a small data set: a few
files in a single directory. So far there is not much of a problem. The next test ver-
ifies a more complex case, so now we need to create an empty subdirectory. Still
not too bad. The next test verifies an even more complex case, so now we need to
create another subdirectory, this one not empty. And then we need to create a
third subdirectory with a deep subtree inside it. Now we need files named a cer-
tain way.... The test data is sprawling out of control. Eventually we have a bunch of
files strewn about the file system as part of our test data. We need to manage this
data in our version control system; we need to worry about where those files are
on the file system (not everyone has an E: drive); we need to worry about timing
issues related to creating and destroying those files on the file system—reliance
on asynchronous behavior is always tricky business. The whole thing grows com-
plex quickly. You ought not be worrying about so much complexity when all you
want to test is whether the RequestPoller submits the correct list of files to a
RequestProcessor for processing. Why worry about managing test data on the file
system when the RequestProcessor is not even going to look at the files? (What
were we trying to test again?)

That last question summarizes the problem. When we couple business logic to
implementation details, we lose our focus and spend a majority of our time han-
dling details that are not germane to what we really need to test. Let us restate the
responsibility we are testing without referring to implementation details: “When
we ask a RequestPoller to poll, it should retrieve files from a container and sub-
mit them to a RequestProcessor for processing.” Now that we have a goal, let us
refactor the test to take us there. The first step is to remove the reliance on actual
files on the file system.

The RequestPoller needs to obtain the files in a given directory. To decouple
it from the live file system, we introduce an interface FileLister6 with a method
to retrieve the list of files in a directory. We create the interface and change

6 On rereading this essay, we do not like the interface name FileLister, as objects should generally be
named with noun phrases and not verb phrases. We do not need a “file lister,” but rather a container of
files, and so if we had it to do over, we would call this interface FileSet and the method getFiles().
(A design is never really finished.)

685Isolate expensive tests
RequestPoller to accept a FileLister, rather than a directory, in its constructor.
Here is the new test:

public void testPoll() throws Exception {
 final List actualFiles = new ArrayList();
 RequestProcessor processor = new RequestProcessor() {
 public void process(File[] files) {
 actualFiles.addAll(Arrays.asList(files));
 }
 };

 FileLister fakeFileLister = new FileLister() {
 public File[] listFiles() {
 return expectedFiles;
 }
 };

 RequestPoller poller = new RequestPoller(fakeFileLister, processor);
 poller.poll();
 ArrayAssert.assertEquals(
 "Unexpected poll values",
 expectedFiles,
 actualFiles.toArray());
}

And here is the new interface:

package junit.cookbook.essays;

import java.io.File;

public interface FileLister {
 File[] listFiles();
}

We have called the file lister object fakeFileLister, because it hard codes the list
of files, and so is properly called a “fake.”7 We execute this test and it continues to
pass, so the first change was a success. Notice also that we removed the line of
code that specified the directory containing the expected files. The FileLister
does not care about the origin of the list of files, but we need a production imple-
mentation of FileLister that actually scans a directory, so let’s do that now. We
create a new test for a new implementation of FileLister. This test verifies that
we can retrieve files correctly from a directory.

package junit.cookbook.essays.test;

import java.io.File;

7 At least, according to Dave Astels’ taxonomy of the various kinds of mock objects. See Test-Driven Devel-
opment: A Practical Guide (Prentice Hall PTR, 2003) p. 169.

686 APPENDIX B

Essays on testing
import junit.cookbook.essays.FileLister;
import junit.framework.TestCase;
import junitx.framework.ArrayAssert;

public class ListFilesInDirectoryTest extends TestCase {
 private File[] expectedFiles =
 new File[] {
 new File("c:/unittest/tmp/file1.xml"),
 new File("c:/unittest/tmp/file2.xml"),
 new File("c:/unittest/tmp/file3.xml"),
 new File("c:/unittest/tmp/file4.xml")};

 public void setUp() throws Exception {
 (new File("c:/unittest/tmp")).mkdirs();
 for (int i = 0; i < expectedFiles.length; i++) {
 File newFile = expectedFiles[i];
 newFile.createNewFile();
 }
 }

 public void tearDown() throws Exception {
 for (int i = 0; i < expectedFiles.length; i++) {
 File newFile = expectedFiles[i];
 newFile.delete();
 }
 (new File("c:/unittest/tmp")).delete();
 (new File("c:/unittest")).delete();
 }

 public void testFilesInCurrentDirectory() throws Exception {
 FileLister fileLister =
 new DirectoryFileLister(new File("c:/unittest/tmp"));
 ArrayAssert.assertEquals(expectedFiles, fileLister.listFiles());
 }
}

Notice that we have copied the fixture from the RequestPollerTest into this new
test. We figured that it was the easiest place to start: that other fixture already had
four files in a directory, so we reused it. We make a note that we might want to
extract the common test fixture (see recipe 3.5, “Factor out a test fixture hierar-
chy”), but do not do it yet. It turns out that making this test pass is quite simple, so
we do that by creating DirectoryFileLister and implementing it as follows:

package junit.cookbook.essays.test;

import java.io.File;

import junit.cookbook.essays.FileLister;

public class DirectoryFileLister implements FileLister {
 private File directory;

 public DirectoryFileLister(File directory) {

687Isolate expensive tests
 this.directory = directory;
 }

 public File[] listFiles() {
 return directory.listFiles();
 }
}

We now make a note that the tests for DirectoryFileLister are woefully incom-
plete: in particular they do not address the question of processing subdirectories.
We will add those later. The point, however, is what happens to RequestPoller-
Test. We remove the setUp() and tearDown() methods and the test still passes! We
have successfully eliminated all that smelly test setup. Perhaps more correctly, we
have moved it away from the business logic and put it with the implementation
details, where it belongs. We now have this test for the RequestPoller:

package junit.cookbook.essays.test;

import java.io.File;
import java.util.*;

import junit.cookbook.essays.*;
import junit.framework.TestCase;
import junitx.framework.ArrayAssert;

public class RequestPollerTest extends TestCase {
 private File[] expectedFiles =
 new File[] {
 new File("c:/unittest/tmp/file1.xml"),
 new File("c:/unittest/tmp/file2.xml"),
 new File("c:/unittest/tmp/file3.xml"),
 new File("c:/unittest/tmp/file4.xml")};

 public void testPoll() throws Exception {
 final List actualFiles = new ArrayList();
 RequestProcessor processor = new RequestProcessor() {
 public void process(File[] files) {
 actualFiles.addAll(Arrays.asList(files));
 }
 };

 FileLister fakeFileLister = new FileLister() {
 public File[] listFiles() {
 return expectedFiles;
 }
 };

 RequestPoller poller = new RequestPoller(
 fakeFileLister, processor);

 poller.poll();

 ArrayAssert.assertEquals(

688 APPENDIX B

Essays on testing
 "Unexpected poll values",
 expectedFiles,
 actualFiles.toArray());
 }
}

We can simplify the test a little by moving the assertion into our Spy Request-
Processor. If you had not noticed that this test used a Spy RequestProcessor by
now, then read recipe 14.5, “Test an object factory,” for a discussion about using
Spy objects in tests. We fix up a few names and have a final version of the test:

package junit.cookbook.essays.test;

import java.io.File;

import junit.cookbook.essays.*;
import junit.framework.TestCase;
import junitx.framework.ArrayAssert;

public class RequestPollerTest extends TestCase {
 private File[] expectedFiles =
 new File[] {
 new File("c:/unittest/tmp/file1.xml"),
 new File("c:/unittest/tmp/file2.xml"),
 new File("c:/unittest/tmp/file3.xml"),
 new File("c:/unittest/tmp/file4.xml")};

 public void testPoll() throws Exception {
 FileLister fakeFileLister = new FileLister() {
 public File[] listFiles() {
 return expectedFiles;
 }
 };

 RequestProcessor spyRequestProcessor = new RequestProcessor() {
 public void process(File[] files) {
 ArrayAssert.assertEquals(
 "Unexpected poll values",
 expectedFiles,
 files);
 }
 };

 RequestPoller poller =
 new RequestPoller(fakeFileLister, spyRequestProcessor);

 poller.poll();
 }
}

Do we need any more tests for RequestPoller.poll()? We may want to try invalid
parameters to the constructor, such as null. We may want to consider what hap-
pens if processing a file throws an exception. Otherwise, this appears to be the

689The mock objects landscape
only test we need. We are now testing business logic completely independently of
implementation details, such as the content and existence of real files.

Now the point of this essay was to talk about isolating expensive tests, so it
behooves us to return to the point. We have moved the expensive part of Request-
PollerTest into ListFilesInDirectoryTest, and you may still be wondering how
that helps. The key benefits to this change include the following:

■ We can test all the important boundary cases for listing files in a directory
without involving irrelevant objects such as request processors and pollers.

■ We can use the DirectoryFileLister anywhere else in our application that
might need it, and we can test those components without involving the file
system either.

■ Once we implement the DirectoryFileLister correctly, we do not need to
change it, because the File API in Java is not likely to change any time soon.
This means that we can execute the accompanying tests much less fre-
quently, such as in the background using Cruise Control or Anthill.

We believe this last benefit to be the key: We have isolated an implementation
detail and made it closed—in the sense of the Open/Closed Principle8—so that
our other tests would be free and not have to depend on them. By isolating the
thing that annoyed us and moving it out of the way, we no longer let expensive,
tedious-to-maintain tests get in the way of our work. We can get back to writing
correct business logic, which is more important than mucking around with the
file system. This is a benefit that we can experience now and continue to experi-
ence for the rest of the project: the tests execute more quickly and are easier to
maintain. Everyone wins.

B.4 The mock objects landscape

◆ The point

We use mock objects to make testing easier, particularly when we need to add tests
to existing code. There are a number of ways to use mock objects, so it can be diffi-
cult to know where to start. Some of the terms are overloaded and can cause confu-
sion, so it is a good idea to understand a few of the essential mock objects
techniques and what distinguishes them from one another. In spite of this complex-

8 See www.objectmentor.com/resources/articles/ocp.pdf for a discussion of this design principle.

690 APPENDIX B

Essays on testing
ity, EasyMock (www.easymock.org) provides the majority of what you need to take
advantage of the various mocking techniques into your tests.

◆ The details

In 2000, Tim Mackinnon, Steve Freeman, and Philip Craig wrote the paper
“Endo-Testing: Unit Testing with Mock Objects,”9 in which they introduced the
notion of mocking method invocations to facilitate isolated Object Tests. The
term “mock object” refers to an object that stands in place of the object you would
use in production: often it is an alternate implementation of a given interface. In
particular, a mock object emulates the behavior of the real thing without duplicat-
ing it entirely: for example, a method may return the same result every time,
ignoring its parameters. The goal is to simulate as little of an object’s behavior as
you need for the current test. What makes a mock object more than just a stub is
that it also makes assertions about the way it is used. It expects a particular
method invocation, or certain parameters, or a given sequence of method invoca-
tions. To use a mock object, you instantiate it, tell it what to expect, supply it to
the object under test, then ask it to verify whether the object being tested used it
correctly. The term “endo-testing” refers to the fact that one passes a mock object
as a parameter to the object under test, dynamically introducing assertions into
the production code (testing from the inside) without leaving them there to be
removed later. The rest of the testing we do can therefore be termed “exo-testing”:
testing from the outside. As mock objects have become more commonplace in
Object Tests, an entire vocabulary has evolved around them, and we think that
you ought to know these terms in order to better understand them and communi-
cate your mock objects techniques to others.

First, we need to draw a distinction between mock objects and Mock Objects
(www.mockobjects.org). The generic term—or simply “mocking”—refers to the
general technique of substituting an alternative implementation of an interface
(or individual method) in place of the production-quality collaborator for the
purposes of testing an object.10 When testing JDBC client code, we say that we
“mock the database,” which may involve using a mock implementation of the Con-
nection interface, serving up mock Statement objects. There are many ways to
mock a method or an interface, as we will describe here. The term Mock Objects,

9 You can find the article online or in Extreme Programming Examined (Addison-Wesley, 2001), a collection
of papers on Extreme Programming edited by Giancarlo Succi and Michele Marchesi.

10 We have begun to call these kinds of objects “test objects,” especially when speaking, because it is diffi-
cult to use a verbal cue to distinguish a “mock object” from a “Mock Object.”

691The mock objects landscape
with the words capitalized, makes us think of Tim, Steve, and Philip’s work: a spe-
cific kind of mock implementation: one that knows how to expect to be used, and
verifies that it was used that way. Much of what we discuss in this essay concerns
the generic mocking technique, although we make heavy use of Mock Objects in
our work.

The simplest mocking technique is a “stub.” The community is divided on
whether stubs really support mocking, because they do nothing: a stub is an
empty implementation of an interface. All its methods do nothing and return
default values. It is there merely to allow the system to compile and execute. Test-
Driven Development practitioners usually build a stub to implement an interface
they have just decided they need. Stubs are of limited use in testing: mostly as a
means of keeping an object out of the way. You may be testing a method that takes
five parameters, but for this test you only need three of those parameters. The
method under test throws an exception if you try to pass it null parameters, so to
satisfy the method’s demands you pass it the simplest possible implementation of
that parameter’s type: a stub. Some stubs turn into Null Objects,11 and others
become Java interface adapters. Stubs are of limited use in testing because they
return default values, such as 0, false, and null.

If you decide that the stub is not really a mocking technique, then the next-simplest
mocking technique is the “fake.” A fake method is one that returns a fixed value
every time it is invoked, and so a fake object is an object with fake methods. Faking
a method makes it possible to test how the object under test responds to the vari-
ous kinds of behavior it can expect from its collaborators. For example, an online
store has a product catalog. The shopper may ask to display the details on a partic-
ular product: she first browses the catalog and finds a link to the product she wants
to see, then gets up and leaves her computer for ten minutes. In the meantime, the
product manager pulls that product from the shelves, because it has not been sell-
ing well.12 He executes the administrative command to remove the product from
the catalog, but the shopper still has that link in her browser. When she clicks that
link, which contains a product number of some kind to identify the product to dis-
play, there is no product matching that product number. The system needs to be
able to handle that, rather than blow up with an exception that the web container
finally handles. There are two approaches to test this condition.

11 http://c2.com/cgi/wiki?NullObject
12 Yes, it would be better to pull the product off the shelves during off-hours, but this is an online store—

somewhere in the world one of their customers is awake and using their site.

692 APPENDIX B

Essays on testing
A direct approach is to write the test using a product number that you know is
not in the catalog; however, this forces you to deal with implementation details
that need not concern you for the current test. It does not matter which product
you try to display—it just matters what happens when that product is not in the
catalog. A more robust testing approach involves using a fake catalog that always
answers “no” when you ask it, “Does this product exist?” The idea is to test how the
product display logic reacts to a nonexistent product without worrying about
using “the magic product number with no associated product.” In your test fix-
ture, use a FakeCatalog such as this one:

public class FakeCatalog implements Catalog {
 ...
 public boolean exists(String productId) {
 return false;
 }
 ...
}

Typically, a fake object returns hard-coded values, and so you would need to cre-
ate a different class for each different way you want to fake a method. If you find
yourself in this situation, you may decide to build a fake object whose hard-coded
values you can set programmatically. Returning to our example, you may want to
build a FakeCatalog to which you can add a known list of products, as opposed to
the production catalog which retrieves them from a database.

public class InMemoryCatalog implements Catalog {
 private Map products = new HashMap();

 public void addProduct(Product product) {
 products.put(product.getId(), product);
 }

 public boolean exists(String productId) {
 return products.containsKey(productId);
 }
 ...
}

Now you can prime the catalog with a known list of products for each test without
having to put data into database tables. The trouble with this kind of fake object is
that it often leads the programmer to duplicate logic from the production-quality
object. We already see that here: even though the code for the exists() method is
different between the InMemoryCatalog and the production catalog (which checks
a database table), the logic is duplicated: “a product exists if I can find its product
ID.” This duplication may well be benign, but it does not take long to reach the

693The mock objects landscape
point where you are no longer faking methods, but rather providing a production-
quality alternate implementation of the interface to which the method belongs.
In this case, you might be tempted to build an in-memory repository for all your
domain objects. Something that complex needs to be tested itself, and who wants
to test the test objects? The key to faking methods and objects effectively is to keep
the fakes dead simple: if they want to do something more complex than return
one or two hard-coded values, then either the test is not narrowly focused enough
or you need to use a more powerful mocking technique. There are two kinds of
fake objects that deserve particular attention. They have evolved as common pat-
terns for faking methods: the Spy and the Crash Test Dummy.

A Spy is a fake object that “gathers intelligence” about how it was used, then
“reports back” to the test. The test can then make assertions about what the Spy
“saw.” One common application of the Spy fake object pattern is when you test an
event source (see recipe 14.2, “Test an Observable”). The Spy event listener col-
lects the events it receives, then provides the test access to that collection. The test
can then compare the events the Spy heard against the list of events that the test
expects the event source to generate. As in our recipe on the subject, it is com-
mon to use the Self-Shunt pattern in this case, so that the test case class itself
becomes the Spy event listener. In general, you can use a Spy to track the order in
which its methods are invoked, along with the parameters passed to each method.
This focuses your tests on the interactions between objects, without worrying as
much about the way they implement those methods—you will test that separately.
As you will see, the Mock Object is, among other things, the überspy.

The Crash Test Dummy is a fake object that throws exceptions, rather than
returning hard-coded values. You can use a Crash Test Dummy to verify how the
object under test responds when its collaborator fails somehow. As we have writ-
ten previously in this book (see recipe 2.11, “Test an object that instantiates other
objects”), it is generally much easier to simulate failure conditions than it is to recre-
ate them. Returning to our example, there is another way to signal that a product
does not exist in the catalog: throw a NoSuchProductException.13 The production
catalog performs a SELECT on the database, then throws NoSuchProductException
if the ResultSet is empty. The corresponding CrashTestDummyCatalog simply throws
the exception every time:

13 We do not recommend using an exception this way, but you will come across it eventually, so you might
as well know how to test it effectively.

694 APPENDIX B

Essays on testing
public class CrashTestDummyCatalog implements Catalog {
 ...
 public Product getProduct(String productId) {
 throw new NoSuchProductException(productId);
 }
 ...
}

Just as with the previous FakeCatalog, this CrashTestDummyCatalog eliminates the
need for your test to use the “magic product number with no product associated.”
No matter which product you try to find, the Crash Test Dummy will not find it.
This is a simple way to test how your objects react when their collaborators throw
exceptions. These special kinds of fake objects are really not so special: they are
merely specific ways to use fake objects. Beyond fakes, however, lie Mock Objects,
which provide one very powerful additional feature that merits having them in
their own category.

A true Mock Object is a self-verifying Spy. The primary advantage of the Mock
Object over the Spy is that the former knows how you expect to invoke it—which
methods, with which parameters, and in which order—and verifies how it was
used when you invoke the verify() method. This simple change in approach
makes your tests considerably easier to read and to maintain. Although a Spy can
gather the same information as a Mock Object, it is still the test’s responsibility to
interpret what the Spy “saw.” The test has less to do when using a Mock Object. It
tells the Mock Object what to expect—how many times a method ought to be
invoked, or which parameters to expect—and then passes the Mock Object into
the object under test. After using the Mock Object, the test merely invokes ver-
ify() and the Mock Object verifies that each of the test’s expectations were met.
The resulting design retains more of its natural encapsulation, as the Mock Object
implementations do not need to expose the actual values they gathered to the test
for verification. More than this, the Mock Object can fail fast—that is, because it
knows the expectations placed on it, it can make assertions about how it is used as
the test executes. As soon as one of those assertions fails, the test fails before the
faulty code can do further damage, pointing directly to the problem. Not so with a
Spy. Because a Mock Object can fail the moment one of its assertions fail, it is
much more likely that the resulting error message indicates the cause of the prob-
lem, eliminating the need to step through code with a debugger. A Mock Object,
then, is a more highly encapsulated, fail-fast version of the already-powerful Spy
object. For further information on the benefits of using Mock Objects, we recom-
mend that you read the paper to which we referred at the start of this essay.

695The mock objects landscape
Now that you have seen the landscape of test objects, which do you use? And
when? There is a simple answer: it depends on the role the object plays in your test.
Some objects are involved because they need to provide services and some objects
are involved because they need to provide data. For the ones that provide data,
fake the data; for the ones that provide services, use a Mock Object. In the case of
data, you just need an object to return predictable results, and so faking those
results ensures predictability. For example, if you want to test how your business
logic reacts when your data layer returns an empty list of products from the cata-
log, then use a fake catalog that always returns an empty list of products. In the
case of services, you only need to know that the object under test invokes its collab-
orator’s methods with the correct parameters, so set that expectation on a Mock
Object. For example, you want to verify that your data access logic correctly inserts
a domain object into the database. In this case, tell a Mock PreparedStatement
object which parameters to expect to receive on various invocations of set-
String(), setInt(), setTimestamp() and so on, then pass the Mock Prepared-
Statement to your data access logic for testing. These are the two prime examples
of the mock objects approach on which we rely heavily in our work and which we
use often in this book’s recipes.

Finally when it comes time to implement Mock Objects, we recommend using
EasyMock (www.easymock.org), which uses a record-and-playback mechanism to
provide dynamic Mock Object implementations of any interface. You can use this
package to implement both fakes and Mock Objects proper: the only difference is
whether you invoke verify() on the EasyMock object at the end of the test. (Easy-
Mock does allow for “nice” controls, which do not fail fast, but we tend not to use
them.) Using EasyMock drives you towards strong interface/implementation sep-
aration, which is an improvement in most designs. There is much more we could
write about mock objects (and about Mock Objects), but this is enough to get you
on your way. The best way to understand them, as always, is to start using them.

NOTE In the time between writing this essay and sending the book to be
printed, a new dynamic proxy-based mock objects package has appeared
on the scene, called jMock (www.jmock.org). It picks up where EasyMock
left off, as the EasyMock project went through a temporary lull in activity,
between October 2003 and May 2004. Being so new, we do not have any
experience using it, and so we cannot say much about it, but it does look
promising and bears a look. If you have used EasyMock, then it is worth
experimenting with jMock to see the difference. You may find you prefer
jMock’s approach to that of EasyMock.14

14 Note that EasyMock released version 1.1 in May 2004, and so now there is some competition in this
space. That is usually good news for those of us using their packages.

Reading List
696

697Reading List
Java Testing

Dave Astels, Test-Driven Development: A Practical Guide (Prentice Hall PTR, 2003).
This is the first TDD-related book we have seen that uses a Swing application as its
central example, rather than yet another web application. This is an excellent tour
through all the basics of TDD, some JUnit-related tools, Mock Objects, and a fully
developed example, test by test.

Johannes Link, Unit Tests with Java: How the Tests Drive the Code (Morgan Kauf-
mann, 2003).This is another fine look at test-driven development using JUnit.

Vincent Massol and Ted Husted, JUnit in Action (Manning, 2004). This is a tutorial
approach to JUnit with advice on testing a wide range of Java applications and
components.

Andrew Hunt and Dave Thomas, Pragmatic Unit Testing in Java with JUnit (Pragmatic
Programmers, 2003). From the authors of The Pragmatic Programmer (see the General
Programming section). This is a no-nonsense look at unit testing using JUnit and Java,
including a thorough description of testing with Mock Objects. It is an excellent com-
panion to this book. (There is also a C#/NUnit version of this book.)

Richard Dallaway, “Unit Testing Database Code” (www.dallaway.com/acad/dbunit.
html). When people ask us how to test a database with JUnit, we point them first
to this article, as it covers the basics and the philosophy very well. Our chapter on
testing and JDBC is based in part on the ideas in this article.

Stephen Hall and Simon Monk, “Virtual Mock Objects using AspectJ and JUnit”
(http://www.xprogramming.com/xpmag/virtualMockObjects.htm). The first arti-
cle on the subject, as presented in XP Magazine.

Nicholas Lesiecki, “Test flexibly with AspectJ and Mock Objects” (http://www-106.
ibm.com/developerworks/java/library/j-aspectj2/). Another article on the topic of
Virtual Mock Objects, presented at IBM DeveloperWorks.

Steve Freeman, “Developing JDBC applications test-first” (http://www.mockobjects.
com/wiki/DevelopingJdbcApplicationsTestFirst). An example of building JDBC cli-
ent code using the Mock Object package.

General Testing

Kent Beck, Test-Driven Development: By Example (Addison-Wesley, 2002). This pro-
vides an introduction to test-driven development using one longer example in
Java and one shorter one in Python. It is a must-read for the JUnit practitioner

698 APPENDIX C

Reading List
looking to learn more about writing code test first. It includes patterns both for
testing and testable designs.

Tim Mackinnon, Steve Freeman and Philip Craig, “Endo-Testing: Unit Testing
with Mock Objects” (www.connextra.com/aboutUs/mockobjects.pdf). This is the
introductory paper to Mock Objects, a technique on which JUnit practitioners
come to rely quite heavily.

Cem Kaner, James Bach, and Bret Pettichord, Lessons Learned in Software Testing
(John Wiley & Sons, 2001). The book you hold in your hands describes how to
write JUnit tests, but Lessons Learned discusses which tests to write and why. Know-
ing the former without the latter can do more harm than good.

Java Programming

Martin Fowler, Refactoring: Improving the Design of Existing Code (Addison-Wesley,
1999). Martin’s book is an inspiration for this work and one of those books that
belongs on every programmer’s bookshelf. Martin provides the context for refactor-
ing, a cohesive example throughout his narrative and a large catalog of refactorings.
The names he has presented for his refactorings have become a part of the current
lexicon of evolutionary design. We refer to it throughout this book with citations
that look like this: [Refactoring, 311], meaning page 311 of Martin’s book.

Eric Evans, Domain-Driven Design (Addison-Wesley, 2003). Test-Driven Develop-
ment and Domain-Driven Design are mutually beneficial schools of software prac-
tice. A TDD practitioner tends to produce domain-oriented designs, whereas
domain-driven designs tend to be easy to test. Evans does an excellent job of com-
municating the purpose and the mechanics of Domain-Driven Design in this book.

J. B. Rainsberger, “Use your singletons wisely” (http://www-106.ibm.com/develop-
erworks/webservices/library/co-single.html). This article challenges whether your
singleton truly is a singleton, offering a few extra questions to consider before mak-
ing a class into a singleton.

Enterprise Software

Martin Fowler, Patterns of Enterprise Application Architecture (Addison-Wesley, 2002).
This is another of those books that belongs on the shelf of every programmer
working on enterprise software. Following the style of Refactoring, it provides a col-
lection of articles describing the specific challenges of enterprise software, fol-
lowed by a catalog of architecture patterns with code samples in both Java and C#.

699Reading List
We refer to it throughout this book with citations that look like this: [PEAA, 480],
meaning page 480 of Martin’s book.

Agile Software Development and Extreme Programming

Ron Jeffries, Ann Henderson and Chet Hendrickson, Extreme Programming Installed
(Addison-Wesley, 2000). JUnit grew out of the Extreme Programming commu-
nity, so it is fitting to include its literature in this list. Although this is not the first
of the Extreme Programming books (Kent Beck, Extreme Programming Explained:
Embrace Change), we believe that reading Installed first makes Explained sound less
crazy than some people think it sounds. (We do not agree with them about that.)

Jim Highsmith, Agile Software Development Ecosystems (Addison-Wesley, 2002). To
install the practices in this book in your environment, you need to understand
when Agile might work and when it definitely will not. If you find yourself in a hos-
tile environment, concentrate on practicing on your own until either your organi-
zation changes or you change organizations.

Mary and Tom Poppendieck, Lean Software Development (Addison-Wesley, 2003).
We have long been looking for a theoretical model to which to associate the prin-
ciples of Extreme Programming. The Poppendiecks have provided that model in
this excellent book.

General Programming

Andrew Hunt and Dave Thomas, Pragmatic Programmer (Addison-Wesley, 1999). A
no-nonsense catalog of programming techniques, including “learn one text edi-
tor well” and, among our favorites, “write unit tests.”

Gerald Weinberg, The Psychology of Computer Programming (Dorset House, 1998, Sil-
ver Anniversary edition). Much of what you read in this book can be challenging
to apply in an environment that is not ready for it. Although concepts such as evo-
lutionary design and programmer testing are not new, spreading the word among
your colleagues requires that you understand more about what makes a software
team work. Anything Weinberg writes is appropriate, but this is especially illumi-
nating, even nearly 30 years later.

Jim Hyslop, “Conversations: Truth or Consequences” (http://www.cuj.com/docu-
ments/s=7977/cujcexp2011hyslop/hyslop.htm). This article describes how easy it is
to obscure intent using Boolean parameters in a language that matches parame-
ters by position.

references
Print Sources

Astels, David. Test-Driven Development: A Practical Guide. Upper Saddle River, New
Jersey: Prentice Hall PTR, 2003.

Barish, Greg. Building Scalable and High-Performance Java Web Applications Using
J2EE Technology. Toronto, Canada: Pearson Education, 2001.

Beck, Kent. Test-Driven Development: By Example. Toronto, Canada: Addison-

Wesley Pub Co, 2002.

Bloch, Joshua. Effective Java Programming Language Guide. Addison-Wesley Pub
Co, 2001.

Brown, William J. et al., AntiPatterns: Refactoring Software, Architectures and Projects
in Crisis. John Wiley & Sons, 1998.

Castro, Elizabeth. XML for the World Wide Web. Berkeley, California, USA: Peach-
pit Press, 2001.

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Don Mills,
Ontario, Canada: Addison-Wesley Pub Co, 1999.

______. Patterns of Enterprise Application Architecture. Toronto, Canada: Pearson
Education, 2003.

Gamma, Erich; Richard Helm; Ralph Johnson; and John Vlissides. Design Pat-
terns. Addison-Wesley, 1995.

Haggar, Peter. Practical Java Programming Language Guide. Addison-Wesley Profes-
sional, 2000.
700

REFERENCES 701
Harold, Elliotte Rusty. Processing XML with Java. Pearson Education, 2002.

Hill, Timothy. Windows NT Shell Scripting. Sams, 1998.

Hunt, Andrew and David Thomas. Programming Ruby. Toronto, Canada: Addison-
Wesley Pub Co, 2001.

Jeffries, Ron; Ann Anderson; and Chet Hendrickson. Extreme Programming Installed.
Addison-Wesley Pub Co, 2000.

Jeffries, Ron. Extreme Programming Adventures in C#. Redmond, Washington, USA:
Microsoft Press, 2004.

Kerievsky, Joshua. Refactoring to Patterns. Addison-Wesley Professional, 2004.

Laddad, Ramnivas. AspectJ in Action. Greenwich, Connecticut, USA: Manning Publica-
tions, 2003.

Langr, Jeff. Essential Java Style: Patterns for Implementation. Prentice Hall PTR, 1999.

Martin, Robert C. Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall, 2002.

Massol, Vincent and Ted Husted. JUnit in Action. Greenwich, Connecticut, USA:
Manning Publications, 2004.

McConnell, Steve. Code Complete. Microsoft Press, 1993.

Roman, Ed; Scott Ambler; and Tyler Jewell. Mastering Enterprise JavaBeans, 2nd Edition.
John Wiley & Sons, 2001.

Tansley, David. Linux & UNIX Shell Programming. Toronto, Canada: Pearson Educa-
tion, 2000.

Williams, Laurie and Robert Kessler. Pair Programming Illuminated. Boston, Massachu-
setts, USA: Addison-Wesley Professional, 2003.

Online Sources

Ananiev, Alexander. MockEJB. www.mockejb.org

Ambler, Scott. www.agiledata.org

Ant. http://ant.apache.org

Aspect-Oriented Programming Home Page. www.parc.xerox.com/aop

Bach, James. “What is Exploratory Testing?”
www.satisfice.com/articles/what_is_et.htm

Beck, Kent. “Simple Smalltalk Testing with Patterns.”
www.xprogramming.com/testfram.htm

Beck, Kent and Erich Gamma. “Test Infected: Programmers Love Writing Tests.”
http://junit.sourceforge.net/doc/testinfected/testing.htm

702 REFERENCES
Bossicard, Vladimir Ritz. JUnit-addons. http://junit-addons.sourceforge.net

______. “The Third State of your Binary JUnit Tests.” 2003.
www.artima.com/weblogs/viewpost.jsp?thread=4603

Bowler, Mike. GSBase. http://gsbase.sourceforge.net

______. HtmlUnit. http://htmlunit.sourceforge.net

Cactus. http://jakarta.apache.org/cactus

Cactus. “Cactus Security HOWTO.”
http://jakarta.apache.org/cactus/writing/howto_security.html

CGLib. http://cglib.sourceforge.net

Chen, Doris. “Developing JSP Custom Tag Libraries.” 2001.
http://developers.sun.com/dev/evangcentral/presentations/customTag.pdf

Clark, Mike. “JUnit Primer.” 2000. www.clarkware.com/articles/JUnitPrimer.html

______. JUnitPerf. www.clarkware.com/software/JUnitPerf.html

______, ed. JUnit FAQ. http://junit.sourceforge.net/doc/faq/faq.htm

Cunningham, Ward. Afterword to Kent Beck, Sorted Collection.
http://c2.com/doc/forewords/beck2.html

CVS (Concurrent Versions System). www.cvshome.org

Dallaway, Richard. “Unit Testing Database Code.” 2001.
http://dallaway.com/acad/dbunit.html

DbUnit. http://dbunit.sourceforge.net

Diasparsoft Toolkit, 2004. www.diasparsoftware.com/toolkit

EasyMock. www.easymock.org

Eclipse. www.eclipse.org

Feathers, Michael. “The ‘Self’-Shunt Unit Testing Pattern.” 2001.
www.objectmentor.com/resources/articles/SelfShunPtrn.pdf

Fit. http://fit.c2.com

FitNesse. www.fitnesse.org

Fogel, Karl and Moshe Bar. Open Source Development with CVS, 3rd edition.
http://cvsbook.red-bean.com

Fowler, Martin. “POJO.” www.martinfowler.com/bliki/POJO.html

Francis, Alan. “Agile Scotland.” 2003.
www.scottishdevelopers.com/modules/news/article.php?storyid=11

Freeman, Steve. “Developing JDBC Applications Test-First.”
www.mockobjects.com/wiki/DevelopingJdbcApplicationsTestFirst

Goldberg, David. “What Every Computer Scientist Should Know About Floating-Point
Arithmetic.” 1991. http://docs.sun.com/source/806-3568/ncg_goldberg.html

REFERENCES 703
Holser, Paul. “Concisions, Concisions... or, (De-)Constructing an Idiom.” 2003.
http://home.comcast.net/~pholser/writings/concisions.html

HttpUnit. http://httpunit.sourceforge.net

Hyslop, Jim. “Conversations: Truth or Consequences.”
www.cuj.com/documents/s=7977/cujcexp2011hyslop/hyslop.htm

Javassist. www.jboss.org/developers/projects/javassist.html

Jeffries, Ron. XProgramming.com. www.xprogramming.com

______. “Essential XP: Unit Tests at 100.” 2001.
www.xprogramming.com/xpmag/expUnitTestsAt100.htm

______. “They’re just rules!” www.xprogramming.com/Practices/justrule.htm

jMock. www.jmock.org

JUnit. www.junit.org

JUnitPP. http://junitpp.sourceforge.net

JUnitX. www.extreme-java.de/junitx

Kitchen, Jason. “Test email components in your software.” 2003.
www.javaworld.com/javaworld/jw-08-2003/jw-0829-smtp_p.html

Lamontagne, Yann. “The Archimidean Property.” 2002.
http://planetmath.org/encyclopedia/ArchimedeanProperty.html

Log4Unit. www.openfuture.de/Log4Unit

Mackinnon, Tim, Steve Freeman and Philip Craig. “Endo-Testing: Unit Testing with
Mock Objects,” 2000. www.connextra.com/aboutUs/mockobjects.pdf

Martin, Robert C. “The Interface Segregation Principle,” 1996.
www.objectmentor.com/publications/ isp.pdf

______. “The Open-Closed Principle,” 1996.
www.objectmentor.com/resources/articles/ocp.pdf

Maven. http://maven.apache.org

Mock Objects. www.mockobjects.com

NekoHTML. www.apache.org/~andyc/neko/doc/html

Pair Programming, an Extreme Programming Practice.
www.pairprogramming.com

Penton Technology Media, “Ensuring Good JDBC Connection Pooling Performance.” 2003.
www.e-promag.com/epnewsletters//index.cfm?fuseaction=ShowNewsletterIssue&ID=584

PMD. http://pmd.sourceforge.net

Prevayler. www.prevayler.org

704 REFERENCES
Rainsberger, J. B. “JUnit: A Starter Guide.” 2002.
www.diasparsoftware.com/articles/JUnit/jUnitStarterGuide.html

______. “Use Your Singletons Wisely.” 2001.
http://www-106.ibm.com/developerworks/webservices/library/co-single.html

______. “Refactoring: Replace Subclasses with Collaborators.” 2002.
www.diasparsoftware.com/articles/refactorings/replaceSubclassWithCollabora-
tor.pdf

ServletUnit. http://httpunit.sourceforge.net

Subversion. http://subversion.tigris.org

Stobie, Keith. “Test Result Checking Patterns.” 2001.
www.stickyminds.com/se/S3222.asp

Struts. http://jakarta.apache.org/struts

StrutsTestCase. http://strutstestcase.sourceforge.net

Sun Microsystems. The EJB specifications.
http://java.sun.com/products/ejb/docs.html

Sun Microsystems. BluePrints: Core J2EE Patterns.
http://java.sun.com/blueprints/corej2eepatterns

Sun Microsystems. “Providing Object Serialization for Your Classes.”
http://java.sun.com/docs/books/tutorial/essential/io/providing.html

Velocity. http://jakarta.apache.org/velocity

Virtual Mock. www.virtualmock.org

Ward Cunningham’s Wiki. http://c2.com/cgi/wiki

Wiki. www.wiki.org

XDoclet. http://xdoclet.sourceforge.net

Yahoo! group for Extreme Programming.
http://groups.yahoo.com/group/extremeprogramming

Yahoo! group for JUnit. http://groups.yahoo.com/group/junit

Yahoo! group for Test-Driven Development.
http://groups.yahoo.com/group/testdrivendevelopment

index
Numerics

3 As
See arrange, act, assert

404 File Not Found 522

A

abstract class
enforcing contract 107

abstract test case 49–50, 52,
 107, 118, 628

accept(). See TestFilter
acceptance test 110
action

in a web application 514
ActionForward 518
actual value 282
addTest() 109, 113
addTestSuite() 112–113, 237

ignores suite() method 238
incorrect usage 238

aggregation 66
Agile 509
aliasing problem 579
AllTests 11, 115–116, 238,

 590–591, 596
alternatives to 116
maintenance issues 115–116

Ambler, Scott 172
Ananiev, Alexander 413
anonymous inner class 58
Ant 94, 96, 235, 455, 591

customizing test results
208–209, 213, 224

for executing tests 174, 181, 183
initializing test

environment 165
integration with Cactus 396
JUnit result formatter 209
reporting test results 198–199,

202, 205
using an XML catalog 303
with system properties 139–140

Anthill 174, 335, 407, 689
Apache 191
appearsEqual() 573, 577,

581, 583
implementation details 583
motivation behind 583
problems with 583

application
general testing strategy 509

application context 496
application logic

separate from business
logic 484

application servers 394–397,
406–410, 415–418

automatic deployment 162
performance problems

with 259
security 529
testing with 302, 510, 512–513
testing without 297, 386, 510
See also containers

Armstrong, Eric 52
arrange, act, assert 6, 23, 414
Arrays.asList()

for comparing arrays 25

aspect patterns
Wormhole 649

AspectJ 650
Aspect-Oriented

Programming 263
aspects 70, 559, 571, 649
assembly descriptor 529
Assert 14, 23, 225
assert methods 225
assertAppearsEqual() 581
assertAppearsNotEqual() 581
assertCollectionsEqual() 62
assertEquals() 13–15, 23, 37, 61–62,

248, 301, 493, 575, 581, 588
alternatives to 581
tolerance level 42
tolerance level for floating-

point numbers 14
assertEventsAppearEquals()

577, 582
assertFalse() 14, 31
assertion 13, 21, 23, 59, 74

complex 604
counting 224
duplication in 617
overly specific 60, 247
style 294
the implicit and 30
XPath-based 282, 287, 294–298,

301–302, 403, 491
assertion failures

multiple in test 248
assertion methods 14
AssertionFailedError 15
assertNotEquals() 31
assertNotNull() 14
705

706 INDEX
assertNotSame() 14
assertNull() 14
assertSame() 14, 503
assertThrows() 59–60
assertTrue() 14–15
assertXMLEqual() 269, 273–276,

281–282, 285, 288
assertXMLIdentical() 290
assertXpathEvaluatesTo() 269
assertXpathExists() 269
Astels, Dave 697
asynchronous 376, 414, 427, 606
attribute values, XML 266
attributes

web form 494
authentication 529–530, 532
authorization 529, 532–533
auto-increment 349, 351
Avalon 191

B

Bach, James 7, 20, 698
Bag 63
bar 174
Base Test Case

defined 90–91
managing test data with 145, 155
when to use 179, 190, 193–194,

337, 616, 620
BaseTestCase (GSBase) 62
<batchtest> 181, 199, 201–202, 596

fork attribute 182
merge results 206

bean-managed persistence
374, 408, 653

Beck, Kent 6, 83, 106, 108, 259,
567, 649, 697

behavior 17, 19–20, 81
complex 19
enforcing common 48
expected 23
incorrect 371
instead of methods 35
method without 35
predictable 6, 83, 245, 556
scattered throughout 510
special cases 92
testing indirectly 46
testing individually 87
testing separately 359

Bloch, Joshua 26
BMP 408

complexity of 408
reducing complexity of 413
See also bean-managed

persistence
Bossicard, Vladimir 119, 185,

586, 618
boundary cases 490, 689
boundary condition 8, 127
Bowler, Mike 28, 117, 123, 476,

573, 576
breakpoint 5, 10
brittleness 75

assumption about
data format 331

assumption about local
environment 280, 513

dependency on database 312
dependency on implementa-

tion details 359, 565
duplication 35, 54
of test fixtures 556
overly-precise assertions 60,

247, 294, 465
subclassing the class

under test 571
vague assertions 269

broken links 510, 522, 525
bugbase-test.log 196
build script 142
buildControlDocument() 639
buildfile 97, 181
buildTestDocument() 639
business data 371

corrupting 371
business logic

dependency on container 444
extracting from EJB 392,

395–396
extracting from web

components 456, 484
in entity beans 374–375
in message-driven beans 376
in session beans 371–374, 387
in stored procedures 366
moving into POJO 379
passing external resources

into 386
testing in isolation 384–386,

449, 689

testing in memory 379
testing without 427–430, 444–

447, 458–459, 483–484, 510
bytecode magic 263
bytecode manipulation 185, 561

C

cache 181, 183
cache hit

verifying 183
Cactus 441, 510, 533

and the Parameterized Test
Case pattern 132, 634

begin method 532
deploying tests 395
when to use 137, 393–394,

398, 530–535
CallableStatement 367
callbacks 220
cannot break on its own 41
Cannot instantiate test case 118
cascading stylesheets 296
Catalina 479
Celis, Shane 248
CGLib 67
Chappell, Simon 677
checkstyle 616
class

as a unit to test 4
class loader

problems 254
class loading 235

problems 234
class path 251, 394

See also classpath 11
class reloading

problems 250
class under test

subclassing 490, 507
ClassCastException 254

narrowing EJB reference 253
class-level method 68, 433

problems faking out 70
ClassNotFoundException 591
CLASSPATH 235
-classpath 235
<classpath> 235
classpath 234
CLEAN INSERT 170

INDEX 707
clearParameters() 358
client data 446
client state 381
clone() 573, 579–580

consistent with equals() 579
limitations of 579
when to use it 580

Cloneable 573, 580
pitfalls with 579

Closure 59
CMP. See container-managed

persistence 400
code and fix 4
code path

as a unit to test 4
cohesion 9, 20, 60, 107, 373
collaboration 328
collecting test case classes 586
collecting tests

specific ones 107
Collection.add(Object) 34
collections 26

comparing 61, 247
duplicate elements 62
unordered 62

Collections.synchronizedList() 24
com.gargoylesoftware.base.

testing.TestUtil 581
com.sun.jms.MapMessageImpl 424
command interpreter 45
command line 155, 161, 189, 195

building tests 94
command line options 142
command shells 199
Command/Query Separation

Principle 419
comments

appropriate use of 471
common fixture 125, 244
communication

through good names 17
ComparabilityTestCase 586
Comparable 586–587
ComparableAssert 589
compareTo() 586–587

consistent with equals() 588
complexity 319, 368

of EJB 372
test environment 137

composition 66

<concat> 201
confidence 56, 675
ConfigurableTestCase 159–160
configuration 377
configuration document 303
configuration errors 302
configuration files 145, 266, 401

XML 147
configuration management 438
configuration tests 145
connections

cleaning up 335
pooling 170, 335

consistency 31
console 546
construction

polymorphic 40
constructor

testing 37
testing default values 38

container 385, 409
container-managed

persistence 374, 397, 401, 403
container-managed

relationships 398, 401
effect on test complexity 375
testing meta data 375

containers 409–410, 413, 423,
501, 509, 529

difficulties testing with 259, 422
initializing with

ServletRunner 454
minimizing use of 439
security 535
simulating 387, 396
testing EJBs with 372, 374–376,

394–399, 401, 413, 417
testing EJBs without 378, 396,

401, 411, 415
testing JMS components

with 438
testing JMS components

without 444, 474, 480
testing with 396, 413, 418, 505
testing without 417–418,

420, 526
trusting 484, 536

context root 454
continuous build 407
continuous integration 375
contract 5, 53

Controller 246, 371, 374, 376,
379, 444, 451, 490, 496, 498,
500, 509, 514

Cooley, Curtis 366
copy and paste reuse 433
CountingAssert 225
coupling 9, 20, 60, 70, 107, 145,

193, 301, 309, 312, 321, 334,
374–375, 415, 429, 437, 445,
448, 451, 479, 483, 491, 545,
559, 563, 607, 684

effect of test data 137
excessive 293
tests and environment 143–144
with Singletons 558

coverage 9
Craig, Philip 318, 690, 698
createControlInstance() 65
creation method 40, 49, 562
CredentialProvider 527
credentials 526, 530, 533
CRUD 366
Cruise Control 94, 174, 335, 375,

398, 407, 464, 689
Cunningham, Ward 135, 352
custom assertion 60, 90–91, 267,

269, 290, 589, 604, 617
assertThrows() 58
design tips 619

custom suite method 108, 128,
134, 238

custom test suite 112, 128, 237
building programmatically 117
JUnit ignores 237

Customer Tests 79, 87, 91,
110, 120, 474

custom file format 135
CVS 121, 274

D

Dallaway, Richard 172, 309, 697
data access layer 310, 335
Data Bean 496
data components 309–310
Data Definition Language 328
data hiding 38–39
data repository 142
data source 401, 409, 411, 440, 478
data transfer document 304
database administrators 327, 350

708 INDEX
database connection 161
as test resource 170

database fixture 341
database meta data 334

alternatives to 331
making assertions on 329

database schema 327, 329, 366, 406
dependency on 333
enabling change 328

database servers 165
DatabaseMetaData.getSchemas()

330
databases 249, 309

and entity beans 375
and message-driven beans 421
and test data 137, 139, 157,

170, 346, 597
as a test resource 586, 593
collective ownership 327
connection parameters 142
development 352
exclusive access 406
four for testing 309
free alternatives 350
integration 310
issues testing against 334
large data sets 171
leftover data 332
legacy 363
meta data 329
minimizing tests against 261, 312
multiple schemas 363
ownership issues 350
problems using 157, 401
reducing dependency on 261
referential integrity 406
resetting state between

tests 138
shared 309, 349
stored procedures 366
testing entity beans

without 389, 409
testing the schema 328, 352
testing with 333, 360, 398, 557,

596, 599, 672, 681
testing without 317, 322, 332,

357–359, 599
DatabaseTestCase 170
data-driven tests 103, 127, 133

and Cactus 132
dataset 361, 364

DataSource 162, 325, 594
DbUnit 91, 138, 170, 360, 363,

365, 399, 596
flat XML format 360
limitations 362

dbunit.qualified.table.names 363
DDL. See Data Definition Lan-

guage
deadlock 177–178, 600
debug mode 5
debug(Object message,

Throwable t). See Log4Unit
debugger 4–5, 7, 74
debugging 4, 20, 178, 190, 334,

500, 536, 676
declarative security 525, 535

how not to test 529
declarative transactions 536
default test suite 235, 237, 243
DefaultConsole 601
DefaultDataSet 362
defects 8, 36, 474, 614, 675

caused by missing test 38, 56, 110
come back 4, 182
diagnosing 297, 305
hiding 351, 478, 616
impact of 371, 451
in an external library 186
in J2EE 1.3 412
in the platform 394
isolating 20–21, 378, 399
low-priority 186
mean time to find 114, 607
pattern 352
recurring 302, 397

delegate 379
delegation 676
DELETE_ALL 170
dependency 259, 282,

 310, 312, 333, 371
avoiding 485
checking 204
database tables 334
eliminated 613
on file system 604

deployed component
alternatives to testing 272

deploying 513
database schema objects 352
JSP tag library 474
tests 590

deployment 372, 399, 506
complexity of 378
simulating 423

deployment descriptors 266, 415,
529, 536, 538

and ServletUnit 445, 454–455
forgetting to write 474
testing 272, 399, 475, 477

deployment information
hard coding 513

deployment problems 513
deployment script 591
Deployment Tests 280, 409, 439,

477, 536, 591
design

indicator of good 460
testable 452

design improvement 66, 108
See also refactoring

design pattern 162, 544
Abstract Factory 544
Action 45
Bridge 373, 376
Command 45, 55, 663
Composite 544
Decorator 162, 179, 427,

544, 665, 676
Event Listener 545, 576

See also design pattern,
Observable

Event Source 545, 550
See also design pattern,

Observer
Factory 562
Front Controller 490
Model View Controller 371
Null Object 691
Observable 544, 550, 555,

574, 621
Observer 215, 544–545,

548, 621
Prototype 580
refactoring towards 544
Registry 593
Remote Facade 379, 386
Singleton 68, 169–170, 181–184,

440, 544, 556–557, 559, 561
Strategy 509
suggested by tests 544
Template Method 566
Wrapper. See design pattern,

Decorator

INDEX 709
design problem 346
destroy() 480
DetailedDiff 288
Diasparsoft Toolkit

CollectionUtil 331
EntityBeanMetaDataTest 403
ExceptionalClosure 59
FakeHttpSession 490
FileSystemWebConnection 491
FileSystemWebResponse 491
ForwardingServlet 459
GoldMasterFile 462
HttpUtil 516
JDBC utilities 330, 660
RequestDispatcherAdapter 490
ValueObjectEqualsTest 64

DiFalco, Robert 181
Diff

XMLUnit 275
Diff engine

XMLUnit 281
Difference 284
DifferenceConstants 283

ATTR_VALUE 283
TEXT_VALUE 283

differenceFound() 284–285
DifferenceListener 272, 280, 282,

285, 287
differences

ignoring in XML
documents 272, 281

in XML documents 274, 289
multiple in XMLUnit tests 288

DirectorySuiteBuilder 119, 175,
590, 596

compared to
RecursiveTestsuite 119

disable 185
distribution 386
doAfterBody() 470
DocBook 273, 276
Doctor Dobbs Journal 159
Document Object Model 278,

283, 294, 476
custom 287

Document Type Definition 272,
303, 403, 521

network connectivity 279
using locally 280

doEndTag() 470
doFilter() 503

doGet() 456
DOM 220, 291

See Document Object Model
Domain Model 27, 379, 381,

383–384, 386, 587
domain object 318

converting to database
object 314

DOMParser 295
don’t test the platform

EJB container 375, 397, 399
Java compiler 40
JDBC 310
JMS server 433
web container 505, 525, 529

doPost() 447, 456, 488–490, 499
doRunTest() 215
doStartTag() 470
downloading JUnit 10
DTD 304, 401, 477

See also Document Type Definition
DuplicateKeyException 399
duplication 9, 59, 248, 309, 316,

420, 548
and shared test resources 593
eliminating 25, 35, 89, 617
extracting into test fixture 73, 83
in database tests 310, 337, 362
in production code 318, 446
in test names 92, 110
in tests 92, 113, 127, 432, 637
of assertions 301, 403, 604, 617
of production code in

tests 563–565
of production logic in

fake objects 692
dynamic content 496
dynamic invocation handler 576

E

Eames, Mark 444
*.ear 395
EAR file 143
EasyMock 67, 318, 409, 437, 560,

690, 695
alternative to Self-Shunt 555
examples of use 436, 438, 488,

549, 626–627, 669
Eclipse 99, 140, 180, 251, 596, 610

Java Build Path 235

ed bar 174
EJB 162, 259, 420

failure when narrowing 253
suitability 371
why we use it 386
See also Enterprise JavaBeans

EJB container 385, 392, 397, 399,
410, 530

avoiding 372–373, 392
live 374, 377, 398, 414, 672
mocking 392
simulate 374, 386, 392
testing without 400

EJB implementation class
instantiating directly 392, 411

EJB server. See EJB container
EJB specification 382, 399
ejbCreate() 385, 427
ejbLoad() 410
EJBQL 398, 401, 406
emacs 200
email 199
encapsulation 37, 45
endo-testing 690
End-to-End Tests 7, 262, 494,

510, 519
alternatives to 446, 457, 470,

474, 491
as safety net 335
CMP entity beans 375, 399, 407
for legacy code 455
for security 525
HtmlUnit 513
organizing 79, 101, 120, 123
purpose of 509
test fixtures 87

Enterprise JavaBeans 253, 371, 496
as thin as possible 372
lifecycle methods 393, 408, 659

entity beans 374, 386, 397, 400,
408, 440, 536, 653

BMP 376, 408
reducing the cost of

testing 406
testing meta data 401
trade-off between BMP

and CMP 374
EntityContext 409–411
environment setup 164
environment variables 138,

142–144, 147, 235

710 INDEX
equality 25–26, 31
approximating with

appears equal 581
of XML documents 269

equals() 25–29, 32, 586–587, 677
and compareTo() 588
and EventCatcher 576
and JavaBeans.

See appearsEqual() 581
and object cloning 573, 579–580
and testSerliaization() 578
and TestUtil.testClone() 573
and XML documents 287
description of contract 27
for collections 62
for Value Objects 27
implementing correctly 26
not implemented correctly 581
testing 26
testing without

EqualsTester 29
when to implement 45

EqualsHashCodeTestCase 32,
63, 65

EqualsTester 28–29, 32–33, 63,
678, 681

example of using 28
parameters 28
special handling of

subclasses 28
equivalence relation 27
error 16, 57, 545

how it occurs 56
notification 216
what it indicates 16
what it means 57

error conditions 490
error handling

for JMS components 427
error-case testing 437
ERwin 328
Evans, Eric 698
event handler 213
event listener 81, 693

universal 576
event source 81, 576, 693
EventCatcher 573–576, 582–583
event-handling logic 548
events

simulating 549
test execution 213

exception 15
expected 56
ignoring expected ones 58
object-oriented test

approach 58
throwing from tests 105
throwing the right one 56
unexpected 57

ExceptionalClosure 59
excluded.properties 250, 252,

254
location on file system 251
multiple copies 251

expectations 8, 392
expected result 25
expected value 24, 34, 282

comparing to actual value 24
expensive tests 681

isolating 689
exploratory testing 7, 20
extending JUnit 189, 586
external data 346
external library

class loading problems 250
handling defects in 186

external resource 249, 593,
613, 681

avoiding 260, 334, 376, 442,
510, 608

effect on test execution
speed 114

extracting into test fixture 86
mitigating the cost of 438
simulating 415
tests dependency on 120

F

factory method 562
fail fast 694
fail() 57, 330
failed assertion. See failure
failed test. See failure
failing status code 528
failing test

one per incorrect behavior 245
FailingHttpStatusCodeException

528
failure 16, 57, 90, 382, 545

affecting other tests 106

determining the cause 293
how it occurs 56
message 15, 59, 90, 177, 589
multiple in test 244
notification 216
signaling 15
what it indicates 16

failure message 59, 131, 271, 287,
333, 442, 554, 618

customized 620
misleading 333
specialized 290
XMLUnit 288

fake 287, 489, 516, 545, 669, 685,
691–693

fake method 67
fake objects 486
false failures 418, 475, 513, 523,

607, 612
false positive 432
feedback 7–8, 21, 111, 250, 371
file

cleaning up between tests 604
reading data from 608

file system 149, 280, 458, 466,
604–605, 607

cleaning up between tests 605
load web pages from 491
scan for tests 117
testing without 606, 608

file system operations
asynchronous nature 605

FileAssert 620
filename

relative 610
<fileset> 201
filter 283

See also web resource filter
FilterChain 503
finally 336
finder methods 398
finite state machine 514
Fit 135, 509
FitNesse 509–510
fixtures 18, 83, 521, 532, 605, 686

amount of duplication 89
and order-dependent

tests 123–124
and Parameterized Test

Case 129, 132, 181
and Self-Shunt 432

INDEX 711
fixtures (continued)
as instance-level fields 109
as XML documents 134
changing for each test 128
common services as 90, 304
complex 556
database 340
duplication 84
effect on test readability 86
excessive 683
expensive to set up 161, 164
external data in 346
extracting code into 338, 456
for database tests 346
hierarchy 87
keeping separate 112
large 87
one per entity bean 403
one per method 373
one per Transaction Script 372
one-time setup 158, 161, 170, 249
organizing tests around 20,

73, 92
setup problems 234, 239
shared 106, 164, 249, 332, 346,

557, 559–560, 586, 597, 599
special case tests 18, 92, 372
splitting 73
See also setUp()

and tearDown()
foreign key 400
foreign key constraints

effect on test complexity 334
foreign keys 327
<formatter> 199, 202, 224
formatter type

for <batchtest> 199
Fowler, Martin 129, 310, 328,

334, 372, 698
frames 204
framework 234, 259, 501, 519

for unit testing 6
learning process 239

Freeman, Steve 318, 690, 697–698
functional test 110

G

Gamma, Eric 6
Gang of Four 215
garbage collection 336, 417–418
garbage-in, garbage-out 304

getDatabaseConnection() 361
getDataSet() 361
getInitParameter() 479
GetMethodWebRequest 454
getName() 178
getPrimaryKey() 410
getProperties() 139
getResourceAsStream() 150–151
getters 41

when to test 42
whether to test 674–675

global data 46, 66, 70, 235
reset between tests 182

global functions
session bean methods as 373

going dark 242
Gold Master 323–327, 462, 466, 494

externalizing to file 325
for page templates 457–459,

461, 468, 475, 494
other examples of use 280,

354, 578
when not to use 465
See also Guru Checks Output

Golden Master. See Gold Master
golden results. See Gold Master
GoldMasterFile 462
good practices 17, 114, 123, 137,

144, 148
Grandma’s Ham 46
graphical user interface 164
green bar 189, 250
GSBase 573, 590, 619–620

assertCollectionsEqual()
BaseTestCase 62, 91
EqualsTester 63, 678

See also EqualsTester
JDBC resource wrappers 343
OrderedTestSuite 123
RecursiveTestSuite 117, 121, 175

See also RecursiveTestSuite
testing equals() 28
See also Base Test Case

GUI 106, 164, 399
GUI events 574
Guru Checks Output 326

See also Gold Master

H

Haggar, Peter 26
Hall, Stephen 697

happy path 17, 311, 435
hashCode() 322, 576

consistent with equals() 32
heavyweight 558
Henderson, Anne 699
Hendrickson, Chet 699
here document. See herefile
herefile 147–148
Hibernate 375–376
HierarchyEvent 575
Highsmith, Jim 699
Hollywood Principle 260
Holser, Paul 284
hot deployment 162
HSQLDB 309, 350
HTML 276, 290

badly-formed 291
form elements 455
ID attribute 301
parsers 291
parsing as XML 290
test results as 189, 202, 205, 215

HTMLConfiguration 295
HtmlPage 494, 522

creating from the file
system 491

HTML-tolerant parser 272
HtmlUnit 91, 302, 512–513,

539, 573, 645
broken links 522
defect in version 1.2.3 523
for End-to-End Tests 444, 509
testing EJB security 530
testing static web pages 291
testing web security 526–527
when to use 455
without a web server 491

HTTP 445
HTTP request 455, 496, 498

accessing with ServletUnit 455
parameters 485
processing 483
simulating 486

HTTP response
accessing with ServletUnit 455

HTTP session 374, 446, 448–449,
452, 490, 496, 501

interaction 451
HttpClient

limitations 523
HttpServletRequest 485, 495,

499, 516

712 INDEX
HttpServletRequest.getParameter
Map() 485

HttpServletResponse 529
HttpSession 452, 455
HttpUnit 91, 444, 454
HttpUtil 516
Hunt, Andrew 42, 697, 699
Husted, Ted 697
Hyslop, Jim 699

I

IDE 115–116, 165
effect on organizing

source code 78
IDEA 180
identical

XMLUnit 269, 273
identifier

for expected exceptions 57
IDENTITY 349, 351, 362
ignorance

celebrating 241
_ignored 186
ignored tests

false positives 187
ignoring tests 107, 185
implementation pattern

testing setter methods 44
throwing the right

exception 57
incremental 9, 245
indices 327
infinite loop 177–178
info(Object message).

See Log4Unit
infrastructure 137, 145, 148, 190
inheritance

drawbacks to 193
init()

invoking directly 478
InitialContext.lookup() 253
initialization

and ServletContext 480
initialization parameters 480
<init-param> 277
insane object 54
INSERT 170
installing JUnit 10
integration 509
Integration Tests 79, 123, 137,

162, 625

integrity constraint violation 332
intercept

method invocations 486
interface

faking out 67
multiple 53
publishing 48
testing 48
tests as semantics

specification 52
invocation context 455, 499
isolated tests 106–108,

298, 408, 429, 480
problems with 544, 557
See also test isolation

isolation 509, 545
impediments to testing in 66
testing business logic in 412, 430
testing entity beans in 399
testing in 5, 19, 66
testing message-driven

beans in 426
testing objects in 387
testing responsibilities in 434,

484, 495
testing session beans in 391
testing web components

in 444, 457, 468
testing web pages in 513, 523

isValid() 38, 54
IterationTag 469, 473

J

J2EE 138, 253, 371, 577
use of XML 266

J2EE applications 266, 508, 510
J2EE server 162
j2ee.jar 413
Jakarta Commons 59, 523
Jakarta Commons Logging 198
*.jar file

collect tests from 586, 590
<jar> 591
Jasper 455, 457, 463
<java> 175
Java language specification 40
Java logging API 193
Java system properties 144
Java Virtual Machine 16
java.io.tmpdir 142
java.lang.Cloneable 580

java.lang.System 139
java.logging 190
java.util.Calendar 54
java.util.Properties 148
java.util.ResourceBundle 152
JavaBeans 38, 44, 54, 457, 469,

581, 583
presentation layer 466
structure of 54
testing 54

<javac> 96
Javadoc 204
JavaMail 419, 432
JavaServer Pages 272, 444–445,

491, 514, 520
alternatives to 267, 298
and HTTP sessions 455
forwarding from servlet 455
rendering 456–457
tag handler 468
tag library 474
testing data passed to 495
testing in isolation 457

Javassist 185
javax.rmi.Remote 382
jaxen 267
JAXP 223

test failure using 252
JBoss 185, 386, 401, 403, 413,

434, 441, 530, 534
JDBC

alternative to 158–159
common trouble spots 321, 333
design criticism 322
duplication in tests 310
for test data 399
problems testing 309
provider 310, 330
reducing dependency on 261,

312, 314, 317
testing queries 317

JDBC client code 408–409
JDBC resources 336, 340, 367

cleaning up 335
effect on test execution 336
in production code 343

JdbcResourceRegistry 340, 362
JDO 386
jEdit 180
Jeffries, Ron 135, 259, 699
Jelly 189
Jetty 495

INDEX 713
Jini
alternative to EJB 385

jMock 67, 488, 695
JMS 259, 548
JMS exceptions 437
JMS message consumer 376,

420–421, 426, 430–432
JMS message listeners

See JMS message consumers
JMS message producer 376,

433–434
JMS server 434, 438
JNDI directory 385, 411–412,

414–415, 427, 439–441,
510, 657

as common test resource 593
avoiding 376, 392
in-memory 440
mocking. See MockEJB
testing contents of 393, 430, 442

JNDI lookups 253, 373, 431, 440
effect on test execution

speed 396
testing in isolation 386

JNDI namespace
nonglobal 412

jndi.properties 413
JSP engine 457

simulating 468, 470
standalone 463

JSP. See JavaServer Pages
JspWriter 473
JTidy 296
JUnit

alternatives to 675
design philosophy 245
when not to use 322, 366

<junit> 175, 189, 198–199,
201–202, 224

alternative to 215
custom formatter 214
forking the JVM 181
formatter attribute 209
printsummary attribute 204
using system properties 140
See also <junitreport>

JUnit FAQ 253, 255
JUnit Yahoo! group 52, 164, 181,

185, 215, 234, 236, 618
junit.framework 13, 23

junit.framework.AllTests 113
junit.framework.Assert 14
junit.framework.

AssertionFailedError 15
junit.framework.Test 216
junit.framework.TestCase 13,

240, 395
AllTests pattern 113

junit.framework.TestListener 21
5

junit.jar 95, 175, 223, 234, 250
junit.log4j.LoggedTestCase

194–195
junit.logswingui.TestRunner 195
junit.runner.TestRunner 215
junit.swingui.TestRunner 174
junit.tests.AllTests 112, 115
junit.textui.TestRunner 11, 174
JUNIT_HOME 175
JUnit-addons 586, 592

assertNotEquals() 31
ComparabilityTestCase 589
ComparableAssert 589
custom assertions 619–620
DirectorySuiteBuilder 119,

175, 590
documentation defect 601
EqualsHashCodeTestCase

32, 64
ignoring tests 186
ResourceManager 593
test runner 176–177, 179, 600
TestClassValidator 614
TestSetup 164, 598

JUnitEE 137
junit-frames.xsl 205
junit-noframes.xsl 205
JUnitPerf 161, 539
JUnitPP 138, 159, 592

default directory 160
<junitreport> 176, 189, 202,

204–206, 208–209, 214–215,
224, 596

customizing output 205
junit-frames.xsl 205
junit-noframes.xsl 205
with custom stylesheet 207

JunitResultFormatter 209
JUnitX 248, 480, 604, 620,

622, 626
junitx.extensions.Comparability

TestCase 587
junitx.framework.TestProxy 621
junitx.runner.Resource 597
junitx.runner.TestRunner 176
junitx.util.ArchiveSuiteBuilder 590
junitx.util.ResourceManager 593
just for testing 81, 384, 624–625
JVM properties.

See system properties

K

Kaner, Cem 698
Kay, Michael 297
keep the test 21, 43
Kerievsky, Joshua 544
key properties 65

L

Laflamme, Manuel 170
Langr, Jeff 117
Latkiewicz, George 313, 326, 385,

407, 478
leaking resources 335
learning

by writing tests 61
learning curve 234
Learning Test 40, 312, 329, 332,

335, 353, 397, 648
legacy code 108, 323, 357, 389,

422, 626
assertEquals() 581
file system 607, 614
JDBC 341, 349, 357, 359–360
message-driven bean 422, 429
no return value 620
private methods 604, 625
session bean 387

legacy J2EE components 262
Lesiecki, Nicholas 697
lifecycle

of JSP tag handlers 468
lightweight container 445, 454
Link, Johannes 697
LinkageError 252
List 24
List.equals() 25
ListAssert 619–620
location

in a web application 514

714 INDEX
log()
overriding in servlets 479

Log4J 190–191, 194, 196, 198, 509
extra logging output 197

Log4Unit 194, 196
default behavior 194
limitations 198
using 194

LoggedTestCase 198
logging 194, 196

configurability 193
how not to use 190

LogKit 190–191
look-and-feel 299

M

Mackinnon, Tim 318, 690, 698
Madhwani, Rakesh 164
<mail> 201
mailto 523
maintenance 348
Manaster, Carl 352
manual tests 322, 483

for EJB security 530
mapping

for CMP entity beans 398
Massol, Vincent 697
Maven 189
McConnell, Steve 46
memory

testing entirely in 379
Menard, Jason 36
mental model 17
Message 421
message listener 259

instantiating directly 427
message-driven beans 376,

417–418, 427, 430, 432
difficulty testing 420, 426
legacy code 422
testing with MockEJB 423
testing with the container 414
testing without the

container 420
MessageDrivenContext 420
MessageListener 426
message-processing logic 427,

429–430
messaging server 438, 478

testing without 426, 434, 438

meta data 397, 404
for CMP entity beans 400

method
as a unit to test 4

method invocation
intercepting 488–490, 576
recording 549

method invocation sequences
recording and verifying 555
verifying with EasyMock 411

Method test name not found 236
Mimer 309, 350
mock data source 368
Mock Objects 312, 318, 325, 344,

357, 473, 672, 690, 694–695
JDBC 357

mock objects 260, 318, 345, 359,
368–369, 386, 392, 409, 426,
430, 432, 518, 568, 649, 681, 689

effect on complexity 319
JDBC 358, 368
JDBC provider 312
JMS 439
overuse 439

mock objects approach 260, 351,
409, 420, 442, 484, 510, 613

MockCallableStatement 367
MockConnection2 368
MockContext 411–412, 438
MockDataSource 412
MockEJB 387, 391, 393, 396, 399,

411–412, 420, 423, 425, 438, 440
supported EJBs 393

MockJspWriter 473
MockMaker 488
MockMultiRowResultSet 318
MockPageContext 471
MockPreparedStatement 313
MockResultSet 321
MockSingleRowResultSet 318
Model 371, 509
Monk, Simon 697
multiple assertions 244

alternatives to 244
motivations for 246

multiple failures 245, 247
for detailed test results 248

multiple test runs 164
multiple tests

using same data 106
Multiset. See Bag

mutable objects 579
MVC. See design pattern,

Model View Controller
MySQL 350

N

naming conventions 131, 154, 576
for special case tests 18
for test case classes 18
for test packages 80
for tests 17, 73, 242

naming rules
for tests 242

narrow() 254
narrowing EJB references 253
navigation 519
navigation engine 511, 514,

518, 520
navigation rules 371, 509–511,

514, 518–520
modelling 514
testing in isolation 518–519

NekoHTML 291, 294, 302
configuration notes 294
default configuration 295
HTML DOM configuration 294
HTMLConfiguration 294
instantiating parser 295
Xerces compatibility 296

nekohtml.jar 294
network connection 268, 279, 401
network connectivity 279
No test cases found 236
NoClassDefFoundError

when executing tests 234
noframes 204
noloading 198
novice programmers 40
null reference 16
nullable 334
nullable columns 327
NullPointerException 479, 499

O

object model
for HTML 513

Object Tests 5, 10, 335, 414, 470,
474, 556–557, 593

alternatives to 625

INDEX 715
Object Tests (continued)
and mock objects 690
automated 7–8
different from Test Object 67
for data components 310, 321
for EJBs 414
for J2EE applications 509–510
for legacy code 263
for web components 455, 465,

468, 474, 484, 494
importance of Value

Objects 26
object-oriented design 66
organizing code for 79
positive feedback 9
programmer confidence 9
repeatable 7
rhythm of 6, 12
self-verifying 8, 15
test data for 137, 157

Observer 550
one problem at a time 247
one-time setup 165, 249, 521, 597
onMessage() 414

invoking directly 423
open source 6, 194, 245, 290
Open/Closed Principle 613, 689
operating system 165
optimize

test suite 162
order of tests 106

controlling 108
JUnit default behavior 109

order-dependent tests 123, 126
example 124

OrderedTestSuite 124–125
as a refactoring tool 125

ordering of objects 586
org.apache.catalina.core.

StandardWrapper. 479
org.custommonkey.

xmlunit.Diff 274
org.custommonkey.xmlunit.

DifferenceListener 282
org.dbunit.DatabaseTestCase

170, 361
org.dbunit.dataset.IDataSet 170
org.w3c.dom 217, 223
orthogonality 245
owning the plug 349, 352

P

package hierarchy 114
page context 470, 473
page flow 509–510, 513–514

testing in isolation 511
page templates 267, 514, 520

testing data passed to 495
Pair Programming 241
parameterize 127, 139
Parameterized Test Case 65,

131–132, 634
executing a single test 180
externalizing fixture data 134
for database tests 327, 345, 356
for J2EE applications 516, 538
for JNDI directories 442
for web components 473, 506
problem with Cactus 442
using XML 134–135, 630

Parameterized tests.
See Parameterized Test Case

parameterizing
test data 137

<param-name> 277
<param-value> 277
passivation 393
PDF 209

test results as 205
performance 147, 259, 336,

419, 464, 525
problem with containers 259

permissions 356
database objects 352

persistence 376, 386, 388, 408
pluggable 375

Pettichord, Bret 698
philosophy 107
Plain Old Java Objects 379,

386, 424, 432
and equals() 287
and lightweight

frameworks 386
examples 664, 669
extracting from EJBs 373,

379, 421
extracting from JMS

components 431
refactoring Singleton

into 558, 560
with web components 490

plain-vanilla JVM 413
PMD 241, 616
POJO. See Plain Old Java Objects
Poppendieck, Mary and Tom 699
PostMethodWebRequest 454
Postscript 209
PreparedStatement 311–312,

322, 695
making assertions on 313

presentation engine 267, 272,
304, 465

presentation layer 297, 299, 301,
304, 374, 499

testing without 510
presentation object 371
Preuß, Ilja 32, 58
prevalent system. See Prevayler
Prevayler 375, 509, 607
primary key 408–409
primitive values

comparing 23
printf 20, 330
printsummary 201, 204
private data

gaining access to 622
private methods 480, 604, 625, 627

testing 81
PrivateTestCase 621
problems

common 234
procedure 372–373
production code

shipping tests with 590
productivity 224
Programmer Test suites 111
Programmer Testing 4–5, 41, 66,

309, 396, 607
goals of 334
good practices 106

Programmer Tests 110, 120,
464, 509

relationship to Customer
Tests 111

simplest 23
progress 224
properties 138, 148, 152, 156,

325, 591
built-in 142
for test data 138
Java system 139
reading from file 149
setting 139

716 INDEX
properties file 147, 164
location in source tree 151
managing multiple 592
test data as 586

PropertyManager 586, 591
limitations 592

protected methods 76, 604
public interface

testing entirely through 37
publisher. See design pattern,

Observable

Q

queries 311
query expressions

for XML 266
query method

add for testing 36
quick green 383

R

rathole 365
readability 158
readable properties 24

testing a class without 38–39
recompiling

avoiding 139
RecursiveTestSuite 117–118,

120–121, 175, 590
compared to

DirectorySuiteBuilder 119
parameters to 117

red bar 250
reducing dependency 260
refactor 19, 302, 337

unable to 389
when you cannot 377

refactoring 9, 75, 181–182, 444
and coupling 19, 80
and legacy code 360, 389
assertions 302
away from containers 259
away from the database 312,

334, 357
effect on AllTests 115
EJBs 376, 395, 408, 413, 430
Extract Class 507

Extract Method 619
fixtures 88, 304
into a Base Test Case 337
Move Method 379
Replace Subclass with

Collaborator 490
tests 159, 341, 604
tests as safety net 70, 259,

334, 349
tests as safety net.

See safety net
to methods instead of

constants 325
towards a Parameterized

Test Case 345
towards a testable design

309–310, 379, 430, 452
towards design patterns 544
towards test isolation 123, 125
without tests 419, 422, 561

referential integrity 406, 597
arguments for 407
overuse 400

reflection 105, 131, 243
to invoke test method 109

registerServlet() 455
regression 7

test 330
relational data

converting to objects 317
ReloadedTestCaseDecorator

183, 185
remote connection

eliminating from tests 280
remote method invocation 577
<report> 202, 205

defect in 207
styledir attribute 205
using frames 204

reporting test results 16, 189
reports

custom format 189, 205
customizing 205
format of 189

request 446
request dispatcher 490, 518
request handler

behavior of 518
resetFixture() 126
resource references 412

ResourceBundle 138, 151–153, 164
ResourceBundle.getBundle

(String baseName) 153
ResourceManager 586, 596
ResourceManagerTestSetup 596
resources

order of initialization 597
ResourceTestSetup 593
responsibilities

separating 548, 550
result

in a web application 514
result sets 330

cleaning up 335
ResultPrinter 545
ResultSet 311, 318, 322, 345

creating domain objects
from 317

hardcoded 319
mapping data from 319

ResultSetMetaData 331
return on investment 38

testing setter methods 48
return value 23, 26

legacy method without 620
method without 414, 484, 545
testing a method with 23
testing a method without

one 33
XML document as 266

revealing intent 17, 55, 59, 75,
128, 403

rhythm
of a test 105
of an Object Test 6

rich client 374
ripple effect 111, 556
RMI. See remote method

invocation
Ruby 59
rules 56
runBare() 86, 243
runSuite() 215
runTest() 109, 179, 241

alternatives to overriding 242
invoking multiple test

methods 242
overriding 132, 234, 241–242,

570, 634
RuntimeException 16, 59

INDEX 717
S

safety net 7, 108, 125, 182, 334,
511, 625–626, 675

and legacy code 349, 422
benefits of 259
changing code without 561
false sense of security 78
refactoring without 70, 419
using Cruise Control 398
See also refactoring,

tests as safety net
sanity check 54
scenario 372
schema-qualified tables 363
scripting 189

variable 469
ScriptIt 166
security 386, 395, 398, 509–510,

527, 529, 532–533
EJB 530
programmatic 409
web resource 525

security server 478
SecurityException 533–534
SELECT 317
self-documenting 9, 15
sense of completion 114
sequence diagram 421, 427
sequence difference

in XML documents 281
serial version UID 578
SerializabilityTest 573
Serializable 382
serialization 573, 577
server-side tests 394
service() 455–456
services

as plug-ins 261
servlet session

accessing with ServletUnit 453
ServletConfig 479
ServletContext 480–481, 483
ServletRunner 445, 454, 499
servlets 259, 444–445, 451, 484,

494, 507, 513, 518, 613, 637
and filters 500
and XSL transformations 304
design problems 259
executing server-side

tests 396, 442

extracting business
logic from 444

forwarding to JSP 455
initialization 454, 477
initialization parameters 277, 287
legacy code 263, 452
multiple 481
passing data to web pages 496
processing requests 483, 486
redeploying 162
request attributes 277
session attributes 277
session data 446, 449, 455–456
specification 277
typical behavior 483

ServletTestCase 395, 441
ServletUnit 444–445, 455–456,

460, 488, 495, 499
and HTTP session 453
for legacy code 448, 455
note on Invocation-

Context 456
testing filters 505
testing J2EE applications 518
testing ServletContext 481
URL mapping 456
when to use 456, 498
with Jasper 457

ServletUnitClient 455
session

design issues 446
reducing interaction with 451

session bean 372, 384, 394,
396, 440

delegating to domain
object 379

relationship to entity
beans 399

stateful 374, 446
testing implementation

directly 385
testing methods

independently 372
testing outside the

container 378
session data 446, 452
set method

difficulties testing 45
See also setters

setEntityContext() 411

setExpectedCloseCalls() 345
setters 44

whether to test 674–675
setUp() 84–86, 148–149, 158,

170, 178, 191, 239, 242, 272,
287, 337, 340, 347, 363, 403,
483, 488, 528, 532, 567, 600,
605, 687

incorrectly overriding 614
invoking super.setUp() 88,

239
log messages 196
once per test suite 161
one-time 162
typo 239

shared fixture
effect on test isolation 106

shared test fixture
as a design issue 599

shared test setup 346
side effect 35, 484, 545, 549

invisible 36, 478, 546
observable 34–36, 38, 45,

548, 620, 625, 649
similar XMLUnit 269, 273
SimpleCredentialProvider 527
simplifying interface 434
simulate 392, 526, 529, 690

error conditions 69
simulator

for web container 454
Single Responsibility

Principle 81, 548, 555, 608
Singleton

wise usage 46, 67
Smalltalk 6, 15, 59, 61, 117, 324, 397
SMTP 415
SMTP server 419
source code

difficult to navigate 111
source control 155
source trees 77
special case tests 18
Specification by Example 65
specifications 5, 392, 468

and third-party software 471
spreadsheets

tests as 509
Spring 386
spy 46, 425

event listener 82

718 INDEX
SQL 158
parsers for Java 309
query validator 309
verifying commands 322

<sql> 157
SQL commands

manual tests for 322
state diagram 510
stateless session beans

ease of testing 373
statements

cleaning up 335
static web page 457
Stobie, Keith 327
stored procedures 158, 355,

366–368
deployment tests 352
testing without JUnit 366

StringAssert 620
StringReader 145
Struts 246, 278, 302–303, 495,

510–511, 518–522, 639
testing without 519

struts-config.xml 302,
518–519, 521

StrutsTestCase 510
stub 690–691
stub method 67
stultifyingly abstract 64
<style> 206
style-checking software 240
stylesheets 204–206
subclassing

alternatives to 193
class under test 503

subscriber. See design pattern,
Observer

Subversion 121
suite of suites 109, 112, 114–115
suite() 104, 108, 113, 115, 123–

124, 128–129, 134, 162, 164,
174, 184, 191, 237–238, 442,
596, 634

default behavior 105
duplication in 110
forgetting to update 104
ignoring 112
incorrectly coding 614
invoking explicitly 238

SuiteBuilder 586
SUnit 6, 397

Swing 374, 573–574
Swingler, Neil 183
syntax 604
<sysproperty> 140–141
system properties 138, 141, 148,

153, 155, 160
managing 591
omitting from reports 206
setting test data 140

System.getProperty() 143
System.out 189, 194, 197

T

tablespace 350
tag handler 468, 474
tag interface

for classifying tests 121
tag library 477
tag library descriptors 475, 477
TDD. See Test-Driven

Development
team environment 190, 204
tearDown() 85, 158, 170, 191, 239,

242, 337–338, 340, 347–348,
567, 597, 599, 605, 607, 687

and fixture setup errors 598
incorrectly overriding 614
invoking super.tearDown()

89, 239
log messages 196
once per test suite 161
one-time 162
typo 239

Telnet 199
temporary files 142
temporary test suite

when fixing a defect 110
<test> 199
test case 8

performance problems 162
reloading classes 183

test case classes
correspondence to

production class 373
each test is an instance 109
handling multiple 111
inheriting tests 107
large 18
many in one package 111
naming convention 117

one per production class
93, 373

order of tests 123
syntax of 614

test data 127, 132, 137–138, 155,
157, 349, 362, 389, 396, 398,
409, 591, 612, 630, 634, 657, 684

alternatives to XML 157
centralizing 592
command line

arguments 138–139
database 157, 346
describing with XML 156
entity bean commit

options 399
excessive 400
externalize 103, 148, 152, 158
externalizing 132
file-based repository 154
for database 360
formats 156
generating 137
global 142, 166, 169, 181–182
hardcoded 139, 148, 157, 460
hierarchical 138
in files 145
in multiple files 152
in properties files 591
initialize once per JVM 168
JUnit-addons test runner 177
large amounts 154
locating within tests 155
naming conventions

for files 156
organizing 156
organizing in source control 156
parameterized 148
properties files 159
resetting between tests 170
resetting global state 181
restoring between tests 171
restoring to initial state 138, 158
setup complexity 360
shared 137
shared repository 154
small amounts 139, 141
static 138
system properties 138
tabular 356
under version control 155
using JDBC 362

INDEX 719
test database 312, 349, 360
sharing 349

test environment 498
as a tool 165
auditing 190
automating 166
complex 393, 413, 548, 611
complexity 396
one-button 166
one-time setup 168

test file 142
test fixture 106, 131, 236, 239,

249, 346, 445, 483
complex 597
extracting 133
extracting data into 128
hierarchy 239
naming 18
setup problems 239

test hierarchies
behavior in JUnit 52

Test Infected 104, 108
test isolation 108–109, 480, 544,

557, 563, 605, 614, 625
effect of databases 334, 346
effect of shared fixtures 346,

597, 605, 608
effect of Singleton 559
effect of Singletons 556, 560
refactoring towards 123, 125

test listener
open architecture 586
See also TestListener

test management system 205
test methods

coding errors 235
execute in its own JVM 181
mistyped name in suite()

method 236
naming convention 104
naming guidelines 236
not found 235
similar 127
throwing exceptions 105

Test Object 67
Test Objects 67, 390–391, 412,

426, 488, 559, 695
crash test dummy 69
fake 67
mock 67
simulating error conditions 69

stub 67
substituting 69

test package hierarchy 80
test reports

customizing 586
test resources

shared 586, 593
test results 217

as HTML 202
auditing 190
custom format 208
customized 224
customizing 190, 215
in XML 223
logging 190
management system 209
plain text 198
sending in email 201

test runner 8, 11, 111, 174, 220
AWT-based 174
built-in 189
class path problem 235
class-loading problems 250
custom 167, 174, 194, 586
extending 224
JUnit-addons 176, 187, 596, 602
launching 174
Log4Unit 197
problems with EJBs 254
specifying test data files 148
status bar 177
Swing-based 167, 174, 178
terminate() 168
text-based 11, 141, 166, 174,

178, 195, 215, 599
test suite 8, 103, 398, 586, 607, 630

arbitrarily complex 103
arbitrary collection of tests 111
as XML document 133
build automatically 103, 105
build from file system 116
build manually 104, 108
builder 117
building a bigger one 109
building manually 104
collecting tests into 103
create from a package 111
custom 236, 249
data-driven 127
default 105, 107, 236

define using XML 157
executing repeatedly 169
extract automatically 112
for the entire system 114
how JUnit executes 109
maintenance issues 116
managing 103
manual 184
not executed 237
portable 138
test order 103

test until fear turns to
boredom 38, 56, 406, 676

testability 36
testable design 74, 82, 108, 259,

385, 608, 620, 626
effect of class-level methods 70
refactoring towards 309, 378, 422

TestCase 12, 18, 189, 225
difference between class

and instance 242
executing only one 180
extending 190
extension 194
inheritance rules 52

TestCase class
one per production class 72

TestCase hierarchy 73
TestCaseClassLoader 254
TestClassValidator 614, 616
testClone() 579–580
Test-Driven Development 9, 87,

137, 185, 245, 250, 406, 573, 691
and Exploratory Testing 7
and legacy code 125
and organizing code 74, 79
and test isolation 106, 108
effect on design 70, 82, 91, 378
example of 547
fixing defects 110

TestFilter 117–118, 120–121
ignore abstract tests 118

testing
effect of referential integrity

constraints 400
manual 7
only for 36–37, 418, 558
the goal of 675

testing department 4
testing methods together 35

720 INDEX
Testing Patterns
Abstract Test Case 52, 544, 587
AllTests 112, 114
Crash Test Dummy 399, 429,

569, 672, 693
fixture barrier 126
Isolated Test 106
Log String 567, 649
one failure per problem 107
Parameterized Test Case 128,

241, 243, 506, 516, 538, 630
Self-Shunt 184, 389–391, 425–

432, 545, 550–555, 623, 693
Spy 422–432, 507, 552, 563,

567, 574, 626, 649, 688, 693
testing, only for 419, 618
TestListener 215, 232, 545, 552,

555, 596, 602
event handlers 216

TestProxy 623
TestResult 249, 552, 554–555
TestRunListener 600
TestRunner

as a listener 215
extending 215, 220
JUnit-addons 600

tests
annotated 509
as specification 36
categorizing 103
cost of executing 464
deploying 590
execution speed 259
general form of 25
JUnit cannot find 104, 235
JUnit not executing 104
long-running 190
manual 7
order of 123
order-dependent 249
problems implementing 234
seemingly too simple 41
too simple to write 38
written by non-

programmers 510
testSerialization() 577–578
TestSetup 138, 161–162, 164,

170, 521, 586, 593, 599
effect on fixture

implementation 164
JUnit-addons

implementation 598
tearDown problems 164

TESTS-TestSuites.xml 207
TestSuite 105, 108, 133, 525
text node

with empty content 271
TextUtil 493
third-party library.

See external library
Thomas, Dave 42, 697, 699
Thread.sleep() 417
throwing the right exception

how not to test 58
throws Exception

declaring test methods 57
Tidy 291, 296
tolerance level

for floating-point numbers 14
Tomcat 463, 479
too simple to break 39, 41,

43–44, 55, 379, 384, 410, 421,
451, 562, 674

rebuttal 677
Torque 376
Transaction Script 372
transactions 380, 386, 398–399,

427, 509–510, 662
attributes 536, 538
behavior 348
container-managed 536, 538
isolation 539
isolation level 536
rollback trick 347

Transform 300
transitivity property

of equals() 677
triggers 327
trusted libraries 312
<tstamp> 201
typing, too much 24
typo 604

U

unchecked exception 437
unexpected state

after failed test 106
uniqueness constraints 333
unit testing 4, 137
UNIX 274
UnknownHostException

thrown by XMLUnit 279
unpacking JUnit 10
unpredictable state

for future tests 107

UnsupportedOperation
Exception 32

upgrade 252
useless tests 40
user.home 142, 155

V

validation
testing in constructor 39

Value Object 26–27, 32, 311, 321,
575–576, 578, 581, 617, 678

as XML document 268
primitive wrapper classes 27
with many properties 63

ValueObjectEqualsTest 64
Vector 382
Velocity 246, 272, 371, 444–445,

465, 491, 493–494, 499, 514, 520
public fields 467
rendering template 465, 467
standalone mode 467
testing data passed to 495

VelocityContext 466
verify() 411, 694–695
version control 253
View 371, 496
Virtual Mock 70, 561
Virtual Mock Objects 263
visual inspection 299, 461, 494,

496, 498
VisualAge for Java

effect on test packages 82
void. See return value

W

Wake, Bill 6, 23
web applications 246, 267, 272,

291, 293, 303, 444, 483–484,
513, 522, 533

deploying tests for 395
designing for testability 376,

500–501
presentation layers 297
testing components in

isolation 446, 448, 505,
509–510

testing navigation rules
509–510, 519

web deployment
descriptors 278, 481

See also deployment descriptors

INDEX 721
web browser 290
simulating 291

web components 444, 474, 495
web container 399, 444–445,

468, 479, 483, 505
avoiding 445, 484
for processing JSPs 464
simulating 445, 455
testing interaction with 456
testing with 445

web deployment descriptor 277–
280, 287, 303, 527, 532, 637

generating 280
web forms 494, 523
web page content 491
web page templates 291
web pages 267, 296, 299, 301,

448, 514
comparing 301
dynamic 291, 493
static 290–291, 493
testing in isolation 272

web request 513
web resource 530
web resource filter 500, 507

responsibilities 500
web server 165

testing web page without 491
testing without 491

web services 267–268
Web Services Description

Language 266
web.xml. See web deployment

descriptor
web-authoring tools

compatibility with 294
WebClient 522, 527–528
WebRequest 454, 499
Weinberg, Gerald 699
well-factored 135
well-factored design.

See refactoring
Wenner, Robert 616
what not to test 55
white space 273

in XML documents 270–271
white space only

elements and XMLUnit 272
Wiki 510
Woolley, Chad 70
wrapper classes

for primitive types 27

wrappers 372, 385, 421, 490
See also design pattern,

Decorator

X

Xalan 208, 267, 297
XDoclet 538
Xerces 223, 294, 297, 648
XHTML 266, 272, 290, 296

scarcity of 290
tag name standards 296

XJavaDoc 538
XML 145, 148, 155–156, 215,

217, 220, 266, 401, 403, 475,
535, 587, 630

causes JUnit failures 252
comparing documents 267,

270, 280
defining test suites with 133
object marshalling 267, 273
order of elements 273
storing test data 138
test results as 189
well-formed 291

XML documents 519, 637
as a return value 266
element structure 270
for configuration 303
for data transfer 303
hardcode in tests 298
ignoring differences 287
ignoring the order of

elements 277
listing all differences 289
making assertions on 269
problems with line breaks 270
testing without files 268
to describe a database 328
unexpectedly equal 275
validating 272, 477, 519, 537, 645
validating in tests 302
validating incoming data 304
walking the DOM 278
writing assertions for 521

XML parsers 266
XML parsing 147, 279
XML schema 272, 303–304

avoiding overuse 306
XMLJUnitResultFormatter 214
XMLTestCase 267, 401, 619

XMLUnit 269, 401, 464, 477,
495, 519, 530, 537, 619, 639

and DTDs 477
assertXMLEqual() 273, 276
buildXmlDocument() 279
detailed failure message 288
diff 275
Diff engine 281, 288
example test 270
failure message 271
for EJB meta data 375
for J2EE deployment

descriptors 401, 505, 535
for JavaServer Pages 464
for JSP custom tags 475
for Struts applications 519
for XSL transformations 298, 301
identical documents 273, 275
ignoring differences 272, 282
ignoring white space 271
limitations of 278
order of sibling elements 276
org.custommoney.

xmlunit.Diff 274
parsing 279, 639
with HTML documents 292
See also XMLTestCase

XPath 266, 287, 293, 328, 403,
475, 521, 538, 639

API 267, 278
assertions using 266

XSL 204–206, 209
XSL stylesheet 298, 301, 639, 645

testing in isolation 297
XSL transformation 266–267,

297–298, 304, 645
alternative to JSPs 297
as presentation layer 282
testing in isolation 272

XSLT 272, 304
See also XSL transformation

xUnit 6, 61

Y

YAGNI 91

Z

ZipFile 590

M A N N I N G $49.95 US/$69.95 Canada

When testing becomes a developer’s habit good things tend
to happen—good productivity, good code, and good job
satisfaction. If you want some of that, there’s no better

way to start your testing habit, nor to continue feeding it, than with
JUnit Recipes. In this book you will find one hundred and thirty seven
solutions to a range of problems, from simple to complex, selected for
you by an experienced developer and master tester. Each recipe follows
the same organization giving you the problem and its background
before discussing your options in solving it.

JUnit—the unit testing framework for Java—is simple to use, but some
code can be tricky to test. When you’re facing such code you will be
glad to have this book. It is a how-to reference full of practical advice
on all issues of testing, from how to name your test case classes to how
to test complicated J2EE applications. Its valuable advice includes
side matters that can have a big payoff, like how to organize your test
data or how to manage expensive test resources.

What’s Inside
■ Getting started with JUnit
■ Recipes for

servlets, JSPs, EJBs, Database code, and much more
■ Difficult-to-test designs, and how to fix them
■ How testing saves time
■ Choosing a JUnit extension:

HTMLUnit, XMLUnit, ServletUnit, EasyMock, and more!

J. B. Rainsberger is a developer and consultant who has been a leader in
the JUnit community since 2001. His popular online tutorial JUnit: A
Starter Guide is read by thousands of new JUnit users each month. Joe
lives in Toronto, Canada

JAVA

JUnit Recipes Practical Methods for Programmer Testing

J. B. Rainsberger with contributions by Scott Stirling

,!7IB9D2-djecdi!:p;O;T;t;p
ISBN 1-932394-23-0

“Educational writing, a refer-
ence manual with working
examples, and a compelling
argument for how testing
can increase productivity
and quality.”

—Michael Rabbior, IBM

“I like the ‘been there,
done that, don't do it please’
approach. J. B. has the
experience and explains
the why of the solutions.”

—Vladimir Ritz Bossicard
JUnit Development Team

“I'm finding this book to be
a useful ‘pattern reference’
—it will have stuff to mine
for years to come ...”

—Eric Armstrong
author of JBuilder2 Bible
consultant for Sun Computing

“Wonderful ... just publish
it so I can make it required
reading for my team!”

—Simon Chappell, Lands End

www.manning.com/rainsberger

Ask the Author Ebook edition

AUTHOR
✔

ONLINE

✔

	JUnit Recipes
	about the cover illustration
	about this book
	acknowledgments
	preface
	foreword
	contents
	brief contents

	The building blocks
	Fundamentals
	1.1 What is Programmer Testing?
	1.1.1 The goal of Object Testing
	1.1.2 The rhythm of an Object Test
	1.1.3 A framework for unit testing
	1.1.4 Enter JUnit
	1.1.5 Understanding Test-Driven Development

	1.2 Getting started with JUnit
	1.2.1 Downloading and installing JUnit
	1.2.2 Writing a simple test
	1.2.3 Understanding the TestCase class
	1.2.4 Failure messages
	1.2.5 How JUnit signals a failed assertion
	1.2.6 The difference between failures and errors

	1.3 A few good practices
	1.3.1 Naming conventions for tests and test classes
	1.3.2 Test behavior, not methods

	1.4 Summary

	Elementary tests
	2.1 Test your equals method
	2.2 Test a method that returns nothing
	2.3 Test a constructor
	2.4 Test a getter
	2.5 Test a setter
	2.6 Test an interface
	2.7 Test a JavaBean
	2.8 Test throwing the right exception
	2.9 Let collections compare themselves
	2.10 Test a big object for equality
	2.11 Test an object that instantiates other objects

	Organizing and building JUnit tests
	A place to start
	3.1 Place test classes in the same package as production code
	3.2 Create a separate source tree for test code
	3.3 Separate test packages from production code packages
	3.4 Factor out a test fixture
	3.5 Factor out a test fixture hierarchy
	3.6 Introduce a Base Test Case
	3.7 Move special case tests to a separate test fixture
	3.8 Build tests from the command line
	3.9 Build tests using Ant
	3.10 Build tests using Eclipse

	Managing test suites
	4.1 Let JUnit build your test suite
	4.2 Collect a specific set of tests
	4.3 Collect all the tests in a package
	4.4 Collect all the tests for your entire system
	4.5 Scan the file system for tests
	4.6 Separate the different kinds of test suites
	4.7 Control the order of some of your tests
	4.8 Build a data-driven test suite
	4.9 Define a test suite in XML

	Working with test data
	5.1 Use Java system properties
	5.2 Use environment variables
	5.3 Use an inline data file
	5.4 Use a properties file
	5.5 Use ResourceBundles
	5.6 Use a file-based test data repository
	5.7 Use XML to describe test data
	5.8 Use Ant’s <sql> task to work with a database
	5.9 Use JUnitPP
	5.10 Set up your fixture once for the entire suite
	5.11 Perform environment setup once for multiple test runs
	5.12 Use DbUnit

	Running JUnit tests
	The basic test runners
	Using Ant
	JUnit-addons Test Runner
	6.1 See the name of each test as it executes
	6.2 See the name of each test as it executes with a text-based test runner
	6.3 Execute a single test
	6.4 Execute each test in its own JVM
	6.5 Reload classes before each test
	6.6 Ignore a test

	Reporting JUnit results
	7.1 Using a Base Test Case with a logger
	7.2 Using Log4Unit
	7.3 Getting plain text results with Ant
	7.4 Reporting results in HTML with Ant’s <junitreport> task
	7.5 Customizing <junit> XML reports with XSLT
	7.6 Extending Ant’s JUnit results format
	7.7 Implementing TestListener and extending TestRunner
	7.8 Reporting a count of assertions

	Troubleshooting JUnit
	The most common problem
	8.1 JUnit cannot find your tests
	8.2 JUnit does not execute your custom test suite
	8.3 JUnit does not set up your test fixture
	8.4 Test setup fails after overriding runTest()
	8.5 Your test stops after the first assertion fails
	8.6 The graphical test runner does not load your classes properly
	8.7 JUnit fails when your test case uses JAXP
	8.8 JUnit fails when narrowing an EJB reference

	Testing J2EE
	Designing J2EE applications for testability
	The performance problem
	The dependency problem
	Mock objects-palliative care
	Reducing dependency-the cure
	Testing legacy J2EE components
	Post script

	The Coffee Shop application
	Testing and XML
	9.1 Verify the order of elements in a document
	9.2 Ignore the order of elements in an XML document
	9.3 Ignore certain differences in XML documents
	9.4 Get a more detailed failure message from XMLUnit
	9.5 Test the content of a static web page
	9.6 Test an XSL stylesheet in isolation
	9.7 Validate XML documents in your tests

	Testing and JDBC
	10.1 Test making domain objects from a ResultSet
	10.2 Verify your SQL commands
	10.3 Test your database schema
	10.4 Verify your tests clean up JDBC resources
	10.5 Verify your production code cleans up JDBC resources
	10.6 Manage external data in your test fixture
	10.7 Manage test data in a shared database
	10.8 Test permissions when deploying schema objects
	10.9 Test legacy JDBC code without the database
	10.10 Test legacy JDBC code with the database
	10.11 Use schema-qualified tables with DbUnit
	10.12 Test stored procedures

	Testing Enterprise JavaBeans
	11.1 Test a session bean method outside the container
	11.2 Test a legacy session bean
	11.3 Test a session bean method in a real container
	11.4 Test a CMP entity bean
	11.5 Test CMP meta data outside the container
	11.6 Test a BMP entity bean
	11.7 Test a message-driven bean inside the container
	11.8 Test a message-driven bean outside the container
	11.9 Test a legacy message-driven bean
	11.10 Test a JMS message consumer without the messaging server
	11.11 Test JMS message-processing logic
	11.12 Test a JMS message producer
	11.13 Test the content of your JNDI directory

	Testing web components
	Test the components in a container
	Simulate the container
	Avoid the container
	12.1 Test updating session data without a container
	12.2 Test updating the HTTP session object
	12.3 Test rendering a JavaServer Page
	12.4 Test rendering a Velocity template
	12.5 Test a JSP tag handler
	12.6 Test your JSP tag library deployment
	12.7 Test servlet initialization
	12.8 Test the ServletContext
	12.9 Test processing a request
	12.10 Verify web page content without a web server
	12.11 Verify web form attributes
	12.12 Verify the data passed to a page template
	12.13 Test a web resource filter

	Testing J2EE applications
	13.1 Test page flow
	13.2 Test navigation rules in a Struts application
	13.3 Test your site for broken links
	13.4 Test web resource security
	13.5 Test EJB resource security
	13.6 Test container-managed transactions

	More JUnit techniques
	Testing design patterns
	14.1 Test an Observer (Event Listener)
	14.2 Test an Observable (Event Source)
	14.3 Test a Singleton
	14.4 Test a Singleton’s client
	14.5 Test an object factory
	14.6 Test a template method’s implementation

	GSBase
	15.1 Verify events with EventCatcher
	15.2 Test serialization
	15.3 Test object cloning
	15.4 Compare JavaBeans using “appears equal”

	JUnit-addons
	16.1 Test your class for compareTo()
	16.2 Collect tests automatically from an archive
	16.3 Organize test data using PropertyManager
	16.4 Manage shared test resources
	16.5 Ensure your shared test fixture tears itself down
	16.6 Report the name of each test as it executes

	Odds and ends
	17.1 Clean up the file system between tests
	17.2 Test your file-based application without the file system
	17.3 Verify your test case class syntax
	17.4 Extract a custom assertion
	17.5 Test a legacy method with no return value
	17.6 Test a private method if you must

	Complete solutions
	A.1 Define a test suite in XML
	A.2 Parameterized Test Case overriding runTest()
	A.3 Ignore the order of elements in an XML document
	A.4 Test an XSL stylesheet in isolation
	A.5 Validate XML documents in your tests
	A.6 Aspect-based universal Spy
	A.7 Test a BMP entity bean

	Essays on testing
	B.1 Too simple to break
	B.2 Strangeness and transitivity
	B.3 Isolate expensive tests
	B.4 The mock objects landscape

	Reading List
	references
	index

